Dynamics of two phytoplankton populations under predation

  • Received: 01 December 2013 Accepted: 29 June 2018 Published: 01 September 2014
  • MSC : 91B74, 97M10, 62P12.

  • The aim of this paper is to investigate the manner in which predation and single-nutrient competition affect the dynamics of a non-toxic and a toxic phytoplankton species in a homogeneous environment (such as a chemostat). We allow for the possibility that both species serve as prey for an herbivorous zooplankton species. We assume that the toxic phytoplankton species produces toxins that affect only its own growth (autotoxicity). The autotoxicity assumption is ecologically explained by the fact that the toxin-producing phytoplankton is not mature enough to produce toxins that will affect the growth of its nontoxic competitor. We show that, in the absence of phytotoxic interactions and nutrient recycling, our model exhibits uniform persistence. The removal rates are distinct and we use general response functions. Finally, numerical simulations are carried out to show consistency with theoretical analysis. Our model has similarities with other food-chain models. As such, our results may be relevant to a wider spectrum of population models, not just those focused on plankton. Some open problems are discussed at the end of this paper.

    Citation: Jean-Jacques Kengwoung-Keumo. Dynamics of two phytoplankton populations under predation[J]. Mathematical Biosciences and Engineering, 2014, 11(6): 1319-1336. doi: 10.3934/mbe.2014.11.1319

    Related Papers:

    [1] He Liu, Chuanjun Dai, Hengguo Yu, Qing Guo, Jianbing Li, Aimin Hao, Jun Kikuchi, Min Zhao . Dynamics induced by environmental stochasticity in a phytoplankton-zooplankton system with toxic phytoplankton. Mathematical Biosciences and Engineering, 2021, 18(4): 4101-4126. doi: 10.3934/mbe.2021206
    [2] Jean-Jacques Kengwoung-Keumo . Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation. Mathematical Biosciences and Engineering, 2016, 13(4): 787-812. doi: 10.3934/mbe.2016018
    [3] Xin Zhao, Lijun Wang, Pankaj Kumar Tiwari, He Liu, Yi Wang, Jianbing Li, Min Zhao, Chuanjun Dai, Qing Guo . Investigation of a nutrient-plankton model with stochastic fluctuation and impulsive control. Mathematical Biosciences and Engineering, 2023, 20(8): 15496-15523. doi: 10.3934/mbe.2023692
    [4] Zhiwei Huang, Gang Huang . Mathematical analysis on deterministic and stochastic lake ecosystem models. Mathematical Biosciences and Engineering, 2019, 16(5): 4723-4740. doi: 10.3934/mbe.2019237
    [5] Alexis Erich S. Almocera, Sze-Bi Hsu, Polly W. Sy . Extinction and uniform persistence in a microbial food web with mycoloop: limiting behavior of a population model with parasitic fungi. Mathematical Biosciences and Engineering, 2019, 16(1): 516-537. doi: 10.3934/mbe.2019024
    [6] Zhenyao Sun, Da Song, Meng Fan . Dynamics of a stoichiometric phytoplankton-zooplankton model with season-driven light intensity. Mathematical Biosciences and Engineering, 2024, 21(8): 6870-6897. doi: 10.3934/mbe.2024301
    [7] Elvira Barbera, Giancarlo Consolo, Giovanna Valenti . A two or three compartments hyperbolic reaction-diffusion model for the aquatic food chain. Mathematical Biosciences and Engineering, 2015, 12(3): 451-472. doi: 10.3934/mbe.2015.12.451
    [8] Saswati Biswas, Pankaj Kumar Tiwari, Yun Kang, Samares Pal . Effects of zooplankton selectivity on phytoplankton in an ecosystem affected by free-viruses and environmental toxins. Mathematical Biosciences and Engineering, 2020, 17(2): 1272-1317. doi: 10.3934/mbe.2020065
    [9] Juan Li, Yongzhong Song, Hui Wan, Huaiping Zhu . Dynamical analysis of a toxin-producing phytoplankton-zooplankton model with refuge. Mathematical Biosciences and Engineering, 2017, 14(2): 529-557. doi: 10.3934/mbe.2017032
    [10] Yuanpei Xia, Weisong Zhou, Zhichun Yang . Global analysis and optimal harvesting for a hybrid stochastic phytoplankton-zooplankton-fish model with distributed delays. Mathematical Biosciences and Engineering, 2020, 17(5): 6149-6180. doi: 10.3934/mbe.2020326
  • The aim of this paper is to investigate the manner in which predation and single-nutrient competition affect the dynamics of a non-toxic and a toxic phytoplankton species in a homogeneous environment (such as a chemostat). We allow for the possibility that both species serve as prey for an herbivorous zooplankton species. We assume that the toxic phytoplankton species produces toxins that affect only its own growth (autotoxicity). The autotoxicity assumption is ecologically explained by the fact that the toxin-producing phytoplankton is not mature enough to produce toxins that will affect the growth of its nontoxic competitor. We show that, in the absence of phytotoxic interactions and nutrient recycling, our model exhibits uniform persistence. The removal rates are distinct and we use general response functions. Finally, numerical simulations are carried out to show consistency with theoretical analysis. Our model has similarities with other food-chain models. As such, our results may be relevant to a wider spectrum of population models, not just those focused on plankton. Some open problems are discussed at the end of this paper.


    [1] Amer. Natur., 139 (1992), 663-668.
    [2] Biotechnol. Bioeng., 19 (1977), 1375-1386.
    [3] Math. Biosci., 118 (1993), 127-180.
    [4] J. Math. Biol., 28 (1990), 99-111.
    [5] Biochem. J., 85 (1962), 440-447.
    [6] Proc. Amer. Math. Soc., 96 (1986), 425-430.
    [7] J. Diff. Equ., 63 (1986), 255-263.
    [8] J. Math. Biol., 24 (1986), 167-191.
    [9] Math. Biosci., 83 (1987), 1-48.
    [10] J. Biol. Syst., 16 (2008), 547-564.
    [11] Eco. Let., 5 (2002), 302-315.
    [12] Heath, Boston, 1965.
    [13] Heidelberg, Springr-Verlag, 1977.
    [14] J. Plankton Res., 23 (2001), 389-413.
    [15] Dyna. Stabi. Syst., 11 (1996), 347-370.
    [16] Bull. Math. Biol., 61 (1999), 303-339.
    [17] J. Theor. Biol., 191 (1998), 353-376.
    [18] in Ocean. Sound Scat. Predic. (eds. N. R. Anderson and B. G. Zahurance), Plenum, New York, 1977, 749-765.
    [19] in Proceedings of the First International Conference on Mathematical Modeling (eds. J. R. Avula), Vol. IV, University of Missouri Press, Rolla, 1977, 2081-2088.
    [20] J. Math. Biol., 5 (1978), 261-280.
    [21] Sci., 207 (1980), 1491-1493.
    [22] Amer. Natur., 144 (1994), 741-771.
    [23] SIAM J. Appl. Math., 34 (1978), 760-763.
    [24] Yale University Press, New Haven, 1961.
    [25] Comput. Math. Appl., 49 (2005), 375-378.
    [26] J. Bacteriol., 113 (1976), 834-840.
    [27] Ph.D. dissertation, New Mexico State University, Las Cruces, New Mexico, U.S.A., 2012.
    [28] J. Theor. Biol., 50 (1975), 185-201.
    [29] J. Math. Anal. and Appl., 242 (2000), 75-92.
    [30] W. A. Benjamin, N.Y., 1971.
    [31] Hermann et Cie, Paris, 1942.
    [32] Ecol. Model., 198 (2006), 163-173.
    [33] Third edition, Springer, 2001.
    [34] Amer. Natur., 105 (1971), 575-587.
    [35] Theor. Popul. Biol., 75 (2009), 68-75.
    [36] J. Theor. Biol., 208 (2001), 15-26.
    [37] J. Math. Biol., 31 (1993), 633-654.
    [38] J. Theor. Biol., 244 (2007), 218-227.
    [39] J. Plankton Res., 14 (1992), 157-172.
    [40] Math. Biosci. Eng., 10 (2013), 913-923.
    [41] J. Math. Biol., 30 (1992), 755-763.
    [42] J. Appl. Math., 52 (1992), 222-233.
    [43] Biotechnol. Bioeng., 17 (1975), 1211-1235.
  • This article has been cited by:

    1. Jean-Jacques Kengwoung-Keumo, Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation, 2016, 13, 1551-0018, 787, 10.3934/mbe.2016018
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3150) PDF downloads(748) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog