Structured populations with diffusion in state space

  • Received: 01 May 2009 Accepted: 29 June 2018 Published: 01 January 2010
  • MSC : Primary: 92D25; Secondary: 35K57, 49L25.

  • The classical models for populations structured by size have two features which may cause problems in biologically realistic modeling approaches: the structure variable always increases, and individuals in an age cohort that are identical initially stay identical throughout their lives. Here a diffusion term is introduced in the partial differential equation which mathematically amounts to adding viscosity. This approach solves both problems but it requires to identify appropriate boundary (recruitment) conditions. The method is applied to size-structured populations, metapopulations, infectious diseases, and vector-transmitted diseases.

    Citation: Karl Peter Hadeler. Structured populations with diffusion in state space[J]. Mathematical Biosciences and Engineering, 2010, 7(1): 37-49. doi: 10.3934/mbe.2010.7.37

    Related Papers:

    [1] József Z. Farkas, Peter Hinow . Physiologically structured populations with diffusion and dynamic boundary conditions. Mathematical Biosciences and Engineering, 2011, 8(2): 503-513. doi: 10.3934/mbe.2011.8.503
    [2] Agnieszka Bartłomiejczyk, Henryk Leszczyński . Structured populations with diffusion and Feller conditions. Mathematical Biosciences and Engineering, 2016, 13(2): 261-279. doi: 10.3934/mbe.2015002
    [3] Maoxiang Wang, Fenglan Hu, Meng Xu, Zhipeng Qiu . Keep, break and breakout in food chains with two and three species. Mathematical Biosciences and Engineering, 2021, 18(1): 817-836. doi: 10.3934/mbe.2021043
    [4] Katarzyna Pichór, Ryszard Rudnicki . Stochastic models of population growth. Mathematical Biosciences and Engineering, 2025, 22(1): 1-22. doi: 10.3934/mbe.2025001
    [5] Zhangrong Qin, Lingjuan Meng, Fan Yang, Chaoying Zhang, Binghai Wen . Aqueous humor dynamics in human eye: A lattice Boltzmann study. Mathematical Biosciences and Engineering, 2021, 18(5): 5006-5028. doi: 10.3934/mbe.2021255
    [6] Gonzalo Galiano, Julián Velasco . Finite element approximation of a population spatial adaptation model. Mathematical Biosciences and Engineering, 2013, 10(3): 637-647. doi: 10.3934/mbe.2013.10.637
    [7] Ming Mei, Yau Shu Wong . Novel stability results for traveling wavefronts in an age-structured reaction-diffusion equation. Mathematical Biosciences and Engineering, 2009, 6(4): 743-752. doi: 10.3934/mbe.2009.6.743
    [8] Guangrui Li, Ming Mei, Yau Shu Wong . Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model. Mathematical Biosciences and Engineering, 2008, 5(1): 85-100. doi: 10.3934/mbe.2008.5.85
    [9] Suzanne M. O'Regan, John M. Drake . Finite mixture models of superspreading in epidemics. Mathematical Biosciences and Engineering, 2025, 22(5): 1081-1108. doi: 10.3934/mbe.2025039
    [10] Hilla Behar, Alexandra Agranovich, Yoram Louzoun . Diffusion rate determines balance between extinction and proliferationin birth-death processes. Mathematical Biosciences and Engineering, 2013, 10(3): 523-550. doi: 10.3934/mbe.2013.10.523
  • The classical models for populations structured by size have two features which may cause problems in biologically realistic modeling approaches: the structure variable always increases, and individuals in an age cohort that are identical initially stay identical throughout their lives. Here a diffusion term is introduced in the partial differential equation which mathematically amounts to adding viscosity. This approach solves both problems but it requires to identify appropriate boundary (recruitment) conditions. The method is applied to size-structured populations, metapopulations, infectious diseases, and vector-transmitted diseases.


  • This article has been cited by:

    1. Agnieszka Bartłomiejczyk, Henryk Leszczyński, Method of lines for physiologically structured models with diffusion, 2015, 94, 01689274, 140, 10.1016/j.apnum.2015.03.006
    2. Agnieszka Bartłomiejczyk, Henryk Leszczyński, Structured populations with diffusion and Feller conditions, 2016, 13, 1551-0018, 261, 10.3934/mbe.2015002
    3. Carles Barril, Àngel Calsina, Sílvia Cuadrado, Jordi Ripoll, On the basic reproduction number in continuously structured populations, 2021, 44, 0170-4214, 799, 10.1002/mma.6787
    4. Physiologically structured populations with diffusion and dynamic boundary conditions, 2011, 8, 1551-0018, 503, 10.3934/mbe.2011.8.503
    5. J. Z. Farkas, A. Y. Morozov, A. Morozov, Modelling Effects of Rapid Evolution on Persistence and Stability in Structured Predator-Prey Systems, 2014, 9, 0973-5348, 26, 10.1051/mmnp/20149303
    6. Jacek Banasiak, Aleksandra Falkiewicz, Proscovia Namayanja, Asymptotic state lumping in transport and diffusion problems on networks with applications to population problems, 2016, 26, 0218-2025, 215, 10.1142/S0218202516400017
    7. Karl-Peter Hadeler, 2017, Chapter 2, 978-3-319-65620-5, 79, 10.1007/978-3-319-65621-2_2
    8. Qiang-Jun Xie, Ze-Rong He, Chun-Guo Zhang, Harvesting Renewable Resources of Population with Size Structure and Diffusion, 2014, 2014, 1085-3375, 1, 10.1155/2014/396420
    9. Agnieszka Bartłomiejczyk, Henryk Leszczński, Agnieszka Marciniak, Rothe’s method for physiologically structured models with diffusion, 2018, 68, 0139-9918, 211, 10.1515/ms-2017-0094
    10. Andrea Pugliese, Fabio Milner, A structured population model with diffusion in structure space, 2018, 77, 0303-6812, 2079, 10.1007/s00285-018-1246-6
    11. Jacek Banasiak, Aleksandra Falkiewicz, Proscovia Namayanja, Semigroup approach to diffusion and transport problems on networks, 2016, 93, 0037-1912, 427, 10.1007/s00233-015-9730-4
    12. Àngel Calsina, József Z. Farkas, Steady states in a structured epidemic model with Wentzell boundary condition, 2012, 12, 1424-3199, 495, 10.1007/s00028-012-0142-6
    13. Manoj Kumar, Syed Abbas, Diffusive size-structured population model with time-varying diffusion rate, 2023, 28, 1531-3492, 1414, 10.3934/dcdsb.2022128
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2450) PDF downloads(521) Cited by(13)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog