Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model

  • Received: 01 January 2007 Accepted: 29 June 2018 Published: 01 January 2008
  • MSC : Primary: 35K57; Secondary: 34K20, 92D25.

  • The paper is devoted to the study of a time-delayed reaction- diffusion equation of age-structured single species population. Linear stability for this model was first presented by Gourley [4], when the time delay is small. Here, we extend the previous result to the nonlinear stability by using the technical weighted-energy method, when the initial perturbation around the wavefront decays to zero exponentially as x→-∞, but the initial perturbation can be arbitrarily large on other locations. The exponential convergent rate (in time) of the solution is obtained. Numerical simulations are carried out to confirm the theoretical results, and the traveling wavefronts with a large delay term in the model are reported.

    Citation: Guangrui Li, Ming Mei, Yau Shu Wong. Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model[J]. Mathematical Biosciences and Engineering, 2008, 5(1): 85-100. doi: 10.3934/mbe.2008.5.85

    Related Papers:

    [1] Ming Mei, Yau Shu Wong . Novel stability results for traveling wavefronts in an age-structured reaction-diffusion equation. Mathematical Biosciences and Engineering, 2009, 6(4): 743-752. doi: 10.3934/mbe.2009.6.743
    [2] Cheng-Hsiung Hsu, Jian-Jhong Lin, Shi-Liang Wu . Existence and stability of traveling wavefronts for discrete three species competitive-cooperative systems. Mathematical Biosciences and Engineering, 2019, 16(5): 4151-4181. doi: 10.3934/mbe.2019207
    [3] Sergei Trofimchuk, Vitaly Volpert . Traveling waves in delayed reaction-diffusion equations in biology. Mathematical Biosciences and Engineering, 2020, 17(6): 6487-6514. doi: 10.3934/mbe.2020339
    [4] Xixia Ma, Rongsong Liu, Liming Cai . Stability of traveling wave solutions for a nonlocal Lotka-Volterra model. Mathematical Biosciences and Engineering, 2024, 21(1): 444-473. doi: 10.3934/mbe.2024020
    [5] Xiao-Min Huang, Xiang-ShengWang . Traveling waves of di usive disease models with time delay and degeneracy. Mathematical Biosciences and Engineering, 2019, 16(4): 2391-2410. doi: 10.3934/mbe.2019120
    [6] Elvira Barbera, Giancarlo Consolo, Giovanna Valenti . A two or three compartments hyperbolic reaction-diffusion model for the aquatic food chain. Mathematical Biosciences and Engineering, 2015, 12(3): 451-472. doi: 10.3934/mbe.2015.12.451
    [7] Maryam Basiri, Frithjof Lutscher, Abbas Moameni . Traveling waves in a free boundary problem for the spread of ecosystem engineers. Mathematical Biosciences and Engineering, 2025, 22(1): 152-184. doi: 10.3934/mbe.2025008
    [8] Tiberiu Harko, Man Kwong Mak . Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach. Mathematical Biosciences and Engineering, 2015, 12(1): 41-69. doi: 10.3934/mbe.2015.12.41
    [9] M. B. A. Mansour . Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences and Engineering, 2009, 6(1): 83-91. doi: 10.3934/mbe.2009.6.83
    [10] Tong Li, Zhi-An Wang . Traveling wave solutions of a singular Keller-Segel system with logistic source. Mathematical Biosciences and Engineering, 2022, 19(8): 8107-8131. doi: 10.3934/mbe.2022379
  • The paper is devoted to the study of a time-delayed reaction- diffusion equation of age-structured single species population. Linear stability for this model was first presented by Gourley [4], when the time delay is small. Here, we extend the previous result to the nonlinear stability by using the technical weighted-energy method, when the initial perturbation around the wavefront decays to zero exponentially as x→-∞, but the initial perturbation can be arbitrarily large on other locations. The exponential convergent rate (in time) of the solution is obtained. Numerical simulations are carried out to confirm the theoretical results, and the traveling wavefronts with a large delay term in the model are reported.


  • This article has been cited by:

    1. Tianyuan Xu, Shanming Ji, Ming Mei, Jingxue Yin, Traveling waves for time-delayed reaction diffusion equations with degenerate diffusion, 2018, 265, 00220396, 4442, 10.1016/j.jde.2018.06.008
    2. Yun-Rui Yang, Wan-Tong Li, Shi-Liang Wu, Exponential stability of traveling fronts in a diffusion epidemic system with delay, 2011, 12, 14681218, 1223, 10.1016/j.nonrwa.2010.09.017
    3. Tianyuan Xu, Shanming Ji, Ming Mei, Jingxue Yin, Sharp oscillatory traveling waves of structured population dynamics model with degenerate diffusion, 2020, 269, 00220396, 8882, 10.1016/j.jde.2020.06.029
    4. Shi-Liang Wu, Hai-Qin Zhao, San-Yang Liu, Asymptotic stability of traveling waves for delayed reaction-diffusion equations with crossing-monostability, 2011, 62, 0044-2275, 377, 10.1007/s00033-010-0112-1
    5. Guo-Bao Zhang, Wan-Tong Li, Nonlinear stability of traveling wavefronts in an age-structured population model with nonlocal dispersal and delay, 2013, 64, 0044-2275, 1643, 10.1007/s00033-013-0303-7
    6. Shangjiang Guo, Johannes Zimmer, Stability of travelling wavefronts in discrete reaction–diffusion equations with nonlocal delay effects, 2015, 28, 0951-7715, 463, 10.1088/0951-7715/28/2/463
    7. Qifeng Zhang, Chengjian Zhang, A new linearized compact multisplitting scheme for the nonlinear convection–reaction–diffusion equations with delay, 2013, 18, 10075704, 3278, 10.1016/j.cnsns.2013.05.018
    8. Jingdong Wei, Lixin Tian, Jiangbo Zhou, Zaili Zhen, Existence, uniqueness and asymptotic behavior of traveling wave fronts for a generalized Fisher equation with nonlocal delay, 2017, 103, 09600779, 536, 10.1016/j.chaos.2017.07.003
    9. Jingjun Zhao, Rui Zhan, Yang Xu, Explicit exponential Runge–Kutta methods for semilinear parabolic delay differential equations, 2020, 178, 03784754, 366, 10.1016/j.matcom.2020.06.025
    10. Guangying Lv, Mingxin Wang, Nonlinear stability of travelling wave fronts for delayed reaction diffusion equations, 2010, 23, 0951-7715, 845, 10.1088/0951-7715/23/4/005
    11. Ansgar Jüngel, 2010, Chapter 15, 978-0-8176-4945-6, 397, 10.1007/978-0-8176-4946-3_15
    12. Ming Mei, Chunhua Ou, Xiao-Qiang Zhao, Global Stability of Monostable Traveling Waves For Nonlocal Time-Delayed Reaction-Diffusion Equations, 2010, 42, 0036-1410, 2762, 10.1137/090776342
    13. Rui Huang, Ming Mei, Yong Wang, Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity, 2012, 32, 1078-0947, 3621, 10.3934/dcds.2012.32.3621
    14. Yun-Rui Yang, Wan-Tong Li, Shi-Liang Wu, Stability of traveling waves in a monostable delayed system without quasi-monotonicity, 2013, 14, 14681218, 1511, 10.1016/j.nonrwa.2012.10.015
    15. Guo-Bao Zhang, Ruyun Ma, Spreading speeds and traveling waves for a nonlocal dispersal equation with convolution-type crossing-monostable nonlinearity, 2014, 65, 0044-2275, 819, 10.1007/s00033-013-0353-x
    16. Shi-Liang Wu, Wan-Tong Li, San-Yang Liu, Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay, 2012, 17, 1553-524X, 347, 10.3934/dcdsb.2012.17.347
    17. Yun-Rui Yang, Li Liu, Stability of traveling waves in a population dynamics model with spatio-temporal delay, 2016, 132, 0362546X, 183, 10.1016/j.na.2015.11.006
    18. Maohua Ran, Yu He, Linearized Crank–Nicolson method for solving the nonlinear fractional diffusion equation with multi-delay, 2018, 95, 0020-7160, 2458, 10.1080/00207160.2017.1398326
    19. Ming Mei, Chi-Kun Lin, Chi-Tien Lin, Joseph W.-H. So, Traveling wavefronts for time-delayed reaction–diffusion equation: (II) Nonlocal nonlinearity, 2009, 247, 00220396, 511, 10.1016/j.jde.2008.12.020
    20. Ming Mei, Chi-Kun Lin, Chi-Tien Lin, Joseph W.-H. So, Traveling wavefronts for time-delayed reaction–diffusion equation: (I) Local nonlinearity, 2009, 247, 00220396, 495, 10.1016/j.jde.2008.12.026
    21. Guo-Bao Zhang, Global stability of traveling wave fronts for non-local delayed lattice differential equations, 2012, 13, 14681218, 1790, 10.1016/j.nonrwa.2011.12.010
    22. Mengqi Li, Peixuan Weng, Yong Yang, Nonlinear stability of traveling waves for a multi-type SIS epidemic model, 2018, 11, 1793-5245, 1850003, 10.1142/S1793524518500031
    23. Shi-Liang Wu, Wan-Tong Li, San-Yang Liu, Asymptotic stability of traveling wave fronts in nonlocal reaction–diffusion equations with delay, 2009, 360, 0022247X, 439, 10.1016/j.jmaa.2009.06.061
    24. Changchun Liu, Ming Mei, Jiaqi Yang, Global stability of traveling waves for nonlocal time-delayed degenerate diffusion equation, 2022, 306, 00220396, 60, 10.1016/j.jde.2021.10.027
    25. Rui Huang, Zhuangzhuang Wang, Tianyuan Xu, Smooth traveling waves for doubly nonlinear degenerate diffusion equations with time delay, 2022, 0003-6811, 1, 10.1080/00036811.2022.2136074
    26. Rui Huang, Zhanghua Liang, Zhuangzhuang Wang, Existence and stability of traveling waves for doubly degenerate diffusion equations, 2023, 74, 0044-2275, 10.1007/s00033-023-01938-6
    27. Stability of traveling fronts in a population model with nonlocal delay and advection, 2015, 3, 2321-5666, 498, 10.26637/mjm304/008
    28. Dildora Muhamediyeva, D. Bazarov, Cross-diffusion systems with convective transport, 2023, 401, 2267-1242, 02022, 10.1051/e3sconf/202340102022
    29. Dildora Muhamediyeva, Nilufar Mirzaeva, Elmurod Kodirov, Boymirzo Samijonov, 2024, 3147, 0094-243X, 040013, 10.1063/5.0210488
    30. Na Shi, Xin Wu, Zhaohai Ma, Multidimensional Stability of Planar Traveling Waves for Competitive–Cooperative Lotka–Volterra System of Three Species, 2025, 13, 2227-7390, 197, 10.3390/math13020197
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3084) PDF downloads(568) Cited by(30)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog