Research article

Linear superposition and interaction of Wronskian solutions to an extended (2+1)-dimensional KdV equation

  • Received: 24 February 2023 Revised: 24 April 2023 Accepted: 26 April 2023 Published: 15 May 2023
  • MSC : 35C08, 35Q51, 37K40

  • The main purpose of this work is to discuss an extended KdV equation, which can provide some physically significant integrable evolution equations to model the propagation of two-dimensional nonlinear solitary waves in various science fields. Based on the bilinear Bäcklund transformation, a Lax system is constructed, which guarantees the integrability of the introduced equation. The linear superposition principle is applied to homogeneous linear differential equation systems, which plays a key role in presenting linear superposition solutions composed of exponential functions. Moreover, some special linear superposition solutions are also derived by extending the involved parameters to the complex field. Finally, a set of sufficient conditions on Wronskian solutions is given associated with the bilinear Bäcklund transformation. The Wronskian identities of the bilinear KP hierarchy provide a direct and concise way for proving the Wronskian determinant solution. The resulting Wronskian structure generates $ N $-soliton solutions and a few of special Wronskian interaction solutions, which enrich the solution structure of the introduced equation.

    Citation: Li Cheng, Yi Zhang, Ying-Wu Hu. Linear superposition and interaction of Wronskian solutions to an extended (2+1)-dimensional KdV equation[J]. AIMS Mathematics, 2023, 8(7): 16906-16925. doi: 10.3934/math.2023864

    Related Papers:

  • The main purpose of this work is to discuss an extended KdV equation, which can provide some physically significant integrable evolution equations to model the propagation of two-dimensional nonlinear solitary waves in various science fields. Based on the bilinear Bäcklund transformation, a Lax system is constructed, which guarantees the integrability of the introduced equation. The linear superposition principle is applied to homogeneous linear differential equation systems, which plays a key role in presenting linear superposition solutions composed of exponential functions. Moreover, some special linear superposition solutions are also derived by extending the involved parameters to the complex field. Finally, a set of sufficient conditions on Wronskian solutions is given associated with the bilinear Bäcklund transformation. The Wronskian identities of the bilinear KP hierarchy provide a direct and concise way for proving the Wronskian determinant solution. The resulting Wronskian structure generates $ N $-soliton solutions and a few of special Wronskian interaction solutions, which enrich the solution structure of the introduced equation.



    加载中


    [1] M. J. Ablowitz, P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511623998
    [2] S. Novikov, S. V. Manakov, L. P. Pitaevskii, V. E. Zakharov, Theory of solitons, Springer, 1984.
    [3] W. X. Ma, Y. You, Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions, Trans. Am. Math. Soc., 357 (2005), 1753–1778. http://doi.org/10.1090/S0002-9947-04-03726-2 doi: 10.1090/S0002-9947-04-03726-2
    [4] W. X. Ma, C. X. Li, J. S. He, A second Wronskian formulation of the Boussinesq equation, Nonlinear Anal., 70 (2009), 4245–4258. https://doi.org/10.1016/j.na.2008.09.010 doi: 10.1016/j.na.2008.09.010
    [5] W. X. Ma, Complexiton solutions to the Korteweg-de Vries equation, Phys. Lett. A, 301 (2002), 35–44. https://doi.org/10.1016/S0375-9601(02)00971-4 doi: 10.1016/S0375-9601(02)00971-4
    [6] R. Hirota, The direct method in soliton theory, Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511543043
    [7] L. Akinyemi, E. Morazara, Integrability, multi-solitons, breathers, lumps and wave interactions for generalized extended Kadomtsev-Petviashvili equation, Nonlinear Dyn., 111 (2023), 4683–4707. https://doi.org/10.1007/s11071-022-08087-x doi: 10.1007/s11071-022-08087-x
    [8] X. Lü, S. J. Chen, $N$-soliton solutions and associated integrability for a novel (2+1)-dimensional generalized KdV equation, Chaos Solitons Fract., 169 (2023), 113291. https://doi.org/10.1016/j.chaos.2023.113291 doi: 10.1016/j.chaos.2023.113291
    [9] A. R. Butt, Z. E. Huma, N. Raza, M. Inc, R. T. Alqahtani, Complexitons, bilinear forms and bilinear Bäcklund transformation of a (2+1)-dimensional Boiti-Leon-Manna-Pempinelli model describing incompressible fluid, Chaos Solitons Fract., 168 (2023), 113201. https://doi.org/10.1016/j.chaos.2023.113201 doi: 10.1016/j.chaos.2023.113201
    [10] L. Cheng, Y. Zhang, W. X. Ma, Nonsingular complexiton solutions and resonant waves to an extended Jimbo-Miwa equation, Results Phys., 20 (2021), 103711. https://doi.org/10.1016/j.rinp.2020.103711 doi: 10.1016/j.rinp.2020.103711
    [11] W. X. Ma, Y. You, Rational solutions of the Toda lattice equation in Casoratian form, Chaos Solitons Fract., 22 (2004), 395–406. https://doi.org/10.1016/j.chaos.2004.02.011 doi: 10.1016/j.chaos.2004.02.011
    [12] N. C. Freeman, J. J. C. Nimmo, Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: the Wronskian technique, Phys. Lett. A, 95 (1983), 1–3. https://doi.org/10.1016/0375-9601(83)90764-8 doi: 10.1016/0375-9601(83)90764-8
    [13] J. J. C. Nimmo, N. C. Freeman, A method of obtaining the $N$-soliton solution of the Boussinesq equation in terms of a Wronskian, Phys. Lett. A, 95 (1983), 4–6. https://doi.org/10.1016/0375-9601(83)90765-X doi: 10.1016/0375-9601(83)90765-X
    [14] X. J. He, X. Lü, M. G. Li, B$\ddot{\mathrm a}$cklund transformation, Pfaffian, Wronskian and Grammian solutions to the (3+1)-dimensional generalized Kadomtsev-Petviashvili equation, Anal. Math. Phys., 11 (2021), 4. https://doi.org/10.1007/s13324-020-00414-y doi: 10.1007/s13324-020-00414-y
    [15] D. G. Crighton, Applications of KdV, Acta Appl. Math., 39 (1995), 39–67. https://doi.org/10.1007/BF00994625 doi: 10.1007/BF00994625
    [16] N. Iqbal, T. Botmart, W. W. Mohammed, A. Ali, Numerical investigation of fractional-order Kersten-Krasil'shchik coupled KdV-mKdV system with Atangana-Baleanu derivative, Adv. Contin. Discrete Models, 37 (2022), 2022. https://doi.org/10.1186/s13662-022-03709-5 doi: 10.1186/s13662-022-03709-5
    [17] R. Shah, A. A. Hyder, N. Iqbal, T. Botmart, Fractional view evaluation system of Schrödinger-KdV equation by a comparative analysis, AIMS Math., 7 (2022), 19846–19864. https://doi.org/10.3934/math.20221087 doi: 10.3934/math.20221087
    [18] H. Yasmin, N. Iqbal, A comparative study of the fractional coupled Burgers and Hirota-Satsuma KdV equations via analytical techniques, Symmetry, 14 (2022), 1364. https://doi.org/10.3390/sym14071364 doi: 10.3390/sym14071364
    [19] L. Akinyemi, P. Veeresha, S. O. Ajibola, Numerical simulation for coupled nonlinear Schrödinger-Korteweg-de Vries and Maccari systems of equations, Mod. Phys. Lett. B, 35 (2021), 2150339. https://doi.org/10.1142/S0217984921503395 doi: 10.1142/S0217984921503395
    [20] M. Alshammari, N. Iqbal, W. W. Mohammed, T. Botmar, The solution of fractional-order system of KdV equations with exponential-decay kernel, Results Phys., 38 (2022), 105615. https://doi.org/10.1016/j.rinp.2022.105615 doi: 10.1016/j.rinp.2022.105615
    [21] J. Dikwa, A. Houwe, S. Abbagari, L. Akinyemi, M. Inc, Modulated waves patterns in the photovoltaic photorefractive crystal, Opt. Quantum Electron., 54 (2022), 842. https://doi.org/10.1007/s11082-022-04224-3 doi: 10.1007/s11082-022-04224-3
    [22] S. Y. Lou, A novel (2+1)-dimensional integrable KdV equation with peculiar solutions structures, China Phys. B, 29 (2020), 080502. https://doi.org/10.1088/1674-1056/ab9699 doi: 10.1088/1674-1056/ab9699
    [23] X. B. Hu, Y. Li, A two-parameter B$\ddot{\mathrm a}$cklund transformation and nonlinear superposition formula of DJKM equation, J. Grad. Sch. Chin. Acad. Sci., 6 (1989), 8–17.
    [24] X. B. Hu, Y. Li, Bäcklund transformation and nonlinear superposition formula of DJKM equation, Acta Math. Sci., 11 (1991), 164–172.
    [25] Y. H. Wang, H. Wang, C. Temuer, Lax pair, conservation laws, and multi-shock wave solutions of the DJKM equation with Bell polynomials and symbolic computation, Nonlinear Dyn., 78 (2014), 1101–1107. https://doi.org/10.1007/s11071-014-1499-6 doi: 10.1007/s11071-014-1499-6
    [26] A. M. Wazwaz, Multiple soliton solutions for the Bogoyavlenskii's generalized breaking soliton equations and its extension form, Appl. Math. Comput., 217 (2010), 4282–4288. https://doi.org/10.1016/j.amc.2010.09.048 doi: 10.1016/j.amc.2010.09.048
    [27] L. Akinyemi, Shallow ocean soliton and localized waves in extended (2+1)-dimensional nonlinear evolution equations, Phys. Lett. A, 463 (2023), 128668. https://doi.org/10.1016/j.physleta.2023.128668 doi: 10.1016/j.physleta.2023.128668
    [28] L. Cheng, W. X. Ma, Y. Zhang, J. Y. Ge, Integrability and lump solutions to an extended (2+1)-dimensional KdV equation, Eur. Phys. J. Plus, 137 (2022), 902. https://doi.org/10.1140/epjp/s13360-022-03076-w doi: 10.1140/epjp/s13360-022-03076-w
    [29] W. X. Ma, E. G. Fan, Linear superposition principle applying to Hirota bilinear equations, Comput. Math. Appl., 61 (2011), 950–959. https://doi.org/10.1016/j.camwa.2010.12.043 doi: 10.1016/j.camwa.2010.12.043
    [30] Y. Zhou, W. X. Ma, Applications of linear superposition principle to resonant solitons and complexitons, Comput. Math. Appl., 73 (2017), 1697–1706. https://doi.org/10.1016/j.camwa.2017.02.015 doi: 10.1016/j.camwa.2017.02.015
    [31] P. F. Han, Y. Zhang, Linear superposition formula of solutions for the extended (3+1)-dimensional shallow water wave equation, Nonlinear Dyn., 109 (2022), 1019–1032. https://doi.org/10.1007/s11071-022-07468-6 doi: 10.1007/s11071-022-07468-6
    [32] C. K. Kuo, D. Kumar, C. J. Juan, A study of resonance Y-type multi-soliton solutions and soliton molecules for new (2+1)-dimensional nonlinear wave equations, AIMS Math., 7 (2022), 20740–20751. https://doi.org/10.3934/math.20221136 doi: 10.3934/math.20221136
    [33] Y. Q. Yuan, B. Tian, W. R. Sun, J. Chai, L. Liu, Wronskian and Grammian solutions for a (2+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation, Comput. Math. Appl., 74 (2017), 873–879. https://doi.org/10.1016/j.camwa.2017.06.008 doi: 10.1016/j.camwa.2017.06.008
    [34] L. Cheng, Y. Zhang, W. X. Ma, J. Y. Ge, Wronskian and lump wave solutions to an extended second KP equation, Math. Comput. Simul., 187 (2021), 720–731. https://doi.org/10.1016/j.matcom.2021.03.024 doi: 10.1016/j.matcom.2021.03.024
    [35] X. Lü, S. J. Chen, Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types, Nonlinear Dyn., 103 (2021), 947–977. https://doi.org/10.1007/s11071-020-06068-6 doi: 10.1007/s11071-020-06068-6
    [36] Z. Z. Kang, T. C. Xia, Construction of abundant solutions of the (2+1)-dimensional time-dependent Date-Jimbo-Kashiwara-Miwa equation, Appl. Math. Lett., 103 (2020), 106163. https://doi.org/10.1016/j.aml.2019.106163 doi: 10.1016/j.aml.2019.106163
    [37] W. X. Ma, Interaction solutions to the Hirota-Satsuma-Ito equation in (2+1)-dimensions, Front. Math. China, 14 (2019), 619–629. https://doi.org/10.1007/s11464-019-0771-y doi: 10.1007/s11464-019-0771-y
    [38] P. F. Han, T. Bao, Novel hybrid-type solutions for the (3+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation with time-dependent coefficients, Nonlinear Dyn., 107 (2022), 1163–1177. https://doi.org/10.1007/s11071-021-07019-5 doi: 10.1007/s11071-021-07019-5
    [39] J. W. Xia, Y. W. Zhao, X. Lü, Predictability, fast calculation and simulation for the interaction solutions to the cylindrical Kadomtsev-Petviashvili equation, Commun. Nonlinear Sci. Numer. Simul., 90 (2020), 105260. https://doi.org/10.1016/j.cnsns.2020.105260 doi: 10.1016/j.cnsns.2020.105260
    [40] S. J. Chen, W. X. Ma, X. Lü, Bäcklund transformation, exact solutions and interaction behaviour of the (3+1)-dimensional Hirota-Satsuma-Ito-like equation, Commun. Nonlinear Sci. Numer. Simul., 83 (2020), 105135. https://doi.org/10.1016/j.cnsns.2019.105135 doi: 10.1016/j.cnsns.2019.105135
    [41] S. Abbagari, A. Houwe, L. Akinyemi, M. Inc, T. B. Bouetou, Discrete modulation instability and localized modes in chiral molecular chains with first- and third-neighbor interactions, Phys. Scr., 98 (2023), 025210. https://doi.org/10.1088/1402-4896/acb329 doi: 10.1088/1402-4896/acb329
    [42] S. Y. Lou, Soliton molecules and asymmetric solitons in three fifth order systems via velocity resonance, J. Phys. Commun., 4 (2020), 041002. https://doi.org/10.1088/2399-6528/ab833e doi: 10.1088/2399-6528/ab833e
    [43] W. X. Ma, L. Q. Zhang, Lump solutions with higher-order rational dispersion relations, Pramana, 94 (2020), 43. https://doi.org/10.1007/s12043-020-1918-9 doi: 10.1007/s12043-020-1918-9
    [44] S. Singh, K. Sakkaravarthi, K. Murugesan, Lump and soliton on certain spatially-varying backgrounds for an integrable (3+1) dimensional fifth-order nonlinear oceanic wave model, Chaos Solitons Fract., 167 (2023), 113058. https://doi.org/10.1016/j.chaos.2022.113058 doi: 10.1016/j.chaos.2022.113058
    [45] S. Roy, S. Raut, R. R. Kairi, P. Chatterjee, Bilinear Bäcklund, Lax pairs, breather waves, lump waves and soliton interaction of (2+1)-dimensional non-autonomous Kadomtsev-Petviashvili equation, Nonlinear Dyn., 111 (2023), 5721–5741. https://doi.org/10.1007/s11071-022-08126-7 doi: 10.1007/s11071-022-08126-7
    [46] B. Dorrizzi, B. Grammaticos, A. Ramani, P. Winternitz, Are all the equations of the KP hierarchy integrable, J. Math. Phys., 27 (1986), 2848–2852. https://doi.org/10.1063/1.527260 doi: 10.1063/1.527260
    [47] J. P. Wu, A new Wronskian condition for a (3+1)-dimensional nonlinear evolution equation, Chin. Phys. Lett., 28 (2011), 050501. https://doi.org/10.1088/0256-307X/28/5/050501 doi: 10.1088/0256-307X/28/5/050501
    [48] M. Sato, Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds, RIMS Kokyuroku, 439 (1981), 30–46. https://doi.org/10.1112/S0010437X14007593 doi: 10.1112/S0010437X14007593
    [49] L. Cheng, Y. Zhang, W. X. Ma, Wronskian $N$-soliton solutions to a generalized KdV equation in (2+1)-dimensions, Nonlinear Dyn., 111 (2023), 1701–1714. https://doi.org/10.1007/s11071-022-07920-7 doi: 10.1007/s11071-022-07920-7
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(659) PDF downloads(74) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog