Citation: Karl Peter Hadeler. Structured populations with diffusion in state space[J]. Mathematical Biosciences and Engineering, 2010, 7(1): 37-49. doi: 10.3934/mbe.2010.7.37
[1] | József Z. Farkas, Peter Hinow . Physiologically structured populations with diffusion and dynamic boundary conditions. Mathematical Biosciences and Engineering, 2011, 8(2): 503-513. doi: 10.3934/mbe.2011.8.503 |
[2] | Agnieszka Bartłomiejczyk, Henryk Leszczyński . Structured populations with diffusion and Feller conditions. Mathematical Biosciences and Engineering, 2016, 13(2): 261-279. doi: 10.3934/mbe.2015002 |
[3] | Maoxiang Wang, Fenglan Hu, Meng Xu, Zhipeng Qiu . Keep, break and breakout in food chains with two and three species. Mathematical Biosciences and Engineering, 2021, 18(1): 817-836. doi: 10.3934/mbe.2021043 |
[4] | Katarzyna Pichór, Ryszard Rudnicki . Stochastic models of population growth. Mathematical Biosciences and Engineering, 2025, 22(1): 1-22. doi: 10.3934/mbe.2025001 |
[5] | Zhangrong Qin, Lingjuan Meng, Fan Yang, Chaoying Zhang, Binghai Wen . Aqueous humor dynamics in human eye: A lattice Boltzmann study. Mathematical Biosciences and Engineering, 2021, 18(5): 5006-5028. doi: 10.3934/mbe.2021255 |
[6] | Gonzalo Galiano, Julián Velasco . Finite element approximation of a population spatial adaptation model. Mathematical Biosciences and Engineering, 2013, 10(3): 637-647. doi: 10.3934/mbe.2013.10.637 |
[7] | Ming Mei, Yau Shu Wong . Novel stability results for traveling wavefronts in an age-structured reaction-diffusion equation. Mathematical Biosciences and Engineering, 2009, 6(4): 743-752. doi: 10.3934/mbe.2009.6.743 |
[8] | Guangrui Li, Ming Mei, Yau Shu Wong . Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model. Mathematical Biosciences and Engineering, 2008, 5(1): 85-100. doi: 10.3934/mbe.2008.5.85 |
[9] | Suzanne M. O'Regan, John M. Drake . Finite mixture models of superspreading in epidemics. Mathematical Biosciences and Engineering, 2025, 22(5): 1081-1108. doi: 10.3934/mbe.2025039 |
[10] | Hilla Behar, Alexandra Agranovich, Yoram Louzoun . Diffusion rate determines balance between extinction and proliferationin birth-death processes. Mathematical Biosciences and Engineering, 2013, 10(3): 523-550. doi: 10.3934/mbe.2013.10.523 |
1. | Agnieszka Bartłomiejczyk, Henryk Leszczyński, Method of lines for physiologically structured models with diffusion, 2015, 94, 01689274, 140, 10.1016/j.apnum.2015.03.006 | |
2. | Agnieszka Bartłomiejczyk, Henryk Leszczyński, Structured populations with diffusion and Feller conditions, 2016, 13, 1551-0018, 261, 10.3934/mbe.2015002 | |
3. | Carles Barril, Àngel Calsina, Sílvia Cuadrado, Jordi Ripoll, On the basic reproduction number in continuously structured populations, 2021, 44, 0170-4214, 799, 10.1002/mma.6787 | |
4. | Physiologically structured populations with diffusion and dynamic boundary conditions, 2011, 8, 1551-0018, 503, 10.3934/mbe.2011.8.503 | |
5. | J. Z. Farkas, A. Y. Morozov, A. Morozov, Modelling Effects of Rapid Evolution on Persistence and Stability in Structured Predator-Prey Systems, 2014, 9, 0973-5348, 26, 10.1051/mmnp/20149303 | |
6. | Jacek Banasiak, Aleksandra Falkiewicz, Proscovia Namayanja, Asymptotic state lumping in transport and diffusion problems on networks with applications to population problems, 2016, 26, 0218-2025, 215, 10.1142/S0218202516400017 | |
7. | Karl-Peter Hadeler, 2017, Chapter 2, 978-3-319-65620-5, 79, 10.1007/978-3-319-65621-2_2 | |
8. | Qiang-Jun Xie, Ze-Rong He, Chun-Guo Zhang, Harvesting Renewable Resources of Population with Size Structure and Diffusion, 2014, 2014, 1085-3375, 1, 10.1155/2014/396420 | |
9. | Agnieszka Bartłomiejczyk, Henryk Leszczński, Agnieszka Marciniak, Rothe’s method for physiologically structured models with diffusion, 2018, 68, 0139-9918, 211, 10.1515/ms-2017-0094 | |
10. | Andrea Pugliese, Fabio Milner, A structured population model with diffusion in structure space, 2018, 77, 0303-6812, 2079, 10.1007/s00285-018-1246-6 | |
11. | Jacek Banasiak, Aleksandra Falkiewicz, Proscovia Namayanja, Semigroup approach to diffusion and transport problems on networks, 2016, 93, 0037-1912, 427, 10.1007/s00233-015-9730-4 | |
12. | Àngel Calsina, József Z. Farkas, Steady states in a structured epidemic model with Wentzell boundary condition, 2012, 12, 1424-3199, 495, 10.1007/s00028-012-0142-6 | |
13. | Manoj Kumar, Syed Abbas, Diffusive size-structured population model with time-varying diffusion rate, 2023, 28, 1531-3492, 1414, 10.3934/dcdsb.2022128 |