The role of leaf height in plant competition for sunlight: analysis of a canopy partitioning model

  • Received: 01 July 2007 Accepted: 29 June 2018 Published: 01 January 2008
  • MSC : Primary: 92D25; Secondary: 34C23, 34D23, 92C80, 92D40.

  • A global method of nullcline endpoint analysis is employed to de- termine the outcome of competition for sunlight between two hypothetical plant species with clonal growth form that differ solely in the height at which they place their leaves above the ground. This difference in vertical leaf placement, or canopy partitioning, produces species differences in sunlight energy capture and stem metabolic maintenance costs. The competitive interaction between these two species is analyzed by considering a special case of a canopy partitioning model (RR Vance and AL Nevai, J. Theor. Biol. 2007, 245:210-219; AL Nevai and RR Vance, J. Math. Biol. 2007, 55:105-145). Nullcline endpoint analysis is used to partition parameter space into regions within which either competitive exclusion or competitive coexistence occurs. The principal conclu- sion is that two clonal plant species which compete for sunlight and place their leaves at different heights above the ground but differ in no other way can, un- der suitable parameter values, experience stable coexistence even though they occupy an environment which varies neither over horizontal space nor through time.

    Citation: Andrew L. Nevai, Richard R. Vance. The role of leaf height in plant competition for sunlight: analysis of a canopy partitioning model[J]. Mathematical Biosciences and Engineering, 2008, 5(1): 101-124. doi: 10.3934/mbe.2008.5.101

    Related Papers:

    [1] Ling Xue, Sitong Chen, Xinmiao Rong . Dynamics of competition model between two plants based on stoichiometry. Mathematical Biosciences and Engineering, 2023, 20(10): 18888-18915. doi: 10.3934/mbe.2023836
    [2] Xinru Zhou, Xinmiao Rong, Meng Fan, Josué-Antonio Nescolarde-Selvaa . Stoichiometric modeling of aboveground-belowground interaction of herbaceous plant. Mathematical Biosciences and Engineering, 2019, 16(1): 25-55. doi: 10.3934/mbe.2019002
    [3] Yang Kuang, Kaifa Wang . Coexistence and extinction in a data-based ratio-dependent model of an insect community. Mathematical Biosciences and Engineering, 2020, 17(4): 3274-3293. doi: 10.3934/mbe.2020187
    [4] Yawen Yan, Hongyue Wang, Xiaoyuan Chang, Jimin Zhang . Asymmetrical resource competition in aquatic producers: Constant cell quota versus variable cell quota. Mathematical Biosciences and Engineering, 2023, 20(2): 3983-4005. doi: 10.3934/mbe.2023186
    [5] Junjing Xiong, Xiong Li, Hao Wang . The survival analysis of a stochastic Lotka-Volterra competition model with a coexistence equilibrium. Mathematical Biosciences and Engineering, 2019, 16(4): 2717-2737. doi: 10.3934/mbe.2019135
    [6] Azmy S. Ackleh, Shuhua Hu . Comparison between stochastic and deterministic selection-mutation models. Mathematical Biosciences and Engineering, 2007, 4(2): 133-157. doi: 10.3934/mbe.2007.4.133
    [7] Ali Mai, Guowei Sun, Lin Wang . The impacts of dispersal on the competition outcome of multi-patch competition models. Mathematical Biosciences and Engineering, 2019, 16(4): 2697-2716. doi: 10.3934/mbe.2019134
    [8] Shingo Iwami, Shinji Nakaoka, Yasuhiro Takeuchi . Mathematical analysis of a HIV model with frequency dependence and viral diversity. Mathematical Biosciences and Engineering, 2008, 5(3): 457-476. doi: 10.3934/mbe.2008.5.457
    [9] Rina Su, Chunrui Zhang . The generation mechanism of Turing-pattern in a Tree-grass competition model with cross diffusion and time delay. Mathematical Biosciences and Engineering, 2022, 19(12): 12073-12103. doi: 10.3934/mbe.2022562
    [10] Luca Galbusera, Sara Pasquali, Gianni Gilioli . Stability and optimal control for some classes of tritrophic systems. Mathematical Biosciences and Engineering, 2014, 11(2): 257-283. doi: 10.3934/mbe.2014.11.257
  • A global method of nullcline endpoint analysis is employed to de- termine the outcome of competition for sunlight between two hypothetical plant species with clonal growth form that differ solely in the height at which they place their leaves above the ground. This difference in vertical leaf placement, or canopy partitioning, produces species differences in sunlight energy capture and stem metabolic maintenance costs. The competitive interaction between these two species is analyzed by considering a special case of a canopy partitioning model (RR Vance and AL Nevai, J. Theor. Biol. 2007, 245:210-219; AL Nevai and RR Vance, J. Math. Biol. 2007, 55:105-145). Nullcline endpoint analysis is used to partition parameter space into regions within which either competitive exclusion or competitive coexistence occurs. The principal conclu- sion is that two clonal plant species which compete for sunlight and place their leaves at different heights above the ground but differ in no other way can, un- der suitable parameter values, experience stable coexistence even though they occupy an environment which varies neither over horizontal space nor through time.


  • This article has been cited by:

    1. Paul Caplat, Madhur Anand, Effects of disturbance frequency, species traits and resprouting on directional succession in an individual-based model of forest dynamics, 2009, 97, 00220477, 1028, 10.1111/j.1365-2745.2009.01541.x
    2. Winfried Just, Andrew L. Nevai, Kolmogorov-type competition model with finitely supported allocation profiles and its applications to plant competition for sunlight, 2009, 3, 1751-3758, 599, 10.1080/17513750902850019
    3. Byeong-Mee Min, Distribution properties of Phragmites australis and Phacelurus latifoilus in the tidal-flat of Suncheon Bay, 2015, 38, 2287-8327, 57, 10.5141/ecoenv.2015.006
    4. Winfried Just, Andrew L. Nevai, A Kolmogorov-type competition model with multiple coexistence states and its applications to plant competition for sunlight, 2008, 348, 0022247X, 620, 10.1016/j.jmaa.2008.07.060
    5. Matteo Detto, Jonathan M. Levine, Stephen W. Pacala, Maintenance of high diversity in mechanistic forest dynamics models of competition for light, 2022, 92, 0012-9615, 10.1002/ecm.1500
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2897) PDF downloads(686) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog