This paper presents a lattice Boltzmann model to simulate the aqueous humor (AH) dynamics in the human eye by involving incompressible Navier-Stokes flow, heat convection and diffusion, and Darcy seepage flow. Verifying simulations indicate that the model is stable, convergent and robust. Further investigations were carried out, including the effects of heat convection and buoyancy, AH production rate, permeability of trabecular meshwork, viscosity of AH and anterior chamber angle on intraocular pressure (IOP). The heat convection and diffusion can significantly affect the flow patterns in the healthy eye, and the IOP can be controlled by increasing the anterior chamber angle or decreasing the secretion rate, the drainage resistance and viscosity of AH. However, the IOP is insensitive to the viscosity of AH, which may be one of the causes that the viscosity would not have been considered as a factor for controlling the IOP. It's interesting that all these factors have more significant influences on the IOP in pathologic eye than healthy one. The temperature difference and the eye-orientation have obvious influence on the cornea and iris wall shear stresses. The present model and simulation results are expected to provide an alternative tool and theoretical reference for the study of AH dynamics.
Citation: Zhangrong Qin, Lingjuan Meng, Fan Yang, Chaoying Zhang, Binghai Wen. Aqueous humor dynamics in human eye: A lattice Boltzmann study[J]. Mathematical Biosciences and Engineering, 2021, 18(5): 5006-5028. doi: 10.3934/mbe.2021255
This paper presents a lattice Boltzmann model to simulate the aqueous humor (AH) dynamics in the human eye by involving incompressible Navier-Stokes flow, heat convection and diffusion, and Darcy seepage flow. Verifying simulations indicate that the model is stable, convergent and robust. Further investigations were carried out, including the effects of heat convection and buoyancy, AH production rate, permeability of trabecular meshwork, viscosity of AH and anterior chamber angle on intraocular pressure (IOP). The heat convection and diffusion can significantly affect the flow patterns in the healthy eye, and the IOP can be controlled by increasing the anterior chamber angle or decreasing the secretion rate, the drainage resistance and viscosity of AH. However, the IOP is insensitive to the viscosity of AH, which may be one of the causes that the viscosity would not have been considered as a factor for controlling the IOP. It's interesting that all these factors have more significant influences on the IOP in pathologic eye than healthy one. The temperature difference and the eye-orientation have obvious influence on the cornea and iris wall shear stresses. The present model and simulation results are expected to provide an alternative tool and theoretical reference for the study of AH dynamics.
[1] | H. A. Quigley, A. T. Broman, The number of people with glaucoma worldwide in 2010 and 2020, Br. J. Ophthalmol., 90 (2006), 262-267. doi: 10.1136/bjo.2005.081224 |
[2] | J. H. Siggers, C. R. Ethier, Fluid Mechanics of the Eye, Annu. Rev. Fluid Mech., 44 (2012), 347-372. doi: 10.1146/annurev-fluid-120710-101058 |
[3] | M. Johnson, E. R. Tamm, Biomechanics of Aqueous Humor Outflow Resistance, Encycl. Eye, 8 (2010), 173-182. |
[4] | K. D. Rittenhouse, R. L. Peiffer, G. M. Pollack, Evaluation of microdialysis sampling of aqueous humor for in vivo models of ocular absorption and disposition, J. Pharm. Biomed. Anal., 16 (1998), 951-959. doi: 10.1016/S0731-7085(97)00060-5 |
[5] | D. Gulsen, A. Chauhan, Dispersion of microemulsion drops in HEMA hydrogel: a potential ophthalmic drug delivery vehicle, Int. J. Pharm., 292 (2005), 95-117. doi: 10.1016/j.ijpharm.2004.11.033 |
[6] | J. A. Ferreira, P. de Oliveira, P. M. da Silva, J. N. Murta, Numerical simulation of aqueous humor flow: From healthy to pathologic situations, Appl. Math. Comput., 226 (2014), 777-792. |
[7] | R. Avtar, R. Srivastava, Modelling aqueous humor outflow through trabecular meshwork, Appl. Math. Comput., 189 (2007), 734-745. |
[8] | C. R. Ethier, The hydrodynamic resistance of hyaluronic acid: estimates from sedimentation studies, Biorheology, 23 (1986), 99-113. doi: 10.3233/BIR-1986-23203 |
[9] | W. C. Hubbard, M. Johnson, H. Gone, B. T. Gabelt, J. Apeterson, R. Sawhney, et al., Intraocular pressure and outflow facility are unchanged following acute and chronic intracameral chondroitinase ABC and hyaluronidase in monkeys, Exp. Eye Res., 65 (1997), 177-190. doi: 10.1006/exer.1997.0319 |
[10] | A. Eriksson, B. Svedbergh, Transcellular Aqueous Humor Outflow: A Theoretical and Experimental Study, Albrecht Von. Graefes. Arch. Klin. Exp. Ophthalmol., 212 (1980), 53-63. |
[11] | M. Johnson, A. Shapiro, C. R. Ethier, R. D. Kamm, Modulation of outflow resistance by the pores of the inner wall endothelium, Invest. Ophth. Vis. Sci., 33 (1992), 1670-1675. |
[12] | D. R. Overby, W. D. Stamer, M. Johnson, The changing paradigm of outflow resistance generation: Towards synergistic models of the JCT and inner wall endothelium, Exp. Eye Res., 88 (2009), 656-670. doi: 10.1016/j.exer.2008.11.033 |
[13] | B. M. Merchant, J. J. Heys, Effects of variable permeability on aqueous humor outflow, Appl. Math. Comput., 196 (2008), 371-380. |
[14] | R. Avtar, R. Srivastava, Modelling the flow of aqueous humor in anterior chamber of the eye, Appl. Math. Comput., 81 (2006), 1336-1348. |
[15] | T. R. Crowder, V. J. Ervin, Numerical simulations of fluid pressure in the human eye, Appl. Math. Comput., 19 (2013), 11119-11133. |
[16] | C. Y. Loke, E. H. Ooi, M. S. Salahudeen, N. Ramli, A. Samsudin, Segmental aqueous humour outflow and eye orientation have strong influence on ocular drug delivery, Appl. Math. Model, 57 (2018), 474-491. doi: 10.1016/j.apm.2018.01.007 |
[17] | A. D. Fitt, G. Gonzalez, Fluid Mechanics of the Human Eye: Aqueous Humour Flow in The Anterior Chamber, B Math. Biol., 68 (2006), 53-71. doi: 10.1007/s11538-005-9015-2 |
[18] | F. Zhang, H. Chen, Y. Huang, Computer modeling of drug delivery in the anterior human eye after subconjunctival and episcleral implantation, Comput. Biol. Med., 89 (2017), 162-169. doi: 10.1016/j.compbiomed.2017.07.016 |
[19] | C. R. Canning, M. J. Greaney, J. N. Dewynne, A. D. Fitt, Fluid flow in the anterior chamber of a human eye, Math. Med. Biol., 19 (2002), 31-60. doi: 10.1093/imammb/19.1.31 |
[20] | J. J. Heys, V. H. Barocas, Computational Evaluation of the Role of Accommodation in Pigmentary Glaucoma, Invest. Ophth. Vis. Sci., 43 (2002), 700-708. |
[21] | A. Karampatzakis, T. Samaras, Numerical model of heat transfer in the human eye with consideration of fluid dynamics of the aqueous humour, Phys. Med. Biol., 55 (2010), 5653-5665. doi: 10.1088/0031-9155/55/19/003 |
[22] | S. Y. Chen, G. D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., 30 (1998), 329-364. doi: 10.1146/annurev.fluid.30.1.329 |
[23] | A. G. Xu, C. D. Lin, G. C. Zhang, Y. J. Li, Multiple-relaxation-time lattice Boltzmann kinetic model for combustion, Phys. Rev. E, 91 (2015), 043306. doi: 10.1103/PhysRevE.91.043306 |
[24] | S. Sauro, Lattice Boltzmann 2038, Europhys. Lett., 109 (2015), 50001. |
[25] | C. Peng, Z. Guo, L. P. Wang, Lattice Boltzmann model capable of mesoscopic vorticity computation, Phys. Rev. E, 96 (2017), 053304. doi: 10.1103/PhysRevE.96.053304 |
[26] | B. H. Wen, X. Zhou, B. He, C. Zhang, H. Fang, Chemical-potential-based lattice Boltzmann method for nonideal fluids, Phys. Rev. E, 95 (2017), 063305. doi: 10.1103/PhysRevE.95.063305 |
[27] | Z. H. Qin, W. L. Zhao, Y. Y. Chen, C. Y Zhang, B. H. Wen, A pseudopotential multiphase lattice Boltzmann model based on high-order difference, Int. J. Heat Mass Tran., 127 (2018), 234-243. |
[28] | Y. Q. Xu, M. Y. Wang, Q. Y. Liu, X. Y. Tang, F. B. Tian, External force-induced focus pattern of a flexible filament in a viscous fluid, Appl. Math. Model, 53 (2018), 369-383. doi: 10.1016/j.apm.2017.09.001 |
[29] | Z. H. Chai, C. S. Huang, B. C Shi, Z. L. Guo, A comparative study on the lattice Boltzmann models for predicting effective diffusivity of porous media, Int. J. Heat Mass Tran., 98 (2016), 687-696. doi: 10.1016/j.ijheatmasstransfer.2016.03.065 |
[30] | L. Chen, L. Zhang, Q. J. Kang, J. Yao, W. Q. Tao, Nanoscale simulation of shale transport properties using the lattice Boltzmann method: permeability and diffusivity, Sci. Rep., 5 (2015), 2045-2322. |
[31] | J. Tan, W. Keller, S. Sohrabi, J. Yang, Y. Liu, Characterization of Nanoparticle Dispersion in Red Blood Cell Suspension by the Lattice Boltzmann-Immersed Boundary Method, Nanomaterials, 6 (2016), 30. doi: 10.3390/nano6020030 |
[32] | D. K. Sun, Y. Wang, H. Y. Yu, Q. Y. Han, A lattice Boltzmann study on dendritic growth of a binary alloy in the presence of melt convection, Int. J. Heat Mass Tran., 123 (2018), 213-226. doi: 10.1016/j.ijheatmasstransfer.2018.02.053 |
[33] | R. C. Tripathi, B. J. Tripathi, Anatomy of the human eye, orbit, and adnexa, Pittsburgh: Academic Press, 1984. |
[34] | Z. L. Guo, B. C. Shi, C. G. Zheng, A coupled lattice BGK model for the Boussinesq equations, Int. J. Numer. Meth. Fluids, 39 (2002), 325-342. doi: 10.1002/fld.337 |
[35] | A. Dupuis, B. Chopard, Lattice Gas Modeling of Scour Formation under Submarine Pipelines, J. Comput. Phys., 178 (2002), 161-174. doi: 10.1006/jcph.2002.7025 |
[36] | M. Bouzidi, M. Firdaouss, P. Lallemand, Momentum transfer of a Boltzmann-lattice fluid with boundaries, Phys. Fluids, 13 (2001), 3452-3459. doi: 10.1063/1.1399290 |
[37] | Z. L. Guo, C. G. Zheng, B. C. Shi, An extrapolation method for boundary conditions in lattice Boltzmann method, Phys. Fluids, 14 (2002), 2007-2010. doi: 10.1063/1.1471914 |
[38] | X. Y. He, Q. S. Zou, L.S. Luo, M. Dembo, Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model, J. Stat. Phys., 87 (1997). |
[39] | J. J. Heys, V. H. Barocas, A Boussinesq Model of Natural Convection in the Human Eye and the Formation of Krukenberg's Spindle, Ann. Biomed. Eng., 30 (2002), 392-401. doi: 10.1114/1.1477447 |
[40] | R. S. Reneman, T. Arts, A. P. Hoeks, Wall shear stress-an important determinant of endothelial cell function and structure-in the arterial system in vivo, J. Vasc. Res., 43 (2006), 251-269. doi: 10.1159/000091648 |
[41] | S. Chien, Effects of disturbed flow on endothelial cells, Ann. Biomed. Eng., 36 (2008), 554-562. doi: 10.1007/s10439-007-9426-3 |
[42] | I. Lehto, P. Ruusuvaara, K. Setälä, Corneal endothelium in pigmentary glaucoma and pigment dispersion syndrome, Acta. Ophthalmologica., 68 (1990), 703-709. |
[43] | H. Takahashi, K. Kashiwagi, S. Kogure, S. Tsukahara, Bullous keratopathy after argon laser iridotomy presumably associated with latanoprost, Jpn. J. Ophthalmol., 47 (2003), 618-620. doi: 10.1016/S0021-5155(03)00143-6 |
[44] | J. C. Gerlach, F. Hentschel, G. Spatkowski, K. Zeilinger, M. D. Smith, P. Neuhaus, Cell detachment during sinusoidal reperfusion after liver preservation: An in vitro model, Transplantation, 64 (1997), 907-912. doi: 10.1097/00007890-199709270-00020 |
[45] | Y. Kaji, T. Oshika, T. Usui, J. Sakakibara, Effect of shear stress on attachment of corneal endothelial cells in association with corneal endothelial cell loss after laser iridotomy, Cornea, 24 (2005), S55-S58. doi: 10.1097/01.ico.0000178735.27674.52 |