Evolution of dispersal and the ideal free distribution

  • Received: 01 April 2009 Accepted: 29 June 2018 Published: 01 January 2010
  • MSC : Primary: 35K57, 92D25.

  • A general question in the study of the evolution of dispersal is what kind of dispersal strategies can convey competitive advantages and thus will evolve. We consider a two species competition model in which the species are assumed to have the same population dynamics but different dispersal strategies. Both species disperse by random diffusion and advection along certain gradients, with the same random dispersal rates but different advection coefficients. We found a conditional dispersal strategy which results in the ideal free distribution of species, and show that it is a local evolutionarily stable strategy. We further show that this strategy is also a global convergent stable strategy under suitable assumptions, and our results illustrate how the evolution of conditional dispersal can lead to an ideal free distribution. The underlying biological reason is that the species with this particular dispersal strategy can perfectly match the environmental resource, which leads to its fitness being equilibrated across the habitats.

    Citation: Robert Stephen Cantrell, Chris Cosner, Yuan Lou. Evolution of dispersal and the ideal free distribution[J]. Mathematical Biosciences and Engineering, 2010, 7(1): 17-36. doi: 10.3934/mbe.2010.7.17

    Related Papers:

    [1] Ana I. Muñoz, José Ignacio Tello . Mathematical analysis and numerical simulation of a model of morphogenesis. Mathematical Biosciences and Engineering, 2011, 8(4): 1035-1059. doi: 10.3934/mbe.2011.8.1035
    [2] Meng Zhao, Wan-Tong Li, Yang Zhang . Dynamics of an epidemic model with advection and free boundaries. Mathematical Biosciences and Engineering, 2019, 16(5): 5991-6014. doi: 10.3934/mbe.2019300
    [3] Min Zhu, Xiaofei Guo, Zhigui Lin . The risk index for an SIR epidemic model and spatial spreading of the infectious disease. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1565-1583. doi: 10.3934/mbe.2017081
    [4] M. B. A. Mansour . Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences and Engineering, 2009, 6(1): 83-91. doi: 10.3934/mbe.2009.6.83
    [5] Qiaoling Chen, Fengquan Li, Sanyi Tang, Feng Wang . Free boundary problem for a nonlocal time-periodic diffusive competition model. Mathematical Biosciences and Engineering, 2023, 20(9): 16471-16505. doi: 10.3934/mbe.2023735
    [6] Blessing O. Emerenini, Stefanie Sonner, Hermann J. Eberl . Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. Mathematical Biosciences and Engineering, 2017, 14(3): 625-653. doi: 10.3934/mbe.2017036
    [7] Nancy Azer, P. van den Driessche . Competition and Dispersal Delays in Patchy Environments. Mathematical Biosciences and Engineering, 2006, 3(2): 283-296. doi: 10.3934/mbe.2006.3.283
    [8] Vincenzo Luongo, Maria Rosaria Mattei, Luigi Frunzo, Berardino D'Acunto, Kunal Gupta, Shankararaman Chellam, Nick Cogan . A transient biological fouling model for constant flux microfiltration. Mathematical Biosciences and Engineering, 2023, 20(1): 1274-1296. doi: 10.3934/mbe.2023058
    [9] Pierre Auger, Tri Nguyen-Huu, Doanh Nguyen-Ngoc . On the impossibility of increasing the MSY in a multisite Schaefer fishing model. Mathematical Biosciences and Engineering, 2025, 22(2): 415-430. doi: 10.3934/mbe.2025016
    [10] José Luis Díaz Palencia, Abraham Otero . Modelling the interaction of invasive-invaded species based on the general Bramson dynamics and with a density dependant diffusion and advection. Mathematical Biosciences and Engineering, 2023, 20(7): 13200-13221. doi: 10.3934/mbe.2023589
  • A general question in the study of the evolution of dispersal is what kind of dispersal strategies can convey competitive advantages and thus will evolve. We consider a two species competition model in which the species are assumed to have the same population dynamics but different dispersal strategies. Both species disperse by random diffusion and advection along certain gradients, with the same random dispersal rates but different advection coefficients. We found a conditional dispersal strategy which results in the ideal free distribution of species, and show that it is a local evolutionarily stable strategy. We further show that this strategy is also a global convergent stable strategy under suitable assumptions, and our results illustrate how the evolution of conditional dispersal can lead to an ideal free distribution. The underlying biological reason is that the species with this particular dispersal strategy can perfectly match the environmental resource, which leads to its fitness being equilibrated across the habitats.


  • This article has been cited by:

    1. King-Yeung Lam, Daniel Munther, Invading the ideal free distribution, 2014, 19, 1553-524X, 3219, 10.3934/dcdsb.2014.19.3219
    2. Kousuke Kuto, Tohru Tsujikawa, Limiting structure of steady-states to the Lotka–Volterra competition model with large diffusion and advection, 2015, 258, 00220396, 1801, 10.1016/j.jde.2014.11.016
    3. Tuomas Nurmi, Kalle Parvinen, Vesa Selonen, The evolution of site-selection strategy during dispersal, 2017, 425, 00225193, 11, 10.1016/j.jtbi.2017.05.002
    4. Sebastian Novak, Richard Kollár, Spatial Gene Frequency Waves Under Genotype-Dependent Dispersal, 2017, 205, 1943-2631, 367, 10.1534/genetics.116.193946
    5. Hsin-Yi Lin, William F. Fagan, Pierre-Emmanuel Jabin, Memory-driven movement model for periodic migrations, 2021, 508, 00225193, 110486, 10.1016/j.jtbi.2020.110486
    6. Jie Wang, Cui-Ping Cheng, Shuibo Huang, Evolution of dispersal in a spatially periodic integrodifference model, 2016, 32, 14681218, 10, 10.1016/j.nonrwa.2016.04.001
    7. E. Braverman, Md. Kamrujjaman, Lotka systems with directed dispersal dynamics: Competition and influence of diffusion strategies, 2016, 279, 00255564, 1, 10.1016/j.mbs.2016.06.007
    8. De Tang, Li Ma, Dynamical behavior of a general reaction–diffusion–advection model for two competing species, 2018, 75, 08981221, 1128, 10.1016/j.camwa.2017.10.026
    9. Emeric Bouin, Guillaume Legendre, Yuan Lou, Nichole Slover, Evolution of anisotropic diffusion in two-dimensional heterogeneous environments, 2021, 82, 0303-6812, 10.1007/s00285-021-01579-1
    10. Robert Stephen Cantrell, Chris Cosner, Yuan Lou, Evolutionary stability of ideal free dispersal strategies in patchy environments, 2012, 65, 0303-6812, 943, 10.1007/s00285-011-0486-5
    11. Chris Cosner, Andrew L. Nevai, Spatial population dynamics in a producer-scrounger model, 2015, 20, 1553-524X, 1591, 10.3934/dcdsb.2015.20.1591
    12. Hailiang Liu, Hui Yu, Entropy/energy stable schemes for evolutionary dispersal models, 2014, 256, 00219991, 656, 10.1016/j.jcp.2013.08.032
    13. Yuan Lou, Frithjof Lutscher, Evolution of dispersal in open advective environments, 2014, 69, 0303-6812, 1319, 10.1007/s00285-013-0730-2
    14. Li Ma, De Tang, Existence and Stability of Stationary States of a Reaction–Diffusion-Advection Model for Two Competing Species, 2020, 30, 0218-1274, 2050065, 10.1142/S0218127420500650
    15. King-Yeung Lam, Yuan Lou, Frithjof Lutscher, Evolution of dispersal in closed advective environments, 2015, 9, 1751-3758, 188, 10.1080/17513758.2014.969336
    16. Peng Zhou, Dongmei Xiao, Global dynamics of a classical Lotka–Volterra competition–diffusion–advection system, 2018, 275, 00221236, 356, 10.1016/j.jfa.2018.03.006
    17. Xinfu Chen, King-Yeung Lam, Yuan Lou, Dynamics of a reaction-diffusion-advection model for two competing species, 2012, 32, 1078-0947, 3841, 10.3934/dcds.2012.32.3841
    18. King-Yeung Lam, Yuan Lou, Evolution of conditional dispersal: evolutionarily stable strategies in spatial models, 2014, 68, 0303-6812, 851, 10.1007/s00285-013-0650-1
    19. Yong-Jung Kim, Ohsang Kwon, Fang Li, Global asymptotic stability and the ideal free distribution in a starvation driven diffusion, 2014, 68, 0303-6812, 1341, 10.1007/s00285-013-0674-6
    20. Chris Cosner, Michael Winkler, Well-posedness and qualitative properties of a dynamical model for the ideal free distribution, 2014, 69, 0303-6812, 1343, 10.1007/s00285-013-0733-z
    21. De Tang, Peng Zhou, On a Lotka-Volterra competition-diffusion-advection system: Homogeneity vs heterogeneity, 2020, 268, 00220396, 1570, 10.1016/j.jde.2019.09.003
    22. L. Korobenko, E. Braverman, On evolutionary stability of carrying capacity driven dispersal in competition with regularly diffusing populations, 2014, 69, 0303-6812, 1181, 10.1007/s00285-013-0729-8
    23. Robert Stephen Cantrell, Chris Cosner, Evolutionary stability of ideal free dispersal under spatial heterogeneity and time periodicity, 2018, 305, 00255564, 71, 10.1016/j.mbs.2018.09.002
    24. L. Altenberg, Resolvent positive linear operators exhibit the reduction phenomenon, 2012, 109, 0027-8424, 3705, 10.1073/pnas.1113833109
    25. Yuan Lou, Daniel Munther, Dynamics of a three species competition model, 2012, 32, 1553-5231, 3099, 10.3934/dcds.2012.32.3099
    26. Robert Stephen Cantrell, Chris Cosner, Yuan Lou, Sebastian J. Schreiber, Evolution of natal dispersal in spatially heterogenous environments, 2017, 283, 00255564, 136, 10.1016/j.mbs.2016.11.003
    27. Isabel Averill, Yuan Lou, Dan Munther, On several conjectures from evolution of dispersal, 2012, 6, 1751-3758, 117, 10.1080/17513758.2010.529169
    28. E. Braverman, Md. Kamrujjaman, L. Korobenko, Competitive spatially distributed population dynamics models: Does diversity in diffusion strategies promote coexistence?, 2015, 264, 00255564, 63, 10.1016/j.mbs.2015.03.004
    29. Yoav Ram, Lee Altenberg, Uri Liberman, Marcus W. Feldman, Generation of variation and a modified mean fitness principle: Necessity is the mother of genetic invention, 2018, 123, 00405809, 1, 10.1016/j.tpb.2018.02.004
    30. Yuan Lou, Xiao-Qiang Zhao, Peng Zhou, Global dynamics of a Lotka–Volterra competition–diffusion–advection system in heterogeneous environments, 2019, 121, 00217824, 47, 10.1016/j.matpur.2018.06.010
    31. Annalisa Massaccesi, Enrico Valdinoci, Is a nonlocal diffusion strategy convenient for biological populations in competition?, 2017, 74, 0303-6812, 113, 10.1007/s00285-016-1019-z
    32. L. Korobenko, Md. Kamrujjaman, E. Braverman, Persistence and extinction in spatial models with a carrying capacity driven diffusion and harvesting, 2013, 399, 0022247X, 352, 10.1016/j.jmaa.2012.09.057
    33. Yong-Jung Kim, Ohsang Kwon, Fang Li, Evolution of Dispersal Toward Fitness, 2013, 75, 0092-8240, 2474, 10.1007/s11538-013-9904-8
    34. Chang-Hong Wu, Biased movement and the ideal free distribution in some free boundary problems, 2018, 265, 00220396, 4251, 10.1016/j.jde.2018.06.002
    35. Richard Gejji, Yuan Lou, Daniel Munther, Justin Peyton, Evolutionary Convergence to Ideal Free Dispersal Strategies and Coexistence, 2012, 74, 0092-8240, 257, 10.1007/s11538-011-9662-4
    36. Sebastian J. Schreiber, The Evolution of Patch Selection in Stochastic Environments, 2012, 180, 0003-0147, 17, 10.1086/665655
    37. Elena Braverman, Ilia Ilmer, On the interplay of harvesting and various diffusion strategies for spatially heterogeneous populations, 2019, 466, 00225193, 106, 10.1016/j.jtbi.2019.01.024
    38. L. Korobenko, E. Braverman, On logistic models with a carrying capacity dependent diffusion: Stability of equilibria and coexistence with a regularly diffusing population, 2012, 13, 14681218, 2648, 10.1016/j.nonrwa.2011.12.027
    39. Lee Altenberg, The evolution of dispersal in random environments and the principle of partial control, 2012, 82, 0012-9615, 297, 10.1890/11-1136.1
    40. William F. Fagan, Eliezer Gurarie, Sharon Bewick, Allison Howard, Robert Stephen Cantrell, Chris Cosner, Perceptual Ranges, Information Gathering, and Foraging Success in Dynamic Landscapes, 2017, 189, 0003-0147, 474, 10.1086/691099
    41. Robert Stephen Cantrell, Chris Cosner, Salomé Martínez, Nicolás Torres, On a competitive system with ideal free dispersal, 2018, 265, 00220396, 3464, 10.1016/j.jde.2018.05.008
    42. Chris Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, 2014, 34, 1553-5231, 1701, 10.3934/dcds.2014.34.1701
    43. Simone Pigolotti, Roberto Benzi, Competition between fast- and slow-diffusing species in non-homogeneous environments, 2016, 395, 00225193, 204, 10.1016/j.jtbi.2016.01.033
    44. Daniel Munther, The ideal free strategy with weak Allee effect, 2013, 254, 00220396, 1728, 10.1016/j.jde.2012.11.010
    45. Jack W. Bradbury, Sandra L. Vehrencamp, Kenneth E. Clifton, The ideal free antelope: foraging dispersions, 2015, 26, 1045-2249, 1303, 10.1093/beheco/arv078
    46. Robert Stephen Cantrell, Chris Cosner, Salomé Martínez, Persistence for a Two-Stage Reaction-Diffusion System, 2020, 8, 2227-7390, 396, 10.3390/math8030396
    47. Yunfeng Liu, Yuanxian Hui, Hopf bifurcation in a delayed reaction–diffusion–advection equation with ideal free dispersal, 2021, 2021, 1687-2770, 10.1186/s13661-020-01481-7
    48. Chris Cosner, Juan Dávila, Salomé Martínez, Evolutionary stability of ideal free nonlocal dispersal, 2012, 6, 1751-3758, 395, 10.1080/17513758.2011.588341
    49. Gabriel Maciel, Chris Cosner, Robert Stephen Cantrell, Frithjof Lutscher, Evolutionarily stable movement strategies in reaction–diffusion models with edge behavior, 2020, 80, 0303-6812, 61, 10.1007/s00285-019-01339-2
    50. Peng Zhou, De Tang, Dongmei Xiao, On Lotka-Volterra competitive parabolic systems: Exclusion, coexistence and bistability, 2021, 282, 00220396, 596, 10.1016/j.jde.2021.02.031
    51. Theodore E. Galanthay, Samuel M. Flaxman, Generalized Movement Strategies for Constrained Consumers: Ignoring Fitness Can Be Adaptive, 2012, 179, 0003-0147, 475, 10.1086/664625
    52. Heather Finotti, Suzanne Lenhart, Tuoc Van Phan, Optimal control of advective direction in reaction-diffusion population models, 2012, 1, 2163-2480, 81, 10.3934/eect.2012.1.81
    53. Sebastian Novak, Habitat heterogeneities versus spatial type frequency variances as driving forces of dispersal evolution, 2014, 4, 2045-7758, 4589, 10.1002/ece3.1289
    54. King-Yeung Lam, Limiting Profiles of Semilinear Elliptic Equations with Large Advection in Population Dynamics II, 2012, 44, 0036-1410, 1808, 10.1137/100819758
    55. Song Liang, Yuan Lou, On the dependence of population size upon random dispersal rate, 2012, 17, 1531-3492, 2771, 10.3934/dcdsb.2012.17.2771
    56. Tuomas Nurmi, Kalle Parvinen, Vesa Selonen, Joint evolution of dispersal propensity and site selection in structured metapopulation models, 2018, 444, 00225193, 50, 10.1016/j.jtbi.2018.02.011
    57. M.C. Tanzy, V.A. Volpert, A. Bayliss, M.E. Nehrkorn, A Nagumo-type model for competing populations with nonlocal coupling, 2015, 263, 00255564, 70, 10.1016/j.mbs.2015.01.014
    58. Vlastimil Křivan, Debaldev Jana, Effects of animal dispersal on harvesting with protected areas, 2015, 364, 00225193, 131, 10.1016/j.jtbi.2014.09.010
    59. Mark Broom, Jan Rychtář, Ideal Cost-Free Distributions in Structured Populations for General Payoff Functions, 2018, 8, 2153-0785, 79, 10.1007/s13235-016-0204-4
    60. E. Braverman, Md. Kamrujjaman, Competitive–cooperative models with various diffusion strategies, 2016, 72, 08981221, 653, 10.1016/j.camwa.2016.05.017
    61. M.C. Tanzy, V.A. Volpert, A. Bayliss, M.E. Nehrkorn, Stability and pattern formation for competing populations with asymmetric nonlocal coupling, 2013, 246, 00255564, 14, 10.1016/j.mbs.2013.09.002
    62. A.N. Gorban, N. Çabukoǧlu, Basic model of purposeful kinesis, 2018, 33, 1476945X, 75, 10.1016/j.ecocom.2018.01.002
    63. Robert Stephen Cantrell, Chris Cosner, Yuan Lou, Chao Xie, Random dispersal versus fitness-dependent dispersal, 2013, 254, 00220396, 2905, 10.1016/j.jde.2013.01.012
    64. Theodore E. Galanthay, Mathematical study of the effects of travel costs on optimal dispersal in a two-patch model, 2015, 20, 1553-524X, 1625, 10.3934/dcdsb.2015.20.1625
    65. Martin Golubitsky, Wenrui Hao, King-Yeung Lam, Yuan Lou, Dimorphism by Singularity Theory in a Model for River Ecology, 2017, 79, 0092-8240, 1051, 10.1007/s11538-017-0268-3
    66. Avner Friedman, PDE problems arising in mathematical biology, 2012, 7, 1556-181X, 691, 10.3934/nhm.2012.7.691
    67. Steven N. Evans, Alexandru Hening, Sebastian J. Schreiber, Protected polymorphisms and evolutionary stability of patch-selection strategies in stochastic environments, 2015, 71, 0303-6812, 325, 10.1007/s00285-014-0824-5
    68. Robert Stephen Cantrell, Chris Cosner, Mark A. Lewis, Yuan Lou, Evolution of dispersal in spatial population models with multiple timescales, 2020, 80, 0303-6812, 3, 10.1007/s00285-018-1302-2
    69. Chris Cosner, Nancy Rodriguez, The Effect of Directed Movement on the Strong Allee Effect, 2021, 81, 0036-1399, 407, 10.1137/20M1330178
    70. Robert Stephen Cantrell, Chris Cosner, King-Yeung Lam, Ideal Free Dispersal under General Spatial Heterogeneity and Time Periodicity, 2021, 81, 0036-1399, 789, 10.1137/20M1332712
    71. De Tang, Yuming Chen, Global Dynamics of a Lotka--Volterra Competition-Diffusion System in Advective Heterogeneous Environments, 2021, 20, 1536-0040, 1232, 10.1137/20M1372639
    72. Robert Stephen Cantrell, Chris Cosner, Ying Zhou, Ideal free dispersal in integrodifference models, 2022, 85, 0303-6812, 10.1007/s00285-022-01743-1
    73. Robert Stephen Cantrell, King-Yeung Lam, On the Evolution of Slow Dispersal in MultiSpecies Communities, 2021, 53, 0036-1410, 4933, 10.1137/20M1361419
    74. Anshuman Swain, Tyler Hoffman, Kirtus Leyba, William F. Fagan, Exploring the Evolution of Perception: An Agent-Based Approach, 2021, 9, 2296-701X, 10.3389/fevo.2021.698041
    75. Wenyi Qin, Peng Zhou, A REVIEW ON THE DYNAMICS OF TWO SPECIES COMPETITIVE ODE AND PARABOLIC SYSTEMS, 2022, 12, 2156-907X, 2075, 10.11948/20220196
    76. Kwangjoong Kim, Wonhyung Choi, Inkyung Ahn, Reaction-advection-diffusion competition models under lethal boundary conditions, 2022, 27, 1531-3492, 4749, 10.3934/dcdsb.2021250
    77. Youngseok Chang, Wonhyung Choi, Inkyung Ahn, On the Fitness of Predators with Prey-Induced Dispersal in a Habitat with Spatial Heterogeneity, 2022, 84, 0092-8240, 10.1007/s11538-022-01069-5
    78. P. A. Zelenchuk, V. G. Tsybulin, The Ideal Free Distribution in a Predator–Prey Model with Multifactor Taxis, 2021, 66, 0006-3509, 464, 10.1134/S0006350921030246
    79. Md. Kamrujjaman, Ishrat Zahan, Kamrun Nahar Keya, Md Nazmul Hassan, Interplay of resource mappings and evolutionary diffusion: Competitive exclusion and coexistence analysis, 2022, 5, 26668181, 100398, 10.1016/j.padiff.2022.100398
    80. Yuanxian Hui, Yunfeng Liu, Zhong Zhao, Hopf Bifurcation in a Delayed Equation with Diffusion Driven by Carrying Capacity, 2022, 10, 2227-7390, 2382, 10.3390/math10142382
    81. Wonhyung Choi, Kwangjoong Kim, Inkyung Ahn, Predator-prey models with prey-dependent diffusion on predators in spatially heterogeneous habitat, 2023, 525, 0022247X, 127130, 10.1016/j.jmaa.2023.127130
    82. Ishrat Zahan, Md. Kamrujjaman, Md. Abdul Alim, Muhammad Mohebujjaman, Taufiquar Khan, Dynamics of heterogeneous population due to spatially distributed parameters and an ideal free pair, 2022, 8, 2297-4687, 10.3389/fams.2022.949585
    83. Emil F. Frølich, Uffe H. Thygesen, Population games with instantaneous behavior and the Rosenzweig–MacArthur model, 2022, 85, 0303-6812, 10.1007/s00285-022-01821-4
    84. William F. Fagan, Cole Saborio, Tyler D. Hoffman, Eliezer Gurarie, Robert Stephen Cantrell, Chris Cosner, What’s in a resource gradient? Comparing alternative cues for foraging in dynamic environments via movement, perception, and memory, 2022, 15, 1874-1738, 267, 10.1007/s12080-022-00542-0
    85. Xiaoqing He, Liu Liu, On the Conjecture of the Role of Advection in a Two-Species Competition-Diffusion Model, 2022, 21, 1536-0040, 1663, 10.1137/21M1451713
    86. De Tang, Zhi-An Wang, Population dynamics with resource-dependent dispersal: single- and two-species models, 2023, 86, 0303-6812, 10.1007/s00285-022-01856-7
    87. Uffe Høgsbro Thygesen, Maksim Mazuryn, Ideal free flows of optimal foragers: Vertical migrations in the ocean, 2022, 15, 1874-1738, 213, 10.1007/s12080-022-00538-w
    88. Matthieu Alfaro, Thomas Giletti, Yong-Jung Kim, Gwenaël Peltier, Hyowon Seo, On the modelling of spatially heterogeneous nonlocal diffusion: deciding factors and preferential position of individuals, 2022, 84, 0303-6812, 10.1007/s00285-022-01738-y
    89. King-Yeung Lam, Ray Lee, Yuan Lou, Population Dynamics in an Advective Environment, 2023, 2096-6385, 10.1007/s42967-023-00259-9
    90. Ishrat Zahan, Md. Kamrujjaman, Md. Abdul Alim, Md. Shahidul Islam, Taufiquar Khan, The evolution of resource distribution, slow diffusion, and dispersal strategies in heterogeneous populations, 2023, 9, 2297-4687, 10.3389/fams.2023.1157992
    91. P. A. Zelenchuk, V. G. Tsybulin, Mathematical model of ideal free distribution in the predator-prey system, 2023, 69, 2949-0618, 237, 10.22363/2413-3639-2023-69-2-237-249
    92. Phuong Le, Hoang-Hung Vo, A Free Boundary Model for Mosquitoes with Conditional Dispersal in a Globally Unfavorable Environment Induced by Climate Warming, 2023, 1040-7294, 10.1007/s10884-023-10291-1
    93. Robert Stephen Cantrell, Chris Cosner, Ying Zhou, Evolution of dispersal by memory and learning in integrodifference equation models, 2023, 1023-6198, 1, 10.1080/10236198.2023.2263099
    94. Vyacheslav Tsybulin, Pavel Zelenchuk, Predator–Prey Dynamics and Ideal Free Distribution in a Heterogeneous Environment, 2024, 12, 2227-7390, 275, 10.3390/math12020275
    95. Yefen Yang, Li Ma, Banxiang Duan, Rong Zou, Global dynamics of two-species reaction–diffusion competition model with Gompertz growth, 2024, 0003-6811, 1, 10.1080/00036811.2024.2319225
    96. Weirun Tao, Zhi-An Wang, Wen Yang, Global dynamics of a two-species clustering model with Lotka–Volterra competition, 2024, 31, 1021-9722, 10.1007/s00030-024-00934-7
    97. Ishrat Zahan, Md. Kamrujjaman, Evolution of dispersal and the analysis of a resource flourished population model with harvesting, 2024, 10, 24058440, e30737, 10.1016/j.heliyon.2024.e30737
    98. De Tang, Yuming Chen, A two-species diffusion-advection competition model with protection zones, 2024, 405, 00220396, 1, 10.1016/j.jde.2024.05.050
    99. Hongqiang Yu, Wenbin Yang, Yanling Li, Effects of anisotropic diffusion on the dynamics of a predator-prey system in heterogeneous environments, 2024, 0, 1531-3492, 0, 10.3934/dcdsb.2024088
    100. De Tang, Zhi-An Wang, Coexistence of heterogeneous predator-prey systems with prey-dependent dispersal, 2024, 409, 00220396, 461, 10.1016/j.jde.2024.07.016
    101. Wonhyung Choi, Inkyung Ahn, Coexistence of two strongly competitive species in a reaction–advection–diffusion system, 2025, 81, 14681218, 104187, 10.1016/j.nonrwa.2024.104187
    102. Jie Liu, Shanshan Chen, Global dynamics and evolutionarily stable strategies in a two-species competition patch model, 2025, 416, 00220396, 2175, 10.1016/j.jde.2024.10.041
    103. P. A. Zelenchuk, V. G. Tsybulin, Mathematical Model of Ideal Free Distribution in the Predator–Prey System, 2024, 1072-3374, 10.1007/s10958-024-07445-x
    104. Li Ma, Genjiao Zhou, The Diffusive Lotka–Volterra Competitive Model with Advection Term: Exclusion, Coexistence and Multiplicity, 2024, 34, 0218-1274, 10.1142/S021812742450189X
    105. Vlastimil Křivan, Patch Retention Times for the Ideal Free Distribution, 2025, 2153-0785, 10.1007/s13235-025-00628-4
    106. Jonathan R. Potts, Aggregation–diffusion in heterogeneous environments, 2025, 90, 0303-6812, 10.1007/s00285-025-02222-z
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3493) PDF downloads(796) Cited by(103)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog