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Abstract. A global method of nullcline endpoint analysis is employed to de-
termine the outcome of competition for sunlight between two hypothetical
plant species with clonal growth form that differ solely in the height at which
they place their leaves above the ground. This difference in vertical leaf place-
ment, or canopy partitioning, produces species differences in sunlight energy
capture and stem metabolic maintenance costs. The competitive interaction
between these two species is analyzed by considering a special case of a canopy
partitioning model (RR Vance and AL Nevai, J. Theor. Biol. 2007, 245:210-219;
AL Nevai and RR Vance, J. Math. Biol. 2007, 55:105-145). Nullcline endpoint
analysis is used to partition parameter space into regions within which either
competitive exclusion or competitive coexistence occurs. The principal conclu-
sion is that two clonal plant species which compete for sunlight and place their
leaves at different heights above the ground but differ in no other way can, un-
der suitable parameter values, experience stable coexistence even though they
occupy an environment which varies neither over horizontal space nor through
time.

1. Introduction. Intuitively, it seems that plant species that compete for the same
limiting resources (water, nutrients, and sunlight) should not be able to coexist
at stable equilibrium abundances unless they partition these resources in some
way [1, 2]; indeed, without such resource partitioning, it seems that the strongest
competitor will simply drive all others to extinction [4, 11]. We have formulated
a canopy partitioning model [9, 13] specifically to determine whether two plant
species with clonal growth form that compete only for sunlight can coexist when
they differ only in the heights at which they place their leaves. This difference in
vertical leaf placement generates a partitioning of the canopy into different height
ranges within which either or both species’ leaves lie.

In the spirit of addressing just one complicated problem at a time, we have
employed assumptions that purposely eliminate other potential mechanisms of plant
competitive coexistence known to be important in nature. In particular, we assume
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that the environment remains homogeneous through horizontal space and through
time, that herbivores are absent, and that all resources other than sunlight always
occur in excess. In addition, we purposely simplify descriptions of some plant
structural and physiological properties. As explained in [13] and explored further
in Nevai and Vance (in preparation), we feel that understanding of some subjects
in plant competition is likely to come most easily by beginning with somewhat
idealized models and then reintroducing realism gradually. The purpose of this
paper is to complete analysis of the two-species competition problem begun in [9].

We show in [9] that if two such light-limited clonal species share the same vertical
leaf profile, then no combination of other species differences will enable them to
coexist stably. Thus, canopy partitioning is a necessary condition for competitive
coexistence to occur. This conclusion agrees with similar results obtained by others
[1, 14]. We also show in [9] that canopy partitioning can produce competitive
coexistence, but our analysis failed to disentangle the role of leaf height per se from
the roles of other features of plant structure and function such as stem density,
tissue metabolic rate, and so on. That analysis merely showed that there exists a
region in multidimensional parameter space within which coexistence occurs. What
that analysis did not reveal is the role of each feature of plant structure and function
individually in producing this coexistence.

In this paper, we ask whether two plant species that compete for sunlight can
coexist simply by deploying their leaves at different heights above the ground. That
is, we consider a converse to the earlier result: Is canopy partitioning by itself ever
sufficient for two hypothetical clonal plant species to coexist competitively, even
when they experience no environmental variation through horizontal space or time
and they differ in no other way?

1.1. Statement of the problem. Consider two species (i = 1, 2) that satisfy the
Kolmogorov-type [7] system of competition equations

dxi

dt
= xiγi

(∫ ∞

0

φ
(
S1(z)x1 + S2(z)x2

)
si(z) dz − Ci

)
, i = 1, 2. (1)

We assume that x1(0) > 0 and x2(0) > 0, so that both species are initially present.
The allocation functions s1(z) and s2(z) are probability density functions defined
for z ≥ 0. Their complementary cumulative distribution functions are denoted by
Si(z) =

∫∞
z

si(ζ) dζ. We assume that the gain function φ(x) has the following
properties:
P1. φ is a continuously differentiable function of x ≥ 0;
P2. φ > 0 for x ≥ 0;
P3. φ′ < 0 for x ≥ 0;
P4. φ → 0 as x →∞.

Observe that properties P1-P4 imply several additional “average value” properties,
P5. φ(vx) < 1

v−u

∫ v

u
φ(αx) dα < φ(ux) for x > 0 and 0 ≤ u < v;

P6.
∫ v

u
φ(αx) dα is a continuous and strictly decreasing function of x ≥ 0 for

0 ≤ u < v;
P7.

∫ v

u
φ(αx) dα → 0 as x →∞ for 0 ≤ u < v.

The growth and cost parameters (γi and Ci) are both assumed to be positive. Let
si =

∫∞
0

zsi(z) dz denote the mean value of species i’s allocation function.
The dynamical system (1) arises in the study of plant competition for sunlight

[13]. Modeled are two interacting clonal plant species whose leaves partition the
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canopy vertically according to the allocation functions (or vertical leaf profiles).
Biologically, xi = xi(t) represents the total leaf area per unit ground area of species
i at time t; the vertical leaf area density of species i at height z is si(z); the fraction
of species i’s leaves that overlie height z is Si(z); the area of leaves overlying height z
that belong to species i is Si(z)xi; and the rate of instantaneous gross photosynthesis
performed by a unit area of horizontal leaf surface belonging to either species that
lies beneath combined leaf area x is φ(x). Although higher leaves belonging to
either species receive more sunlight and therefore perform photosynthesis at higher
rates than lower leaves, the former must also be supported by taller stems. The
energetic cost of maintaining the stems that support a given vertical leaf profile
is reflected in the species cost parameter Ci. A full description of the model,
including biological explanations of all parameters and functions, appears in [13].
We remark that our decision to use allocation functions si(z) to describe vertical
leaf placement was inspired by [14], in which similar functions are used to describe
the vertical distribution of phytoplankton populations that compete for sunlight in
a lake. Also, our model’s description of various plant structures and their functions
is based in part on many previous plant models (e.g., [8, 10, 12]).

The dynamics of (1) has been examined recently in special cases [6, 9]. As the
competitive system (1) is dissipative and planar, it follows that every solution con-
verges to an equilibrium [3]. Therefore, the long-term outcome of competition is
determined entirely by the relative positions of the two species’ non-trivial null-
clines, which are defined by

∫ ∞

0

φ
(
S1(z)x1 + S2(z)x2

)
si(z) dz = Ci, i = 1, 2. (2)

We will assume that these two plant species are identical in all ways except for the
heights at which they place their leaves (as represented by the allocation functions),
and that their cost parameter difference (C2−C1) is proportional to the difference
in their mean leaf height (s2 − s1).

We assume that each species has a rectangular (or uniform) allocation function
of thickness T > 0; i.e.,

s1(z) =

{
σ, z ∈ [s1 − T/2, s1 + T/2],
0, elsewhere,

s2(z) =

{
σ, z ∈ [s2 − T/2, s2 + T/2],
0, elsewhere,

(3)

where σ = 1/T and s2 ≥ s1 ≥ T/2. We also assume that the species cost difference
is proportional to the allocation difference. That is, by letting τ = s2 − s1, we
assume that

C2 = C1 + bτ (4)

for some positive constant b. In view of (3), species 2 is τ units taller than species 1.
The leaves of species 2 which reside in the overstory (i.e., at heights greater than
s1 +T/2) capture more sunlight than the highest leaves of species 1 simply because
there are fewer leaves above them to cast shade. However, this advantage in energy
capture is accompanied by the additional energetic cost of maintaining taller stems
to support these higher leaves, which is represented in (4). The purpose of this
paper is to examine this trade-off explicitly for different values of τ .
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Figure 1. Some of the possible outcomes of competition: (a) species 1
excludes species 2; (b) species 2 excludes species 1; (c) the stable coex-
istence of both species; and (d) bistability (or founder control) in which
either species can exclude the other. The arrows in each figure represent
key trajectories.

Incorporating (3) and (4) into (2) yields a simplified form for the nullcline equa-
tions ∫ 1

0

φ
(
αx1 + min{α + στ, 1}x2

)
dα = C1,

∫ 1

0

φ
(
max{α− στ, 0}x1 + αx2

)
dα = C1 + bτ.

(5)

As shown in [9, Theorems 2.4 and 2.5], these nullclines coincide at most once within
the closed first quadrant when τ > 0 (they coincide everywhere when τ = 0).
When τ > 0 and they do coincide, their intersection forms an equilibrium point
for the competitive system whose stability is determined entirely by the manner in
which the nullclines meet there. Unfortunately, inspection of the Jacobian at this
equilibrium point proves unhelpful. However, since the nullclines can coincide at
most once, it suffices to determine the relative magnitudes of the nullcline endpoints.
That is, if (x†1, 0) and (0, x‡2) represent the endpoints of the species 1 nullcline, and
(x‡1, 0) and (0, x†2) represent the endpoints of the species 2 nullcline, then we need
only determine the relative magnitudes of the pair x†1 and x‡1, and the relative
magnitudes of the pair x‡2 and x†2, to determine the outcome of competition (see
Figure 1). In particular, if x†1 > x‡1 and x‡2 > x†2 then the species 1 nullcline lies
farther from the origin than the species 2 nullcline, and so species 1 always drives
species 2 to extinction. (Stochastic fluctuations in the biological system which our
deterministic model is meant to approximate together with the fact that nullclines



PLANT COMPETITION FOR SUNLIGHT 105

can coincide at most once imply that the same conclusion holds in the improbable
event that the nullclines meet and are tangent at a single point [5].) If one or
both of these inequalities is reversed, then other outcomes are potentially possible,
including species 2 driving species 1 to extinction (x†1 < x‡1 and x‡2 < x†2), the stable
coexistence of both species (x†1 < x‡1 and x‡2 > x†2), and bistability (or founder
control) in which either species can drive the other to extinction with the identity
of the surviving species depending on initial conditions (x†1 > x‡1 and x‡2 < x†2).

Since the value of a nullcline endpoint (which we identify from now on by its
non-zero component) depends on the parameters of the model, it follows that differ-
ent combinations of parameters may give rise to different outcomes of competition.
Thus, we would like to divide parameter space into regions associated with these
possible outcomes. Nevai and Vance [9] have produced such a bifurcation diagram
for two species that can differ in multiple ways at the same time in a manner de-
scribed by several composite parameters. However, this diagram provides informa-
tion about the competitive system studied here only when τ is fixed. To determine
the outcome of competition as τ varies, we must perform further analysis.

Table 1. Defining equations for the nullcline endpoints when σ ≥
0 and τ ∈ [0, τm]. If C2(τ) ≤ στCm then we define x‡1 = ∞. The
expression στ = min{στ, 1}.

endpoint defining equation condition (eq. no.)

x†1 C1 =
∫ 1

0

φ(αx†1) dα (I)

x‡1 C2(τ) = στCm +
∫ 1−στ

0

φ(αx‡1) dα C2(τ) > στCm (II)

x†2 C2(τ) =
∫ 1

0

φ(αx†2) dα (III)

x‡2 C1 = στφ(x‡2) +
∫ 1

στ

φ(αx‡2) dα (IV)

The defining equations for the four nullcline endpoints arise from (5) by setting
either x1 = 0 or x2 = 0. These are displayed as (I)-(IV) in Table 1. There, we
make use of the following notation: Cm def= φ(0), τm def= (Cm − C1)/b,

C2(τ) = C1 + bτ, (7)

and στ
def= min(στ, 1). Observe from the second relation that

Cm = C1 + bτm. (8)

If C1 ≥ Cm (or τm ≤ 0) then neither species nullcline exists (except perhaps at the
origin) by (5) and the properties of φ. In this case, both species always become
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extinct, because their cost parameters are too high. Furthermore, if C1 < Cm (or
τm > 0) and τ > τm, then only the species 1 nullcline exists and species 1 always
excludes species 2. Thus, τm is a threshold value for τ , beyond which species 2
cannot persist even when living alone. Consequently, we restrict our attention in
this paper to cases in which C1 < Cm (or τm > 0) and τ ∈ [0, τm], so that both
species nullclines exist in the closed first quadrant. To simplify parts of our analysis,
whenever a nullcline exists but does not intersect one of the coordinate axes, we
will by convention set that nullcline endpoint equal to infinity.

Observe that if τm > T , then the nullcline for species 2 can exist in the closed
first quadrant even when the allocation functions share no support, provided that
τ ∈ [T, τm]. However, if τm < T then the nullcline for species 2 cannot exist when
the supports of the two allocation functions do not overlap.

Our ultimate goal is to compare the relative magnitudes of x‡1 and x†1, and
the relative magnitudes of x‡2 and x†2, for fixed values of σ ≥ 0 as the allocation
difference τ increases from 0 to τm. We will explore this problem by partitioning
the σ-τ parameter plane into regions within which both pairs of nullcline endpoints
maintain fixed orders. Although x†1 does not depend on τ , we sometimes emphasize
the τ -dependence of the other nullcline endpoints by writing them as x‡1(τ), x†2(τ),
and x‡2(τ). Inspection of (II) and (IV) in Table 1 reveals that the endpoints x‡1
and x‡2 depend not only on τ but also on σ. However, we will treat σ as fixed
(albeit arbitrary) throughout and thus avoid (usually) any need to consider the
σ-dependence of x‡1 and x‡2 explicitly.

The phrases “x ≥ 0” and “x > 0” always imply that x is finite unless it is
explicitly stated otherwise or it is clear from context. To simplify notation, we will
write “x ¹ y for u ¹ v” to represent the situation in which x < y when u < v,
x = y when u = v, and x > y when u > v. Also, we will write “x 4 y for u 4 v” to
represent the situation in which x = y when u = 0 and x ¹ y for u ¹ v when u > 0.
Some situations may require the first “¹” or “4” in each pair to be replaced by
“º” or “<”, respectively.

1.2. Statement of the main results. In §2, we identify a region in parameter
space in which x‡1(τ) < x†1 and another region in which x‡1(τ) > x†1 (see Figure 2a).
Let τ−m def= 1/τm.

Theorem 1. Let σ ≥ 0 and τ ∈ [0, τm]. There exists some σ∗ ∈ (0, τ−m) with the
following properties:

(a) If σ ≤ σ∗ then x‡1(τ) ≤ x†1 with equality if and only if τ = 0;
(b) If σ ∈ (σ∗, τ−m) then there exists some τ1(σ) ∈ (0, τm) such that x‡1(τ) < x†1

for τ 4 τ1;
(c) If σ ≥ τ−m then x‡1(τ) ≥ x†1 with equality if and only if τ = 0;
(d) τ1 is a continuous and strictly increasing function of σ ∈ (σ∗, τ−m);
(e) τ1 → 0 as σ → σ∗ and τ1 → τm as σ → τ−m.

In §3, we identify regions in parameter space in which x‡2(τ) and x†2(τ) maintain
fixed orders (see Figure 2b). Let τ−∗ def= 1/τ∗.

Theorem 2. Let σ ≥ 0 and τ ∈ [0, τm]. There exists some τ∗ ∈ (0, τm) with the
following properties:

(a) If σ ≤ σ∗ then x‡2(τ) ≥ x†2(τ) with equality if and only if τ = 0;
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(a) (b)

(c) (d)

Figure 2. (a) The function τ1 divides parameter space into regions in

which the nullcline endpoints x‡1 and x†1 maintain a fixed order; (b) The
function τ2 divides parameter space into regions in which the nullcline
endpoints x‡2 and x†2 maintain a fixed order; (c) Regions in parameter
space in which both pairs of nullcline endpoints maintain fixed orders
(we set x‡1 = x†2 = 0 when τ > τm because in this case the species 2
nullcline does not exist); (d) Regions in parameter space in which the
various outcomes of competition occur. (By assumption, species 1 can
persist when living alone, and so exclusion of both species cannot occur.)

(b) If σ ∈ (σ∗, τ−∗) then there exists some τ2(σ) ∈ (0, τ∗) such that x‡2(τ) 4 x†2(τ)
for τ 4 τ2;

(c) If σ ≥ τ−∗ then x‡2(τ) 4 x†2(τ) for τ 4 τ∗;
(d) τ2 is a continuous and strictly increasing function of σ ∈ (σ∗, τ−∗);
(e) τ2 → 0 as σ → σ∗ and τ2 → τ∗ as σ → τ−∗.

Finally, in §4 we establish regions in parameter space within which both pairs of
nullcline endpoints maintain fixed orders (see Figure 2c).

Theorem 3. τ1(σ) > τ2(σ) for σ ∈ (σ∗, τ−m).

The biological implications of these results are presented in the Discussion.

2. The first bifurcation. In this section, we examine the relative magnitudes of
x†1 and x‡1(τ) for σ ≥ 0 and τ ∈ [0, τm]. Recall that these endpoints satisfy equations
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(I) and (II) in Table 1, respectively. First, we show that x†1 is finite, and we consider
regions in parameter space within which x‡1(τ) is either finite or infinite. Then we
determine some additional properties of the function x‡1(τ) within the region where
it is finite. Next, we divide parameter space into regions within which the sign of
dx‡1/dτ is constant. Finally, we establish the existence, shape, and location of the
function τ1 in Theorem 1 whose graph divides parameter space into regions within
which x‡1(τ) and x†1 maintain a fixed order.

For the remainder of this section, we assume that σ ≥ 0 and τ ∈ [0, τm]. Then,
as is evident from (7) and (8), the function C2(τ) will always take values within
the interval [C1, C

m].

2.1. Elementary properties of x†1 and x‡1(τ). Define τ∞ by the relation

C2(τ∞) = στ∞Cm. (9)

We rearrange this equation to obtain

τ∞ =
C1

σCm − b
. (10)

We will usually omit the argument σ in the function τ∞ and in the τi-functions
that follow. It is clear by inspection that τ∞ is a positive, continuous, and strictly
decreasing function of σ ≥ τ−m, from (8) that τ∞ = τm when σ = τ−m, and that
τ∞ → 0 as σ →∞.

Figure 3. Intermediate results in §2.

We now show that x†1 is finite and that the graph of τ∞ divides parameter space
into a region in which x‡1(τ) is finite and another in which it is infinite (see Figure
3).

Lemma 2.1. Let σ ≥ 0 and τ ∈ [0, τm]. Then x†1 and x‡1(τ) exist, they are unique,
and x†1 > 0. Furthermore,

(a) If σ < τ−m then x‡1(τ) ≥ 0;
(b) If σ ≥ τ−m then x‡1(τ) ≥ 0 for τ < τ∞ and x‡1(τ) = ∞ for τ ≥ τ∞.
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Proof. By property P6, the function Φ(x;u) = uCm+
∫ 1−u

0
φ(αx) dα is a continuous

and strictly decreasing function of x ≥ 0 for u ∈ [0, 1). Furthermore, Φ(0; u) = Cm

and Φ(x; u) → uCm as x →∞ by property P7. Equation (I) and the properties of
Φ with u = 0 imply that x†1 exists, it is unique, and that x†1 > 0. We now consider
the endpoint x‡1(τ).

(a) Suppose first that σ < τ−m. Then 0 ≤ στ < 1. It follows from (7) and (8)
that

C2(τ) = C1 + bτ ≥ τ−mτC1 + bτ = τ−mτ(C1 + bτm) > στCm.

Equation (II) and the properties of Φ with u = στ imply that x‡1(τ) exists, it
is unique, and that x‡1(τ) ≥ 0 (with equality if and only if τ = τm).

(b) Suppose now that σ ≥ τ−m. Equation (II) and the properties of Φ with
u = στ imply that if στCm < C2(τ) then again x‡1(τ) exists, it is unique, and
x‡1(τ) ≥ 0; but if στCm ≥ C2(τ) then x‡1(τ) is undefined and so by convention
is equal to infinity. By (10), if τ < τ∞ then

τ <
C1

σCm − b
.

The positivity of σCm − b (which follows from the positivity of τ∞) and (7)
together imply that στCm < C2(τ). A similar argument shows that if τ ≥ τ∞
then στCm ≥ C2(τ) (with equality if and only if τ = τ∞). The conclusion
follows from the remarks above.

We now restrict our attention to values of σ ≥ 0 and τ ∈ [0, τm] for which x‡1(τ)
is finite. The next lemma describes elementary properties of the endpoint x‡1 as a
function of τ within the region where it is finite.

Lemma 2.2. Let σ ≥ 0. Then
(a) x‡1(0) = x†1;
(b) x‡1 is a continuously differentiable function of τ (where it is finite), with

dx‡1
dτ

=
b− σ

[
Cm − φ

(
(1− στ)x‡1

)]
∫ 1−στ

0
φ′(αx‡1)α dα

; (11)

(c) If σ < τ−m then x‡1(τ
m) = 0;

(d) If σ > τ−m then x‡1(τ) →∞ as τ → τ∞.

Proof.
(a) This part follows from (II), (7) with τ = 0, (I), and property P6.
(b) Suppose that x‡1(τ) is finite for some value of τ ∈ [0, τm]. Then x‡1 is con-

tinuously differentiable at τ by the implicit function theorem. To obtain an
expression for dx‡1/dτ , we differentiate (II) implicitly with respect to τ and
rearrange to get

b = σ
[
Cm − φ

(
(1− στ)x‡1

)]
+

dx‡1
dτ

∫ 1−στ

0

φ′(αx‡1)α dα,

where x‡1 = x‡1(τ). The conclusion follows from solving for dx‡1/dτ .
(c) Suppose that σ < τ−m. Letting τ = τm in (II) yields

Cm = στmCm +
∫ 1−στm

0

φ(αx‡1) dα,
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where στm ∈ [0, 1) and x‡1 = x‡1(τ
m). The properties of φ imply that x‡1(τ

m) =
0.

(d) Suppose that σ > τ−m and let τj ∈ [0, τ∞) be a sequence with τj → τ∞ as
j →∞. Equation (II) with τ = τj yields

C2(τj)− στjC
m =

∫ 1−στj

0

φ(αxj) dα,

where xj = x‡1(τj) ≥ 0 by Lemma 2.1 (b). The left-hand side converges to
0 as j → ∞ by (9). Therefore, the right-hand side must also vanish in the
limit. In view of the fact that 0 ≤ στj < στ∞ = C2(τ∞)/Cm < 1, it follows
from property P2 that the truncated integral

∫ 1−στ∞

0

φ(αxj) dα

converges to 0 as j →∞. Property P7 implies that xj →∞ as j →∞.

2.2. The sign of dx‡1/dτ . We would like to determine regions in parameter space
within which dx‡1/dτ in (11) has constant sign. First, we observe from integration
by parts and property P1 that

∫ u

0

φ(αx) dα = uφ(ux)− x

∫ u

0

φ′(αx)α dα, for x, u ≥ 0. (12)

We shall say that a function f(x) is α-increasing on an interval I if f is a contin-
uously differentiable function of x ∈ I and f ′ > 0 for x ∈ int(I). Functions which
are α-decreasing are defined in a similar manner. We now prove a preliminary re-
sult concerning the behavior of the product (1 − στ)x‡1(τ) appearing in (11) as a
function of τ .

Lemma 2.3. Let σ ≥ 0.

(a) If σ < τ−m then (1− στ)x‡1(τ) α-decreases from x†1 to 0 as τ increases from
0 to τm;

(b) If σ = τ−m then (1− στ)x‡1(τ) is equal to x†1 for all τ ∈ [0, τm);
(c) If σ > τ−m then (1− στ)x‡1(τ) α-increases from x†1 to ∞ as τ increases from

0 to τ∞.

Proof.

(a) Suppose that σ < τ−m and let τ ∈ [0, τm]. Then x‡1(τ) ≥ 0 by Lemma 2.1 (a)
and 0 ≤ στ ≤ στm < 1. It is clear from Lemma 2.2 (b) that (1− στ)x‡1(τ) is
continuously differentiable at τ . Observe from (8) that

σCm − b = σC1 + b(στm − 1) < σC1.

We subtract στ(σCm − b) from both sides and divide by 1− στ to get

σCm − b <
σC1 − στ(σCm − b)

1− στ
.

It follows from (7) and (II) that

σCm − b <
σ

1− στ

∫ 1−στ

0

φ(αx‡1) dα,
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where x‡1 = x‡1(τ). Equation (12) with x = x‡1 and u = 1− στ implies that

σCm − b < σ

[
φ
(
(1− στ)x‡1

)− x‡1
1− στ

∫ 1−στ

0

φ′(αx‡1)α dα

]
.

Noting that the integral on the right-hand side is negative by property P3,
we rearrange to get

b− σ
[
Cm − φ

(
(1− στ)x‡1

)]
∫ 1−στ

0
φ′(αx‡1)α dα

<
σx‡1

1− στ
.

It follows from (11) that

dx‡1
dτ

<
σx‡1

1− στ
.

The positivity of 1− στ implies that

d

dτ

[
(1− στ)x‡1

]
= (1− στ)

dx‡1
dτ

− σx‡1 < 0.

Consequently, (1 − στ)x‡1 is an α-decreasing function of τ ∈ [0, τm]. Lemma
2.2 (a, c) implies that (1− στ)x‡1 = x†1 when τ = 0 and (1− στ)x‡1 = 0 when
τ = τm.

(b) Suppose that σ = τ−m and let τ ∈ [0, τm). Then x‡1(τ) ≥ 0 by Lemma 2.1 (b)
and 0 ≤ στ < στm = 1. As before, Lemma 2.2 (b) implies that (1− στ)x‡1(τ)
is continuously differentiable at τ . This time, however, (8) implies that

σCm − b = σC1 + b(στm − 1) = σC1,

where x‡1 = x‡1(τ). The proof that (1 − στ)x‡1 takes on a constant value
is similar to the argument in part (a) but with all inequalities replaced by
equalities, and Lemma 2.2 (a) implies that this value must be x†1.

(c) Suppose that σ > τ−m and let τ ∈ [0, τ∞). Then x‡1(τ) ≥ 0 by Lemma 2.1 (b)
and 0 ≤ στ < στ∞ = C2(τ∞)/Cm < 1 < στm. Once again, Lemma 2.2 (b)
implies that (1−στ)x‡1(τ) is continuously differentiable at τ . Now, (8) implies
that

σCm − b = σC1 + b(στm − 1) > σC1,

where x‡1 = x‡1(τ). The proof that (1 − στ)x‡1 is an α-increasing function of
τ is similar to the argument in part (a) but with all inequalities reversed.
Furthermore, Lemma 2.2 (a, d) implies that (1− στ)x‡1 = x†1 when τ = 0 and
(1− στ)x‡1 →∞ as τ → τ∞.

Observe from (8), (I), and property P5 that

Cm = C1 + bτm =
∫ 1

0

φ(αx†1) dα + bτm > φ(x†1) + bτm.

We conclude that the constant

σ∗ =
b

Cm − φ(x†1)

satisfies σ∗ ∈ (0, τ−m). It will be useful to note that if σ ≥ 0 then

σ
[
Cm − φ(x†1)

] ¹ b for σ ¹ σ∗. (13)
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We now divide the parameter plane into regions within which dx‡1/dτ has constant
sign.

Lemma 2.4. Let σ ≥ 0 and τ ∈ [0, τm].

(a) If σ ≤ σ∗ then dx‡1/dτ ≤ 0 with equality if and only if (σ, τ) = (σ∗, 0);
(b) If σ ∈ (σ∗, τ−m) then there exists some τ0 ∈ (0, τm) such that dx‡1/dτ º 0 for

τ ¹ τ0;
(c) If σ ≥ τ−m then dx‡1/dτ > 0 for τ ∈ [0, τ∞).

Proof.

(a) Let σ ∈ [0, σ∗]. Then x‡1(τ) is finite for τ ∈ [0, τm]. In view of (11) we
introduce the function

G(τ) = b− σ
[
Cm − φ

(
(1− στ)x‡1(τ)

)]
.

Lemma 2.2 (b) implies that G is a continuous function of τ ∈ [0, τm]. Lemma
2.3 (a), the relation Cm = φ(0), and property P3 together imply that G strictly
increases from

G(0) = b− σ
[
Cm − φ(x†1)

]

to G(τm) = b as τ increases from 0 to τm. Equation (13) implies that G(0) ≥
0, with equality if and only if σ = σ∗. Therefore, G(τ) ≥ 0 for all τ ∈ [0, τm],
with equality if and only if (σ, τ) = (σ∗, 0). The conclusion follows from the
fact that G(τ) and dx‡1/dτ have opposite signs, as is evident by inspection of
(11) and property P3.

(b) Let σ ∈ (σ∗, τ−m). Then x‡1(τ) is finite for τ ∈ [0, τm]. The function G(τ)
defined in part (a) is again a continuous and strictly increasing function of
τ ∈ [0, τm]. This time, (13) implies that G(0) < 0 < G(τm). Therefore, there
exists some τ0 ∈ (0, τm) such that G(τ) ¹ 0 for τ ¹ τ0. Again, the result
follows from the fact that G(τ) and dx‡1/dτ have opposite signs.

(c) Let σ ≥ τ−m. Then x‡1(τ) is finite for τ ∈ [0, τ∞). This time, the function
G(τ) defined in part (a) is a continuous and nonincreasing function of τ ∈
[0, τ∞). Furthermore, (13) implies that G(0) < 0. Therefore, G(τ) < 0 for
all τ ∈ [0, τ∞). As before, the conclusion follows from the fact that G(τ) and
dx‡1/dτ have opposite signs.

The following lemma establishes the shape and location of the function τ0 (see
Figure 3).

Lemma 2.5. The quantity τ0 has the following properties:
(a) τ0 is a continuous and strictly increasing function of σ ∈ (σ∗, τ−m);
(b) τ0 → 0 as σ → σ∗ and τ0 → τm as σ → τ−m.

Proof. Throughout this proof, we emphasize the σ-dependence of the endpoint x‡1
in (II) by writing x‡1(σ, τ) instead of x‡1(τ).

(a) Let σ ∈ (σ∗, τ−m) and τ ∈ [0, τm]. The function x‡1(σ, τ) is continuously
differentiable at σ by the implicit function theorem. To obtain an expression
for ∂x‡1/∂σ, we differentiate (II) implicitly with respect to σ and rearrange to
get

0 = τ
[
Cm − φ

(
(1− στ)x‡1

)]
+

∂x‡1
∂σ

∫ 1−στ

0

φ′(αx‡1)α dα,
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where x‡1 = x‡1(σ, τ). Solving for ∂x‡1/∂σ yields

∂x‡1
∂σ

=
τ
[
φ
(
(1− στ)x‡1

)− Cm
]

∫ 1−στ

0
φ′(αx‡1)α dα

. (14)

It follows from Lemma 2.4 (b) that τ0 ∈ (0, τm) exists and that ∂x‡1/∂τ van-
ishes when τ = τ0. Equation (11) with τ = τ0 implies then that

σ
[
Cm − φ

(
ψ(σ, τ0)

)]
= b

where ψ(σ, τ) = (1 − στ)x‡1(σ, τ) and τ0 = τ0(σ). Note that στ0 ∈ (0, 1)
because σ ∈ (σ∗, τ−m) and τ0 ∈ (0, τm). We differentiate the equation above
implicitly with respect to σ and rearrange to get

b = σ2φ′(ψ(σ, τ0))
d [ψ(σ, τ0)]

dσ
.

The derivative φ′
(
ψ(σ, τ0)

)
is negative by property P3. Therefore, the total

derivative
d [ψ(σ, τ0)]

dσ
=

∂ψ

∂σ
+

∂ψ

∂τ

dτ0

dσ

∣∣∣∣
(σ,τ0)

must also be negative. The partial derivative ∂ψ/∂τ(σ, τ0) is negative by
Lemma 2.3 (a). It only remains to show that the partial derivative ∂ψ/∂σ(σ, τ0)
is positive, as this would force dτ0/dσ to be positive also. It follows from the
relation Cm = φ(0) and property P5 that

Cm >
1

1− στ0

∫ 1−στ0

0

φ(αx‡1) dα,

where x‡1 = x‡1(σ, τ0). Equation (12) with x = x‡1 and u = 1−στ0 implies that

Cm > φ
(
(1− στ0)x

‡
1

)− x‡1
1− στ0

∫ 1−στ0

0

φ′(αx‡1)α dα.

Noting that the integral on the right-hand side is negative by property P3,
we rearrange to get

φ
(
(1− στ0)x

‡
1

)− Cm

∫ 1−στ0

0
φ′(αx‡1)α dα

>
x‡1

1− στ0
.

Recalling (14) with τ = τ0,

∂x‡1
∂σ

>
τ0x

‡
1

1− στ0
.

The positivity of 1− στ0 implies that

∂ψ

∂σ
(σ, τ0) =

∂

∂σ

[
(1− στ0)x

‡
1

]
= (1− στ0)

∂x‡1
∂σ

− τ0x
‡
1 > 0.

The claim is proved, and we conclude that dτ0/dσ > 0.
(b) Let σj ∈ (σ∗, τ−m) be a strictly decreasing sequence with σj → σ∗ as j →

∞. According to part (a) and Lemma 2.4 (b), the sequence τ0(σj) is strictly
decreasing and bounded within the interval (0, τm). Thus, there exists some
τ̃ ∈ [0, τm) such that τ0(σj) → τ̃ as j → ∞. We argue by contradiction.
Suppose that τ̃ ∈ (0, τm) and let τ̂ ∈ (0, τ̃). Since τ̂ < τ̃ < τ0(σj), we
obtain from Lemma 2.4 (b) that ∂x‡1/∂τ(σj , τ̂) > 0. It follows from taking
limits that ∂x‡1/∂τ(σ∗, τ̂) ≥ 0. But Lemma 2.4 (a) with τ = τ̂ implies that
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∂x‡1/∂τ(σ∗, τ̂) < 0, a contradiction. We conclude that τ̃ = 0, and thus τ0 → 0
as σ → σ∗. A similar argument shows that τ0 → τm as σ → τ−m.

2.3. The relative magnitudes of x‡1(τ) and x†1. We now prove the main result
of this section by establishing the existence, shape, and location of the bifurcation
function τ1 in Theorem 1.

Proof of Theorem 1.
(a) Let σ ≤ σ∗. It follows from Lemmas 2.2 (a, c) and 2.4 (a) that x‡1(τ) strictly

decreases from x†1 to 0 as τ increases from 0 to τm. Therefore, x‡1(τ) ≤ x†1
with equality if and only if τ = 0.

(b) Let σ ∈ (σ∗, τ−m). It follows from Lemmas 2.2 (a, c) and 2.4 (b) that x‡1(τ)
strictly increases from x†1 to some maximum value as τ increases from 0 to τ0,
and then x‡1(τ) strictly decreases from this maximum to 0 as τ continues to
increase beyond τ0 to τm. Therefore, there exists some τ1 ∈ (τ0, τ

m) such that
x‡1(τ) < x†1 for τ 4 τ1. (Note that this conclusion is slightly stronger than
what is stated in the theorem because it ensures that τ1 is not only positive
but also greater than τ0; this additional fact is needed to prove parts (d) and
(e) of this theorem.)

(c) Let σ ≥ τ−m. It follows from Lemmas 2.2 (a, d) and 2.4 (c) that x‡1(τ) strictly
increases from x†1 to∞ as τ increases from 0 to τ∞. By convention, x‡1(τ) = ∞
for τ ∈ [τ∞, τm]. Therefore x‡1(τ) ≥ x†1 with equality if and only if τ = 0.

(d) Let σ ∈ (σ∗, τ−m). Then τ1 ∈ (τ0, τ
m) exists and is defined by the equation

x‡1(τ1) = x†1. Equivalently, τ1 satisfies (II) with x†1 in place of x‡1(τ1),

C2(τ1) = στ1C
m +

∫ 1−στ1

0

φ(αx†1) dα

with στ1 ∈ (0, 1). In view of (7), we differentiate the equation above implicitly
with respect to σ and rearrange to get

b · dτ1

dσ
=

[
τ1 + σ

dτ1

dσ

] [
Cm − φ

(
(1− στ1)x

†
1

)]
.

Further rearrangement gives

dτ1

dσ
=

τ1

[
Cm − φ

(
(1− στ1)x

†
1

)]

dx‡1/dτ
∫ 1−στ1

0
φ′(αx†1)α dα

,

where we have used (11) with τ = τ1 and x‡1(τ1) = x†1. The bracketed
expression in the numerator is positive because of the relation Cm = φ(0),
property P3, and the fact that (1−στ1)x

†
1 > 0 by Lemma 2.3 (a) with τ = τ1 <

τm. The derivative dx‡1/dτ is negative by Lemma 2.4 (b) with τ = τ1 > τ0.
The integral in the denominator is negative by property P3. We conclude
then that dτ1/dσ > 0.

(e) Let σj ∈ (σ∗, τ−m) be a strictly decreasing sequence with σj → σ∗ as j →∞.
According to parts (b) and (d) and Lemma 2.5, the sequence τ1(σj) is strictly
decreasing and bounded within the interval (0, τm). Thus, there exists some
τ̃ ∈ [0, τm) such that τ1(σj) → τ̃ as j → ∞. We argue by contradiction.
Suppose that τ̃ ∈ (0, τm) and let τ̂ ∈ (0, τ̃). Since τ̂ < τ̃ < τ1(σj), we obtain
from part (b) that x‡1(σj , τ̂) > x†1, where we now express the σ-dependence
of x‡1 in (II). It follows from taking limits that x‡1(σ

∗, τ̂) ≥ x†1. But part (a)
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with τ = τ̂ implies that x‡1(σ
∗, τ̂) < x†1, a contradiction. We conclude that

τ̃ = 0. Finally, let σj ∈ (σ∗, τ−m) be a sequence with σj → τ−m as j → ∞.
Part (b) implies that τ0(σj) < τ1(σj) < τm for all j. Lemma 2.5 (b) implies
that τ0(σj) → τm as j →∞. It follows then that τ1(σj) → τm as j →∞.

3. The second bifurcation. In this section, we examine the relative magnitudes
of x†2(τ) and x‡2(τ) for σ ≥ 0 and τ ∈ [0, τm]. Recall that these endpoints satisfy
equations (III) and (IV) in Table 1, respectively. First, we show that x‡2(τ) and
x†2(τ) are finite throughout parameter space. Next, we determine their relative
magnitudes within the upper portion of this region. In the remaining lower region,
we introduce functions M(τ) and N(τ) which have the property that x‡2(τ) ¹ x†2(τ)
for M(τ) ¹ N(τ). Finally, we establish the existence, shape, and location of the
function τ2 in Theorem 2 whose graph divides parameter space into regions within
which x‡2(τ) and x†2(τ) maintain a fixed order. The analysis in this section differs
from the previous one because both x‡2 and x†2 are functions of τ .

Figure 4. Intermediate results in §3.

As before, we assume throughout this section that σ ≥ 0 and τ ∈ [0, τm]. Thus,
the function C2(τ) will always take values within the interval [C1, C

m].

3.1. Elementary properties of x‡2(τ) and x†2(τ). We begin by showing that x‡2
and x†2 exist and are finite everywhere. We also describe elementary properties of
the endpoints as functions of τ .

Lemma 3.1. Let σ ≥ 0 and τ ∈ [0, τm]. Then

(a) x‡2(τ) and x†2(τ) exist, they are unique, x‡2(τ) > 0, and x†2(τ) ≥ 0;
(b) x‡2(0) = x†2(0) = x†1 and x†2(τ

m) = 0;
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(c) x‡2 is a continuously differentiable and nonincreasing function of τ with

dx‡2
dτ

=
σ
[
φ(στx‡2)− φ(x‡2)

]

στφ′(x‡2) +
∫ 1

στ
φ′(αx‡2)α dα

≤ 0. (15)

The inequality is strict unless σ = 0 or στ ≥ 1, in which case equality holds;
(d) x†2 is a continuously differentiable and strictly decreasing function of τ with

dx†2
dτ

=
b∫ 1

0
φ′(αx†2)α dα

< 0. (16)

Proof.

(a) By properties P1, P3, and P6, the function Φ(x; u) = uφ(x) +
∫ 1

u
φ(αx) dα

is a continuous and strictly decreasing function of x ≥ 0 when u ∈ [0, 1].
Furthermore, Φ(0; u) = φ(0) = Cm and Φ(x;u) → 0 as x →∞ by properties
P4 and P7. It follows from (IV) and the properties of Φ with u = στ =
min{στ, 1} that x‡2(τ) exists, it is unique, and that x‡2(τ) > 0. It also follows
from (III) and the properties of Φ with u = 0 that x†2(τ) exists, it is unique,
and that x†2(τ) ≥ 0 (with equality if and only if τ = τm).

(b) The first part follows from (IV), (III), (7) with τ = 0, (I), and property P6.
The second part was obtained in the proof of part (a).

(c) The endpoint x‡2 is a continuously differentiable function of τ ∈ [0, τm] by
the implicit function theorem. The expression for the derivative in (15) arises
from implicit differentiation of (IV) in the two cases στ < 1 and στ ≥ 1
separately, and its sign from property P3.

(d) The endpoint x†2 is a continuously differentiable function of τ ∈ [0, τm] by
the implicit function theorem. The expression for the derivative in (16) arises
from implicit differentiation of (III) and its sign from property P3.

3.2. The upper portion of parameter space. Equation (IV) implies that the
endpoint x‡2(τ) takes on the same fixed value, which we now denote by z‡, anytime
στ ≥ 1. This z‡ satisfies the equation

φ(z‡) = C1. (17)

We conclude from (I), the relation C1 < Cm, and property P5 that z‡ ∈ (0, x†1). It
follows from Lemma 3.1 (b, c) that x‡2(τ) > z‡ whenever στ < 1. Furthermore, the
properties of x†2(τ) in Lemma 3.1 (b, d) imply that there exists some τ∗ ∈ (0, τm)
such that

x†2(τ) º z‡ for τ ¹ τ∗. (18)

At this point, we can already establish the relative magnitudes of x‡2(τ) and x†2(τ)
within the upper portion of parameter space. We first set τ−∗ def= 1/τ∗ and observe
from the relation τ∗ < τm that τ−∗ > τ−m (see Figure 4).

Lemma 3.2. Let σ ≥ 0 and τ ∈ [0, τm].

(a) If σ < τ−∗ and τ ≥ τ∗ then x‡2(τ) > x†2(τ).
(b) If σ ≥ τ−∗ and στ ≥ 1 then x‡2(τ) ¹ x†2(τ) for τ ¹ τ∗.

Proof.
(a) Let σ < τ−∗ and τ ≥ τ∗. If στ < 1 then x‡2(τ) > z‡ ≥ x†2(τ) by (18). If

στ ≥ 1 then x‡2(τ) = z‡ > x†2(τ) by (18) with τ ≥ 1/σ > τ∗.
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(b) If σ ≥ τ−∗ and στ ≥ 1 then the conclusion follows directly from (18) with
x‡2(τ) = z‡.

3.3. The lower portion of parameter space. In view of Lemmas 3.1 (b, c, d)
and 3.2, it only remains to determine the relative magnitudes of x‡2(τ) and x†2(τ)
for σ > 0 and τ ∈ (0, τ◦), where

τ◦ =

{
τ∗, σ < τ−∗

1/σ, σ ≥ τ−∗.

We now determine the relative values of dx‡2/dτ and dx†2/dτ along the line τ = 0.

Lemma 3.3. If σ > 0 then
[
dx‡2/dτ

]
τ=0

º [
dx†2/dτ

]
τ=0

for σ ¹ σ∗.

Proof. Observe from (15) and (16), Lemma 3.1 (b), and the relation φ(0) = Cm

that if τ = 0 then
dx‡2/dτ

dx†2/dτ

∣∣∣∣
τ=0

=
σ
[
Cm − φ(x†1)

]

b
.

The derivatives that appear on the left-hand side are both negative by Lemma
3.1 (c, d) because σ > 0 and στ = 0 < 1, and the numerator on the right-hand side
is positive because Cm = φ(0) > φ(x†1) by property P3. It follows that dx‡2/dτ º
dx†2/dτ for σ

[
Cm − φ(x†1)

] ¹ b, where each derivative is evaluated at τ = 0. The
conclusion follows from (13).

We now introduce the functions

M(τ) = σφ
(
x†2(τ)

)
+ b, for τ ∈ [0, τ◦] (19)

and

N(τ) =





σφ(0), for τ = 0

σ

τ

∫ τ

0

φ
(
σαx†2(τ)

)
dα, for τ ∈ (0, τ◦].

(20)

In the next lemma, we determine some elementary properties of M and N as
functions of τ .

Lemma 3.4. Let σ > 0. Then M and N are continuous and strictly increasing
and decreasing functions of τ ∈ [0, τ◦], respectively.

Proof. Observe from Lemma 3.1 (b, d) and the relation τ◦ < τm that x†2(τ) is a
positive and strictly decreasing function of τ ∈ [0, τ◦]. Properties P1 and P3 imply
then that M in (19) is a continuous and strictly increasing function of τ ∈ [0, τ◦].
We now consider the function N . Observe from (20) that

lim
τ→0

N(τ) = σ lim
τ→0

[
φ
(
στx†2(τ)

)
+

dx†2
dτ

∫ τ

0

φ′
(
σαx†2(τ)

)
σα dα

]
= N(0),

where we have used L’Hospital’s Rule, the fact that x†2(τ) → x†1 as τ → 0, and
the finiteness of dx†2/dτ as established in Lemma 3.1 (d). We conclude that N is
continuous (from the right) at τ = 0. Furthermore, (20) and property P5 together
imply that if τ ∈ (0, τ◦] then

N(τ) =
σ

τ

∫ τ

0

φ
(
σαx†2(τ)

)
dα < σφ(0) = N(0).
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It only remains to show that N is a continuous and strictly decreasing function of
τ ∈ (0, τ◦]. Thus, we now fix τ ∈ (0, τ◦]. Changing the variable of integration in
(20) to χ = σαx†2(τ) yields

N(τ) =
1

τx†2(τ)

∫ στx†2(τ)

0

φ(χ) dχ.

If we define

ψ(τ) = στx†2(τ) and θ(x) =
σ

x

∫ x

0

φ(χ) dχ,

then N(τ) = θ
(
ψ(τ)

)
. It is clear from Lemma 3.1 (d) and the positivity of x†2(τ)

that ψ is positive and continuously differentiable at τ . It is also clear from property
P1 that θ is a continuously differentiable function of x > 0. Consequently, N is
continuously differentiable at τ and N ′(τ) = θ′

(
ψ(τ)

)
ψ′(τ). To finish the proof, it

suffices to show that N ′(τ) < 0 for τ ∈ (0, τ◦) and N ′(τ◦) ≤ 0. It follows from
differentiating θ, changing the variable of integration back to α, and property P5

that

θ′(x) =
σ

x

[
φ(x)− 1

x

∫ x

0

φ(χ) dχ

]
=

σ

x

[
φ(x)−

∫ 1

0

φ(αx) dα

]
< 0.

Therefore θ′
(
ψ(τ)

)
< 0. To determine the sign of ψ′(τ) we differentiate ψ with

respect to τ and rearrange to get

ψ′(τ) = σx†2 + στ
dx†2
dτ

=
σ∫ 1

0
φ′(αx†2)α dα

[
x†2

∫ 1

0

φ′(αx†2)α dα + bτ

]
,

where x†2 = x†2(τ) and we have used (16). Since the fraction on the right-hand side
is negative by property P3, we consider only the expression in brackets,

x†2

∫ 1

0

φ′(αx†2)α dα + bτ = φ(x†2)−
∫ 1

0

φ(αx†2) dα + bτ

= φ(x†2)− C2(τ) + bτ

= φ(x†2)− C1

≤ φ
(
z‡

)− C1

= 0,

where we have used (12) with x = x†2 and u = 1, (III), (7), (18) with τ ≤ τ∗,
property P3, and (17). The inequality above is strict except in the case that τ = τ∗.
It follows from these remarks that ψ′(τ) ≥ 0 for τ ∈ (0, τ◦], with equality occurring
only when τ = τ∗. Therefore, N ′(τ) < 0 for τ ∈ (0, τ◦) and N ′(τ◦) ≤ 0.

We will write “x ¹ y ⇐⇒ u ¹ v” to emphasize that if x ¹ y for u ¹ v then
u ¹ v for x ¹ y also holds. We now connect the relative magnitudes of x‡2(τ) and
x†2(τ) to the relative values of M(τ) and N(τ).

Lemma 3.5. Let σ > 0 and τ ∈ (0, τ◦). Then x‡2(τ) ¹ x†2(τ) ⇐⇒ M(τ) ¹ N(τ).

Proof. Inspired by (IV) with στ < 1, we introduce the function

Θ(τ, x) = στφ(x) +
∫ 1

στ

φ(αx)dα.
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It is clear from properties P1, P3, and P6 that Θ is a continuous and strictly
decreasing function of x ≥ 0. We first suppose that M(τ) < N(τ) for some τ ∈
(0, τ◦). Let x‡2 = x‡2(τ) and x†2 = x†2(τ). Then στ ∈ (0, 1) and

Θ(τ, x†2) = στφ(x†2) +
∫ 1

στ

φ(αx†2) dα

= στφ(x†2) +
∫ 1

0

φ(αx†2) dα−
∫ στ

0

φ(αx†2) dα

= στφ(x†2) + C2(τ)− σ

∫ τ

0

φ(σα̃x†2) dα̃

= στφ(x†2) + C2(τ)− τN(τ)

< στφ(x†2) + C2(τ)− τM(τ)

= στφ(x†2) + C2(τ)− τ
[
σφ(x†2) + b

]

= C1

= στφ(x‡2) +
∫ 1

στ

φ(αx‡2) dα

= Θ(τ, x‡2),

where we have used (III), (20), the assumption M(τ) < N(τ), (19), (7), and (IV)
with στ < 1. Since Θ is a strictly decreasing function of x, it follows that x‡2(τ) <

x†2(τ). Similar arguments show that x‡2(τ) = x†2(τ) when M(τ) = N(τ), and that
x‡2(τ) > x†2(τ) when M(τ) > N(τ). Therefore, x‡2(τ) ¹ x†2(τ) for M(τ) ¹ N(τ).

3.4. The relative magnitudes of x‡2(τ) and x†2(τ). We now prove the main
result of this section by establishing the existence, shape, and location of the bifur-
cation function τ2 in Theorem 2.

Proof of Theorem 2.
(a) Let σ ≤ σ∗ so that τ◦ = τ∗. If τ = 0 then Lemma 3.1 (b) applies; i.e.,

x‡2(0) = x†2(0). We now restrict our attention to τ ∈ (0, τm]. If σ = 0 then
Lemma 3.1 (c, d) implies that x‡2(τ) = x†1 > x†2(τ). If σ > 0 and τ ∈ (0, τ∗)
then

M(τ) > M(0) by Lemma 3.4

= σφ(x†1) + b by (19) and Lemma 3.1 (b)

≥ σCm by (13) with σ ≤ σ∗

= N(0) by (20) and the relation Cm = φ(0)

> N(τ) by Lemma 3.4.

We conclude from Lemma 3.5 that x‡2(τ) > x†2(τ). If σ > 0 and τ ≥ τ∗, then
Lemma 3.2 (a) applies.

(b) Let σ ∈ (σ∗, τ−∗) so that τ◦ = τ∗. If τ = 0, then Lemma 3.1 (b) applies,
i.e., x‡2(0) = x†2(0). Suppose now that τ ∈ (0, τ∗). It follows from Lemma
3.3 with σ > σ∗ that x‡2(τ) < x†2(τ) for 0 < τ ¿ 1 and from Lemma 3.2 (a)
that x‡2(τ

∗) > x†2(τ
∗). The continuity of x‡2(τ) and x†2(τ) with respect to τ

implies that there exists some τ2 ∈ (0, τ∗) such that x‡2(τ2) = x†2(τ2). Lemma
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3.5 implies that M(τ2) = N(τ2). Lemma 3.4 implies that M(τ) ¹ N(τ) for
τ ¹ τ2. We conclude from Lemma 3.5 again that x‡2(τ) ¹ x†2(τ) for τ ¹ τ2. If
τ ≥ τ∗, then Lemma 3.2 (a) applies.

(c) Let σ ≥ τ−∗ so that τ◦ = 1/σ ≤ τ∗. If τ = 0, then Lemma 3.1 (b) applies.
Suppose now that τ ∈ (0, 1/σ). Then

M(τ) < M(1/σ) by Lemma 3.4

= σφ
(
x†2(1/σ)

)
+ b by (19)

≤ σφ(z‡) + b by (18) with 1/σ ≤ τ∗ and P3

= σ
[
C1 + b/σ

]
by (17)

= σC2(1/σ) by (7)

= σ

∫ 1

0

φ
(
αx†2(1/σ)

)
dα by (III)

= σ2

∫ 1/σ

0

φ
(
σα̃x†2(1/σ)

)
dα̃ by letting α = σα̃

= N(1/σ) by (20)

< N(τ) by Lemma 3.4.

We conclude from Lemma 3.5 that x‡2(τ) < x†2(τ). If τ ≥ 1/σ then Lemma
3.2 (b) applies.

(d) Let σ ∈ (σ∗, τ−∗). Then τ2 ∈ (0, τ∗) exists and is defined by the equation
x‡2(σ, τ2) = x†2(τ2), where we now express the σ-dependence of x‡2 in (IV). The
uniqueness of τ2 and the continuity of x‡2 and x†2 in the σ-τ plane guarantee
that τ2 is continuous at σ. It suffices to show that τ2 is strictly increasing in
a small neighborhood around σ. Observe that τ2 satisfies (IV) with x†2(τ2) in
place of x‡2(σ, τ2),

C1 = στ2φ(x†2) +
∫ 1

στ2

φ(αx†2) dα,

where στ2 ∈ (0, 1) and x†2 = x†2(τ2). If dτ2/dσ exists, we can differentiate the
equation above implicitly with respect to σ and rearrange to get

0 =
[
τ2 + σ

dτ2

dσ

] [
φ(x†2)− φ(στ2x

†
2)

]

+
dx†2
dτ

dτ2

dσ

[
στ2φ

′(x†2) +
∫ 1

στ2

φ′(αx†2)α dα

]
.

Further rearrangement gives

dτ2

dσ
=

τ2

[
φ(στ2x

†
2)− φ(x†2)

]

dx†2/dτ
[
στ2φ′(x

†
2) +

∫ 1

στ2
φ′(αx†2)α dα

]
− σ

[
φ(στ2x

†
2)− φ(x†2)

] .

Equation (15) with x‡2(σ, τ2) = x†2(τ2) implies that

σ

τ2
· dτ2

dσ
=

∂x‡2/∂τ

dx†2/dτ − ∂x‡2/∂τ
.

The numerator on the right-hand side is negative by Lemma 3.1 (c), and the
denominator is nonpositive because x‡2(τ2) = x†2(τ2) and x‡2(τ) > x†2(τ) for
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τ > τ2. We conclude then that dτ2/dσ > 0 if the derivative exists, and that τ2

has a vertical tangent otherwise. In either case, τ2 must be strictly increasing
in a small neighborhood around σ.

(e) Let σj ∈ (σ∗, τ−∗) be a strictly decreasing sequence with σj → σ∗ as j →∞.
According to parts (b) and (d), the sequence τ2(σj) is strictly decreasing
and bounded within the interval (0, τ∗). Thus, there exists some τ̃ ∈ [0, τ∗)
such that τ2(σj) → τ̃ as j → ∞. We argue by contradiction. Suppose that
τ̃ ∈ (0, τ∗) and let τ̂ ∈ (0, τ̃). Since τ̂ < τ̃ < τ2(σj), we obtain from part
(b) that x‡2(σj , τ̂) < x†2(τ̂), where we again express the σ-dependence of x‡2
in (IV). It follows from taking limits that x‡2(σ

∗, τ̂) ≤ x†2(τ̂). But part (a)
with τ = τ̂ implies that x‡2(σ

∗, τ̂) > x†2(τ̂), a contradiction. We conclude that
τ̃ = 0, and thus τ2 → 0 as σ → σ∗. A similar argument shows that τ2 → τ∗

as σ → τ−∗.

4. Order of the bifurcations. We now prove Theorem 3, which is the last main
result of this paper. Its proof is adapted from [9].

Proof of Theorem 3. We first show that if σ ∈ (σ∗, τ−m) and τ ∈ (0, τm), then
(1− στ)x‡1(τ) > x†2(τ). We argue by contradiction. Suppose that (1− στ)x‡1(τ) ≤
x†2(τ) for some σ ∈ (σ∗, τ−m) and τ ∈ (0, τm). Observe that στ ∈ (0, 1). Also,
Lemmas 2.1 (a) and 3.1 (a) imply that x‡1(τ) and x†2(τ) are both finite. We apply
(II) with x‡1 = x‡1(τ), change the variable of integration, use property P6, apply
(III) with x†2 = x†2(τ), and then use the relation C2(τ) < Cm to get

C2(τ) = στCm +
∫ 1−στ

0

φ(αx‡1) dα

= στCm + (1− στ)
∫ 1

0

φ(α̃(1− στ)x‡1) dα̃

≥ στCm + (1− στ)
∫ 1

0

φ(α̃x†2) dα̃

= στCm + (1− στ)C2(τ)

= C2(τ) + στ
[
Cm − C2(τ)

]

> C2(τ),

a contradiction. We conclude that if σ ∈ (σ∗, τ−m) and τ ∈ (0, τm) then (1 −
στ)x‡1(τ) > x†2(τ).

Recall from Theorems 1 and 2 that τ1(σ∗) = 0 = τ2(σ∗), that τ1 and τ2 are
continuous functions of σ ∈ (σ∗, τ−m), and that τ1(τ−m) = τm > τ2(τ−m). We now
show that τ1(σ) > τ2(σ) for σ ∈ (σ∗, τ−m). We argue by contradiction. Suppose
that τ1(σ) ≤ τ2(σ) for some σ ∈ (σ∗, τ−m). Since the functions τ1 and τ2 are
continuous, we may choose σ so that τ1(σ) = τ2(σ). Let τ = τ1(σ) = τ2(σ),
x‡1 = x‡1(τ), x†2 = x†2(τ), and x‡2 = x‡2(τ). Then στ ∈ (0, 1) because σ ∈ (σ∗, τ−m)
and τ ∈ (0, τm), and furthermore x‡1 = x†1 by Theorem 1 (b) and x‡2 = x†2 by
Theorem 2 (b). It follows from the positivity of x†2 and property P5 that

∫ στ

0

φ(αx†2) dα < στφ(0) = στCm.
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We add the same quantity to both sides,
∫ 1

0

φ(αx†2) dα < στCm +
∫ 1

στ

φ(αx†2) dα.

We apply (III) and rearrange to get

C2(τ)− στCm <

∫ 1

στ

φ(αx†2) dα.

We apply (II) with x†1 in place of x‡1 to get
∫ 1−στ

0

φ(αx†1) dα <

∫ 1

στ

φ(αx†2) dα. (21)

We now obtain the reverse inequality. The positivity of x‡1, property P5, the in-
equality (1 − στ)x‡1 > x†2 established at the beginning of this proof, and property
P3 imply that

1
στ

∫ 1

1−στ

φ(αx‡1) dα < φ((1− στ)x‡1) < φ(x†2),

from which we conclude that∫ 1

1−στ

φ(αx‡1) dα < στφ(x†2).

We subtract both sides from the same quantity, and then replace x‡1 and x†2 with
x†1 and x‡2, respectively, to get

C1 −
∫ 1

1−στ

φ(αx†1) dα > C1 − στφ(x‡2).

We now apply (I) to the left-hand side and (IV) with στ < 1 to the right-hand side
to get ∫ 1−στ

0

φ(αx†1) dα >

∫ 1

στ

φ(αx‡2) dα.

We replace x‡2 with x†2 to get
∫ 1−στ

0

φ(αx†1) dα >

∫ 1

στ

φ(αx†2) dα. (22)

Since (21) and (22) cannot both hold simultaneously, we have a contradiction. We
conclude that τ1(σ) > τ2(σ) for σ ∈ (σ∗, τ−m).

5. Discussion. We have determined the outcome of plant competition for sun-
light in a model of canopy partitioning by employing a global method of nullcline
endpoint analysis. The fact that the bifurcation function τ1 lies entirely above the
bifurcation function τ2 in Figure 2d implies that all parameter values between them
give rise to globally stable competitive coexistence. The existence of this parameter
region establishes that two hypothetical clonal plant species, limited solely by sun-
light and occupying an environment which varies neither in horizontal space nor in
time, can coexist at a globally stable equilibrium even though their only difference
is the height at which they place their leaves above the ground. In this sense, for
these hypothetical species for which no other mechanism of coexistence can operate,
canopy partitioning with suitable parameter values is sufficient by itself to produce
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competitive coexistence. Furthermore, in this special case of our canopy partition-
ing model, there exist no parameter combinations that produce founder control, in
which either species can exclude the other with the identity of the surviving species
depending on initial conditions.

5.1. The role of leaf height in plant competition for sunlight. Before we
interpret Figure 2d biologically, we recall that the taller species is assumed to be τ
units taller than the shorter species and to have a stem cost parameter that reflects
this height difference. We also observe that since the lowest leaves of the shorter
species cannot occur below the ground surface, it follows that T has an implicit
upper limit of 2s1 and σ has a corresponding lower limit of (2s1)−1. Thus, Figure
2d strictly applies only for values of σ ≥ (2s1)−1. However, because s1 is arbitrary,
we will simplify the interpretation of our results by making no explicit mention of
these bounds.

If the vertical leaf profile (or VLP) thickness T is large (so that σ is small), then
the shorter species will exclude the taller species for any positive height difference
τ . In this case, the cost of the taller species’ extra height can never be fully repaid
by the increased photosynthesis it experiences in the overstory. If T is moderate
(so that σ is also moderate), then as the species height difference τ increases,
the competitive success of the taller species decreases from competitive superiority
to competitive compatibility to competitive inferiority compared with the shorter
species. Furthermore, the lower and upper limits for the range of height differences
which produce competitive coexistence (τ1 and τ2) both increase as T decreases
(or σ increases). But beyond certain thresholds these limits become constants,
because T is so small that the VLP of the taller species lies entirely above the VLP
of the shorter species. Outside the coexistence region, the taller species excludes
the shorter species when the height difference is small because it intercepts more
sunlight at a relatively low cost, but the shorter species excludes the taller species
when the height difference is large, because the cost of the taller species’s extra
height is again not fully repaid by the increased photosynthesis it experiences in
the overstory.

The central point of these conclusions is that a difference in mean leaf height
between two otherwise identical clonal plant species can produce both competitive
exclusion and stable coexistence, with the outcome depending not on initial abun-
dances but rather on parameters that describe the competing species. In particular,
a difference in leaf height by itself can make competitive coexistence possible even
when the plant species experience no environmental variation through horizontal
space or time.
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