Decomposition based many-objective evolutionary algorithms have received wide attention over the years. However, most of them 1) are sensitive to the Pareto front shapes due to the dependence on the predefined reference vectors, and 2) only consider the global diversity but ignore the local diversity. These severely limit the using scope of decomposition based MaOEAs. Therefore, we propose a self-organizing decomposition based evolutionary algorithm with cooperative diversity measure (SDEA) for many-objective optimization in this work. In SDEA, a self-organizing decomposition manner is developed to automatically divide the objective space into different sub-regions instead of using the predefined reference vectors, which enables SDEA adapt to different Pareto front shapes. Such essence is that the self-organizing decomposition manner makes individuals with good diversity act as the reference vectors. Moreover, a cooperative diversity measure is designed to better promote the diversity, which takes the global diversity and local diversity into account. To validate the performance of SDEA, SDEA is compared with seven state-of-the-art methods on three benchmark test suites and two real-world applications. The corresponding results demonstrate that SDEA has higher competitiveness in dealing with different many-objective optimization problems.
Citation: Siyuan Zhao, Zichun Shao, Yile Chen, Liang Zheng, Junming Chen. A self-organizing decomposition based evolutionary algorithm with cooperative diversity measure for many-objective optimization[J]. AIMS Mathematics, 2025, 10(6): 13880-13907. doi: 10.3934/math.2025625
Decomposition based many-objective evolutionary algorithms have received wide attention over the years. However, most of them 1) are sensitive to the Pareto front shapes due to the dependence on the predefined reference vectors, and 2) only consider the global diversity but ignore the local diversity. These severely limit the using scope of decomposition based MaOEAs. Therefore, we propose a self-organizing decomposition based evolutionary algorithm with cooperative diversity measure (SDEA) for many-objective optimization in this work. In SDEA, a self-organizing decomposition manner is developed to automatically divide the objective space into different sub-regions instead of using the predefined reference vectors, which enables SDEA adapt to different Pareto front shapes. Such essence is that the self-organizing decomposition manner makes individuals with good diversity act as the reference vectors. Moreover, a cooperative diversity measure is designed to better promote the diversity, which takes the global diversity and local diversity into account. To validate the performance of SDEA, SDEA is compared with seven state-of-the-art methods on three benchmark test suites and two real-world applications. The corresponding results demonstrate that SDEA has higher competitiveness in dealing with different many-objective optimization problems.
| [1] |
X. Cai, S. Geng, D. Wu, J. Cai, J. Chen, A multicloud-model-based many-objective intelligent algorithm for efficient task scheduling in internet of things, IEEE Int. Things J., 8 (2021), 9645–9653. http://doi.org/10.1109/JIOT.2020.3040019 doi: 10.1109/JIOT.2020.3040019
|
| [2] |
X. Cai, Y. Lan, Z. Zhang, J. Wen, Z. Cui, W. Zhang, A many-objective optimization based federal deep generation model for enhancing data processing capability in IoT, IEEE Trans. Ind. Inform., 19 (2023), 561–569. http://doi.org/10.1109/TII.2021.3093715 doi: 10.1109/TII.2021.3093715
|
| [3] |
L. Zhang, H. Zhang, Z. Chen, S. Liu, H. Yang, H. Zhao, A multi-population based evolutionary algorithm for many-objective recommendations, IEEE Trans. Emerg. Top. Comput. Intell., 8 (2024), 1969–1982, http://doi.org/10.1109/TETCI.2024.3359093 doi: 10.1109/TETCI.2024.3359093
|
| [4] |
K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6 (2002), 182–197. http://doi.org/10.1109/4235.996017 doi: 10.1109/4235.996017
|
| [5] |
X. Wu, Y. Wang, Z. Wang, A learning and potential area-mining evolutionary algorithm for large-scale multi-objective optimization, Expert Syst. Appl., 237 (2024), 121563. http://doi.org/10.1016/j.eswa.2023.121563 doi: 10.1016/j.eswa.2023.121563
|
| [6] | M. Kljajic, V. Mizdrakovic, L. Jovanovic, N. Bacanin, V. Simic, D. Pamucar, et al.,, Gasoline and crude oil price prediction using multi-headed variational neighbour search-tuned recurrent neural networks, Comput. Econ., 2025. https://doi.org/10.1007/s10614-025-10967-4 |
| [7] |
M. Salb, L. Jovanovic, A. Elsadai, N. Bacanin, V. Simic, D. Pamucar, et al., Cloud spot instance price forecasting multi-headed models tuned using modified PSO, J. King Saud Uni. Sci., 36 (2024), 1018–3647. https://doi.org/10.1016/j.jksus.2024.103473 doi: 10.1016/j.jksus.2024.103473
|
| [8] | N. Bacanin, M. Zivkovic, M. Sarac, A. Petrovic, I. Strumberger, M. Antonijevic, et al., A novel multiswarm firefly algorithm: An application for plant classification, In: Proceedings of the 2022 Intelligent and Fuzzy Systems, 504 (2022), 1007–1016. https://doi.org/10.1007/978-3-031-09173-5_115 |
| [9] |
P. Villoth, M. Zivkovic, T. Zivkovic, M. Abdel-salam, M. Hammad, L. Jovanovic, et al., Two-tier deep and machine learning approach optimized by adaptive multi-population firefly algorithm for software defects prediction, Neurocomputing, 630 (2025), 129695. https://doi.org/10.1016/j.neucom.2025.129695 doi: 10.1016/j.neucom.2025.129695
|
| [10] |
Q. Tian, F. Liu, X. Lv, Snow Geese Algorithm: A novel migration-inspired meta-heuristic algorithm for constrained engineering optimization problems, Appl. Math. Model., 126 (2024), 327–347. https://doi.org/10.1016/j.apm.2023.10.045 doi: 10.1016/j.apm.2023.10.045
|
| [11] |
R. Cheng, Y. Jin, M. Olhofer, B. Sendhoff, A reference vector guided evolutionary algorithm for many-objective optimization, IEEE Trans. Evol. Comput., 20 (2016), 773–791. http://doi.org/ 10.1109/TEVC.2016.2519378 doi: 10.1109/TEVC.2016.2519378
|
| [12] |
M. Li, X. Yao, What weights work for you? Adapting weights for any Pareto front shape in decomposition-based evolutionary multiobjective optimisation, Evol. Comput., 28 (2020), 227–253. http://doi.org/10.1162/evco_a_00269 doi: 10.1162/evco_a_00269
|
| [13] |
Y. Yuan, H. Xu, B. Wang, X. Yao, A new dominance relation-based evolutionary algorithm for many-objective optimization, IEEE Trans. Evol. Comput., 20 (2016), 16–37. http://doi.org/10.1109/TEVC.2015.2420112 doi: 10.1109/TEVC.2015.2420112
|
| [14] |
Y. Qi, X. Ma, F. Liu, L. Jiao, J. Sun, J. Wu, MOEA/D with adaptive weight adjustment, Evol. Comput., 22 (2014), 231–264. http://doi.org/10.1162/EVCO_a_00109 doi: 10.1162/EVCO_a_00109
|
| [15] |
L. R. de Farias, A. F. Araujo, A decomposition-based many-objective evolutionary algorithm updating weights when required, Swarm Evol. Comput., 68 (2022), 100980. http://doi.org/10.1016/j.swevo.2021.100980 doi: 10.1016/j.swevo.2021.100980
|
| [16] |
K. Deb, H. Jain, An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints, IEEE Trans. Evol. Comput., 18 (2014), 577–601. http://doi.org/10.1109/TEVC.2013.2281535 doi: 10.1109/TEVC.2013.2281535
|
| [17] | K. Ikeda, H. Kita, S. Kobayashi, Failure of Pareto-based MOEAs: does non-dominated really mean near to optimal? In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), Seoul, Korea (South), 2 (2001), 957–962. http://doi.org/10.1109/CEC.2001.934293 |
| [18] |
J. Liu, Y. Wang, Y. M. Cheung, A Cα-dominance-based solution estimation evolutionary algorithm for many-objective optimization, Knowledge-Based Syst., 248 (2022), 108738. http://doi.org/10.1016/j.knosys.2022.108738 doi: 10.1016/j.knosys.2022.108738
|
| [19] |
S. Zhu, L. Xu, E. D. Goodman, Z. Lu, A new many-objective evolutionary algorithm based on generalized Pareto dominance, IEEE Trans. Cybern., 52 (2022), 7776–7790. http://doi.org/10.1109/TCYB.2021.3051078 doi: 10.1109/TCYB.2021.3051078
|
| [20] |
M. Laumanns, L. Thiele, K. Deb, E. Zitzler, Combining convergence and diversity in evolutionary multiobjective optimization, Evol. Comput., 10 (2002), 263–282. http://doi.org/ 10.1162/106365602760234108 doi: 10.1162/106365602760234108
|
| [21] |
Z. He, G. G. Yen, J. Zhang, Fuzzy-based Pareto optimality for many-objective evolutionary algorithms, IEEE Trans. Evol. Comput., 18 (2014), 269–285. http://doi.org/10.1109/TEVC.2013.2258025 doi: 10.1109/TEVC.2013.2258025
|
| [22] |
Q. Gu, H. Chen, L. Chen, X. Li, N. N. Xiong, A many-objective evolutionary algorithm with reference points-based strengthened dominance relation, Inf. Sci., 554 (2021), 236–255. http://doi.org/10.1016/j.ins.2020.12.025 doi: 10.1016/j.ins.2020.12.025
|
| [23] |
W. Zhang, J. Liu, S. Tan, H. Wang, A decomposition-rotation dominance based evolutionary algorithm with reference point adaption for many-objective optimization, Expert Syst. Appl., 215 (2023), 119424. http://doi.org/10.1016/j.eswa.2022.119424 doi: 10.1016/j.eswa.2022.119424
|
| [24] |
Y. Tian, R. Cheng, X. Zhang, Y. Su, Y. Jin, A strengthened dominance relation considering convergence and diversity for evolutionary many-objective optimization, IEEE Trans. Evol. Comput., 23 (2019), 331–345. http://doi.org/ 10.1109/TEVC.2018.2866854 doi: 10.1109/TEVC.2018.2866854
|
| [25] |
J. Shen, P. Wang, X. Wang, A controlled strengthened dominance relation for evolutionary many-objective optimization, IEEE Trans. Cybern., 52 (2022), 3645–3657. http://doi.org/10.1109/TCYB.2020.3015998 doi: 10.1109/TCYB.2020.3015998
|
| [26] | E. Zitzler, S. Kunzli, Indicator-based selection in multiobjective search, In: International conference on parallel problem solving from nature, 2004. https://doi.org/10.1007/978-3-540-30217-9_84 |
| [27] |
N. Beume, B. Naujoks, SMS-EMOA: Multiobjective selection based on dominated hypervolume, Eur. J. Oper. Res., 181 (2007), 1653–1669. http://doi.org/10.1016/j.ejor.2006.08.008 doi: 10.1016/j.ejor.2006.08.008
|
| [28] | J. Bader, E. Zitzler, HypE: An algorithm for fast hypervolume-based many-objective optimization, Evol. Comput., 19 (2011) 45–76. http://doi.org/10.1162/EVCO_a_00009 |
| [29] |
F. Li, R. Cheng, J. Liu, Y. Jin, A two-stage R2 indicator based evolutionary algorithm for many-objective optimization, Appl. Soft. Comput., 67 (2018), 245–260. http://doi.org/10.1016/j.asoc.2018.02.048 doi: 10.1016/j.asoc.2018.02.048
|
| [30] |
K. Shang, H. Ishibuchi, A new hypervolume-based evolutionary algorithm for many-objective optimization, IEEE Trans. Evol. Comput., 24 (2020), 839–852. http://doi.org/10.1109/TEVC.2020.2964705 doi: 10.1109/TEVC.2020.2964705
|
| [31] |
W. Zhang, J. Liu, J. Liu, Y. Liu, H. Wang, A many-objective evolutionary algorithm based on novel fitness estimation and grouping layering, Neural Comput. Appl., 35 (2023), 24283–24314. http://doi.org/10.1007/s00521-023-08950-x doi: 10.1007/s00521-023-08950-x
|
| [32] |
Y. Sun, G. G. Yen, Z. Yi, IGD indicator-based evolutionary algorithm for many-objective optimization problems, IEEE Trans. Evol. Comput., 23 (2019), 173–187. http://doi.org/10.1109/TEVC.2018.2791283 doi: 10.1109/TEVC.2018.2791283
|
| [33] |
Q. Zhang, H. Li, MOEA/D: A multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., 11 (2007), 712–731. http://doi.org/10.1109/TEVC.2007.892759 doi: 10.1109/TEVC.2007.892759
|
| [34] |
Q. Kang, X. Song, M. Zhou, L. Li, A collaborative resource allocation strategy for decomposition-based multiobjective evolutionary algorithms, IEEE Trans. Syst. Man Cybern.-Syst., 49 (2019), 2416–2423. http://doi.org/10.1109/TSMC.2018.2818175 doi: 10.1109/TSMC.2018.2818175
|
| [35] |
R. Wang, Q. Zhang, T. Zhang, Decomposition-based algorithms using Pareto adaptive scalarizing methods, IEEE Trans. Evol. Comput., 20 (2016), 821–837. http://doi.org/10.1109/TEVC.2016.2521175 doi: 10.1109/TEVC.2016.2521175
|
| [36] |
R. Wang, Z. Zhou, H. Ishibuchi, T. Liao, T. Zhang, Localized weighted sum method for many-objective optimization, IEEE Trans. Evol. Comput., 22 (2018), 3–18. http://doi.org/ 10.1109/TEVC.2016.2611642 doi: 10.1109/TEVC.2016.2611642
|
| [37] |
S. Jiang, S. Yang, A strength Pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization, IEEE Trans. Evol. Comput., 21 (2017), 329–346. http://doi.org/10.1109/TEVC.2016.2592479 doi: 10.1109/TEVC.2016.2592479
|
| [38] |
Q. Bao, M. Wang, G. Dai, X. Chen, Z. Song, Dynamical decomposition and selection based evolutionary algorithm for many-objective optimization, Appl. Soft. Comput., 141 (2023), 110295. http://doi.org/10.1016/j.asoc.2023.110295 doi: 10.1016/j.asoc.2023.110295
|
| [39] |
Q. Liu, Y. Jin, M. Heiderich, T. Rodemann, G. Yu, An adaptive reference vector-guided evolutionary algorithm using growing neural gas for many-objective optimization of irregular problems, IEEE Trans. Cybern., 52 (2022), 2698–2711. http://doi.org/10.1109/TCYB.2020.3020630 doi: 10.1109/TCYB.2020.3020630
|
| [40] |
X. Li, X. Li, K. Wang, S. Yang, A strength pareto evolutionary algorithm based on adaptive reference points for solving irregular fronts, Inf. Sci., 626 (2023), 658–693. http://doi.org/10.1016/j.ins.2023.01.073 doi: 10.1016/j.ins.2023.01.073
|
| [41] |
Z. He, G. G. Yen, Many-objective evolutionary algorithms based on coordinated selection strategy, IEEE Trans. Evol. Comput., 21 (2017), 220–233. http://doi.org/10.1109/TEVC.2016.2598687 doi: 10.1109/TEVC.2016.2598687
|
| [42] |
Z. Liu, Y. Wang, P. Huang, AnD: A many-objective evolutionary algorithm with angle-based selection and shift-based density estimation, Inf. Sci., 509 (2020), 400–419. http://doi.org/10.1016/j.ins.2018.06.063 doi: 10.1016/j.ins.2018.06.063
|
| [43] |
X. Cai, S. Geng, D. Wu, J. Chen, Unified integration of many-objective optimization algorithm based on temporary offspring for software defects prediction, Swarm Evol. Comput., 63 (2021), 100871. http://doi.org/10.1016/j.swevo.2021.100871 doi: 10.1016/j.swevo.2021.100871
|
| [44] |
W. Zhang, J. Liu, J. Liu, Y. Liu, S. Tan, A dual distance dominance based evolutionary algorithm with selection-replacement operator for many-objective optimization, Expert Syst. Appl., 237 (2024), 121244. http://doi.org/10.1016/j.eswa.2023.121244 doi: 10.1016/j.eswa.2023.121244
|
| [45] |
P. Zhang, J. Li, T. Li, H. Chen, A new many-objective evolutionary algorithm based on determinantal point processes, IEEE Trans. Evol. Comput., 25 (2021), 334–345. http://doi.org/10.1109/TEVC.2020.3035825 doi: 10.1109/TEVC.2020.3035825
|
| [46] | P. Liang, Y. Chen, Y. Sun, Y. Huang, W. Li, An information entropy-driven evolutionary algorithm based on reinforcement learning for many-objective optimization, Expert Syst. Appl., 238 (2024) 122164. http://doi.org/10.1016/j.eswa.2023.122164 |
| [47] |
H. Li, L. Bai, W. Gao, J. Xie, L. Huang, Many-objective coevolutionary learning algorithm with extreme learning machine auto-encoder for ensemble classifier of feedforward neural networks, Expert Syst. Appl., 246 (2024), 123186. http://doi.org/10.1016/j.eswa.2024.123186 doi: 10.1016/j.eswa.2024.123186
|
| [48] | K. Deb, R. B. Agrawal, Simulated binary crossover for continuous search space, Complex Syst., 9 (1995), 115–148. |
| [49] | K. Deb, M. Goyal, A combined genetic adaptive search (GeneAS) for engineering design, Comput. Sci. Inform., 26 (1996), 30–45. |
| [50] |
S. Huband, P. Hingston, L. Barone, L. While, A review of multiobjective test problems and a scalable test problem toolkit, IEEE Trans. Evol. Comput., 10 (2006), 477–506. http://doi.org/10.1109/TEVC.2005.861417 doi: 10.1109/TEVC.2005.861417
|
| [51] |
M. Elarbi, S. Bechikh, A. Gupta, L. Ben Said, Y. S. Ong, A new decomposition-based NSGA-II for many-objective optimization, IEEE Trans. Syst. Man Cybern.-Syst., 48 (2018), 1191–1210. http://doi.org/10.1109/TSMC.2017.2654301 doi: 10.1109/TSMC.2017.2654301
|
| [52] |
J. Liu, Y. Wang, N. Fan, S. Wei, W. Tong, A convergence-diversity balanced fitness evaluation mechanism for decomposition-based many-objective optimization algorithm, Integr. Comput.-Aided Eng., 26 (2019), 159–184. https://doi.org/10.3233/ICA-1805 doi: 10.3233/ICA-1805
|
| [53] |
A. Kumar, G. Wu, M. Z. Ali, Q. Luo, R. Mallipeddi, P. N. Suganthan, et al., A Benchmark-Suite of real-World constrained multi-objective optimization problems and some baseline results, Swarm Evol. Comput., 67 (2021), 100961. https://doi.org/10.1016/j.swevo.2021.100961 doi: 10.1016/j.swevo.2021.100961
|
| [54] |
F. Ming, Y. Gong, L. Wang, L. Gao, A constraint-handling technique for decomposition-based constrained many-objective evolutionary algorithms, IEEE Trans. Syst. Man Cybern.-Syst., 53 (2023), 7783–7793. https://doi.org/10.1109/TSMC.2023.3299570 doi: 10.1109/TSMC.2023.3299570
|