This study investigated the dynamics of a pure-quartic nonlinear Schrödinger equation incorporating a $ \beta $-fractional derivative and weak nonlocal effects prevalent in optical fiber systems. Using the improved modified extended tanh-function method, we obtained a diverse array of soliton solutions, including bright, dark, and singular solitons, as well as hyperbolic, trigonometric, and Jacobi elliptic solutions. The main goal was to clarify how fractional derivatives, defined by the parameter $ \beta $, affect the characteristics and behavior of these soliton solutions. The key outcomes indicate that variations in the parameter $ \beta $ lead to substantial changes in soliton amplitude, shape, and propagation patterns. Graphical illustrations clearly depict these transformations, highlighting how fractional derivatives have a major impact on the properties of solitons. Crucially, for certain fractional orders, the localization and stability of solitons are enhanced, which is essential for accurate modeling of nonlocal and dispersive effects in optical fibers. This work not only enhances fundamental understanding of nonlinear wave phenomena within optical communication systems but also offers valuable insights into using fractional calculus for designing and optimizing advanced photonic devices.
Citation: Mahmoud Soliman, Hamdy M. Ahmed, Niveen Badra, M. Elsaid Ramadan, Islam Samir, Soliman Alkhatib. Influence of the $ \beta $-fractional derivative on optical soliton solutions of the pure-quartic nonlinear Schrödinger equation with weak nonlocality[J]. AIMS Mathematics, 2025, 10(3): 7489-7508. doi: 10.3934/math.2025344
This study investigated the dynamics of a pure-quartic nonlinear Schrödinger equation incorporating a $ \beta $-fractional derivative and weak nonlocal effects prevalent in optical fiber systems. Using the improved modified extended tanh-function method, we obtained a diverse array of soliton solutions, including bright, dark, and singular solitons, as well as hyperbolic, trigonometric, and Jacobi elliptic solutions. The main goal was to clarify how fractional derivatives, defined by the parameter $ \beta $, affect the characteristics and behavior of these soliton solutions. The key outcomes indicate that variations in the parameter $ \beta $ lead to substantial changes in soliton amplitude, shape, and propagation patterns. Graphical illustrations clearly depict these transformations, highlighting how fractional derivatives have a major impact on the properties of solitons. Crucially, for certain fractional orders, the localization and stability of solitons are enhanced, which is essential for accurate modeling of nonlocal and dispersive effects in optical fibers. This work not only enhances fundamental understanding of nonlinear wave phenomena within optical communication systems but also offers valuable insights into using fractional calculus for designing and optimizing advanced photonic devices.
| [1] |
P. Li, S. Shi, C. Xu, M. U. Rahman, Bifurcations, chaotic behavior, sensitivity analysis and new optical solitons solutions of Sasa-Satsuma equation, Nonlinear Dyn., 112 (2024), 7405–7415. https://doi.org/10.1007/s11071-024-09438-6 doi: 10.1007/s11071-024-09438-6
|
| [2] |
M. Soliman, H. M. Ahmed, N. Badra, T. A. Nofal, I. Samir, Highly dispersive gap solitons for conformable fractional model in optical fibers with dispersive reflectivity solutions using the modified extended direct algebraic method, AIMS Math., 9 (2024), 25205–25222. https://doi.org/10.3934/math.20241229 doi: 10.3934/math.20241229
|
| [3] |
M. Soliman, H. M. Ahmed, N. Badra, I. Samir, Effects of fractional derivative on fiber optical solitons of (2+1) perturbed nonlinear Schrödinger equation using improved modified extended tanh-function method, Opt. Quantum Electron., 56 (2024), 777. https://doi.org/10.1007/s11082-024-06593-3 doi: 10.1007/s11082-024-06593-3
|
| [4] |
Z. Li, S. Zhao, Bifurcation, chaotic behavior and solitary wave solutions for the Akbota equation, AIMS Math., 9 (2024), 22590–22601. https://doi.org/10.3934/math.20241100 doi: 10.3934/math.20241100
|
| [5] |
R. Hao, L. Li, Z. Li, W. Xue, G. Zhou, A new approach to exact soliton solutions and soliton interaction for the nonlinear Schrödinger equation with variable coefficients, Opt. Commun., 236 (2004), 79–86. https://doi.org/10.1016/j.optcom.2004.03.005 doi: 10.1016/j.optcom.2004.03.005
|
| [6] |
W. B. Rabie, H. M. Ahmed, Construction cubic-quartic solitons in optical metamaterials for the perturbed Twin-Core couplers with Kudryashov's sextic power law using extended F-expansion method, Chaos Solitons Fract., 160 (2022), 112289. https://doi.org/10.1016/j.chaos.2022.112289 doi: 10.1016/j.chaos.2022.112289
|
| [7] |
H. U. Rehman, A. F. Aljohani, A. Althobaiti, S. Althobaiti, I. Iqbal, Diving into plasma physics: dynamical behaviour of nonlinear waves in (3+1)-D extended quantum Zakharov–Kuznetsov equation, Opt. Quantum Electron., 56 (2024), 1336. https://doi.org/10.1007/s11082-024-07244-3 doi: 10.1007/s11082-024-07244-3
|
| [8] |
I. Iqbal, H. U. Rehman, H. Ashraf, A. Walait, N. B. Turki, B. H. Shah, et al., Soliton unveilings in optical fiber transmission: examining soliton structures through the Sasa–Satsuma equation, Results Phys., 60 (2024), 107648. https://doi.org/10.1016/j.rinp.2024.107648 doi: 10.1016/j.rinp.2024.107648
|
| [9] |
M. U. Rahman, S. Ahmad, M. A. Khan, M. Sun, W. F. Alfwzan, A diverse array of optical solitons in the damped (2+1)-dimensional nonlinear Schrödinger equation via the modified exponential rational function method and other distinct strategies, Opt. Quantum Electron., 56 (2024), 959. https://doi.org/10.1007/s11082-024-06705-z doi: 10.1007/s11082-024-06705-z
|
| [10] |
M. U. Rahman, M. Sun, S. Boulaaras, D. Baleanu, Bifurcations, chaotic behavior, sensitivity analysis, and various soliton solutions for the extended nonlinear Schrödinger equation, Bound. Value Probl., 2024 (2024), 15. https://doi.org/10.1186/s13661-024-01825-7 doi: 10.1186/s13661-024-01825-7
|
| [11] |
H. U. Rehman, K. Khushi, I. Iqbal, E. S. M. Sherif, M. U. Shahzad, M. A. Khan, Analysis of optical solitons propagation in the dual-mode resonant nonlinear Schrödinger dynamical equation with assorted nonlinear interactions, Mod. Phys. Lett. B, 2024 (2024), 2450433. https://doi.org/10.1142/S0217984924504335 doi: 10.1142/S0217984924504335
|
| [12] |
I. Iqbal, S. M. Boulaaras, H. U. Rehman, M. S. Saleem, D. Chou, Navigating waves: advancing ocean dynamics through the nonlinear Schrödinger equation, Nonlinear Eng., 13 (2024), 20240025. https://doi.org/10.1515/nleng-2024-0025 doi: 10.1515/nleng-2024-0025
|
| [13] |
K. Zhang, J. Cao, J. Lyu, Dynamic behavior and modulation instability for a generalized nonlinear Schrödinger equation with nonlocal nonlinearity, Phys. Scr., 100 (2024), 015262. https://doi.org/10.1088/1402-4896/ad9cfa doi: 10.1088/1402-4896/ad9cfa
|
| [14] |
J. Pan, M. U. Rahman, Rafiullah, Breather-like, singular, periodic, interaction of singular and periodic solitons, and a-periodic solitons of third-order nonlinear Schrödinger equation with an efficient algorithm, Eur. Phys. J. Plus, 138 (2023), 912. https://doi.org/10.1140/epjp/s13360-023-04530-z doi: 10.1140/epjp/s13360-023-04530-z
|
| [15] |
R. C. López, G. H. Sun, O. Camacho-Nieto, C. Yáñez-Márquez, S. H. Dong, Analytical traveling-wave solutions to a generalized Gross–Pitaevskii equation with some new time and space varying nonlinearity coefficients and external fields, Phys. Lett. A, 381 (2017), 2978–2985. https://doi.org/10.1016/j.physleta.2017.07.012 doi: 10.1016/j.physleta.2017.07.012
|
| [16] |
X. L. Mai, W. Li, S. H. Dong, Exact solutions to the nonlinear Schrödinger equation with time-dependent coefficients, Adv. High Energy Phys., 2021 (2021), 6694980. https://doi.org/10.1155/2021/6694980 doi: 10.1155/2021/6694980
|
| [17] |
Z. Wang, K. Zhao, P. Li, Y. Liu, Boundedness of square functions related with fractional Schrödinger semigroups on stratified Lie groups, Commun. Anal. Mec., 15 (2023), 410–435. https://doi.org/10.3934/cam.2023020 doi: 10.3934/cam.2023020
|
| [18] |
R. Sun, W. Deng, A generalized time fractional Schrödinger equation with signed potential, Commun. Anal. Mech., 16 (2024), 262–277. https://doi.org/10.3934/cam.2024012 doi: 10.3934/cam.2024012
|
| [19] | M. Kapoor, G. Arora, V. Joshi, Numerical approximation of coupled Schrödinger equations via NUAH B-spline DQM, Comput. Methods Differ. Equations, 2025. https://doi.org/10.22034/cmde.2025.64656.2935 |
| [20] | T. Mayteevarunyoo, B. A. Malomed, Interactions of fractional solitons with local defects: stabilization and scattering, arXiv, 2025. https://doi.org/10.48550/arXiv.2502.17819 |
| [21] |
Y. Zhang, X. Feng, L. Qian, A high-order compact ADI scheme for two-dimensional nonlinear Schrödinger equation with time fractional derivative, Comput. Appl. Math., 44 (2025), 168. https://doi.org/10.1007/s40314-025-03127-9 doi: 10.1007/s40314-025-03127-9
|
| [22] |
B. Li, Y. Zhang, X. Li, Z. Eskandari, Q. He, Bifurcation analysis and complex dynamics of a Kopel triopoly model, J. Comput. Appl. Math., 426 (2023), 115089. https://doi.org/10.1016/j.cam.2023.115089 doi: 10.1016/j.cam.2023.115089
|
| [23] | Z. Eskandari, Z. Avazzadeh, R. K. Ghaziani, B. Li, Dynamics and bifurcations of a discrete‐time Lotka–Volterra model using nonstandard finite difference discretization method, Math. Methods Appl. Sci., 2022. https://doi.org/10.1002/mma.8859 |
| [24] |
X. Zhu, P. Xia, Q. He, Z. Ni, L. Ni, Ensemble classifier design based on perturbation binary salp swarm algorithm for classification, Comput. Model. Eng. Sci., 135 (2023), 022985. https://doi.org/10.32604/cmes.2022.022985 doi: 10.32604/cmes.2022.022985
|
| [25] |
H. Triki, A. Pan, Q. Zhou, Pure-quartic solitons in presence of weak nonlocality, Phys. Lett. A, 459 (2023), 128608. https://doi.org/10.1016/j.physleta.2022.128608 doi: 10.1016/j.physleta.2022.128608
|
| [26] |
M. Vivas-Cortez, G. A. Basendwah, B. Rani, N. Raza, Extraction of new solitary wave solutions in a generalized nonlinear Schrödinger equation comprising weak nonlocality, PLoS One, 19 (2024), e0297898. https://doi.org/10.1371/journal.pone.0297898 doi: 10.1371/journal.pone.0297898
|
| [27] |
S. Zhao, Z. Li, The analysis of traveling wave solutions and dynamical behavior for the stochastic coupled Maccari's system via Brownian motion, Ain Shams Eng. J., 15 (2024), 103037. https://doi.org/10.1016/j.asej.2024.103037 doi: 10.1016/j.asej.2024.103037
|
| [28] |
M. Gu, F. Liu, J. Li, C. Peng, Z. Li, Explicit solutions of the generalized Kudryashov's equation with truncated M-fractional derivative, Sci. Rep., 14 (2024), 21714. https://doi.org/10.1038/s41598-024-72610-w doi: 10.1038/s41598-024-72610-w
|
| [29] |
Z. Li, J. Lyu, E. Hussain, Bifurcation, chaotic behaviors and solitary wave solutions for the fractional Twin-Core couplers with Kerr law non-linearity, Sci. Rep., 14 (2024), 22616. https://doi.org/10.1038/s41598-024-74044-w doi: 10.1038/s41598-024-74044-w
|
| [30] |
S. Zhao, Chaos analysis and traveling wave solutions for fractional (3+1)-dimensional Wazwaz Kaur Boussinesq equation with beta derivative, Sci. Rep., 14 (2024), 23034. https://doi.org/10.1038/s41598-024-74606-y doi: 10.1038/s41598-024-74606-y
|
| [31] |
A. Altalbe, A. A. Zaagan, A. Bekir, A. Cevikel, The nonlinear wave dynamics of the space-time fractional van der Waals equation via three analytical methods, Phys. Fluids, 36 (2024), 027140. https://doi.org/10.1063/5.0196639 doi: 10.1063/5.0196639
|
| [32] | M. Gu, J. Li, F. Liu, Z. Li, C. Peng, Propagation of traveling wave solution of the strain wave equation in microcrystalline materials, Open Phys., 2024. https://doi.org/10.1515/phys-2024-0093 |
| [33] |
A. C. Cevikel, A. Bekir, Ö. Guner, Exploration of new solitons solutions for the Fitzhugh–Nagumo-type equations with conformable derivatives, Int. J. Mod. Phys. B, 37 (2023), 2350224. https://doi.org/10.1142/S0217979223502247 doi: 10.1142/S0217979223502247
|
| [34] |
F. Li, J. Wang, Y. Yang, Exact and data-driven lump wave solutions for the (3+1)-dimensional Hirota–Satsuma–Ito-like equation, Symmetry, 16 (2024), 1469. https://doi.org/10.3390/sym16111469 doi: 10.3390/sym16111469
|
| [35] |
W. X. Ma, Lump waves and their dynamics of a spatial symmetric generalized KP model, Rom. Rep. Phys., 76 (2024), 108. https://doi.org/10.59277/RomRepPhys.2024.76.108 doi: 10.59277/RomRepPhys.2024.76.108
|
| [36] |
W. X. Ma, Soliton solutions to Sasa–Satsuma-type modified Korteweg–de Vries equations by binary Darboux transformations, Mathematics, 12 (2024), 3643. https://doi.org/10.3390/math12233643 doi: 10.3390/math12233643
|
| [37] |
L. Cheng, Y. Zhang, W. X. Ma, An extended (2+1)-dimensional modified Korteweg–de Vries–Calogero–Bogoyavlenskii–Schiff equation: Lax pair and Darboux transformation, Commun. Theor. Phys., 77 (2024), 035002. https://doi.org/10.1088/1572-9494/ad84d3 doi: 10.1088/1572-9494/ad84d3
|
| [38] |
A. Atangana, E. F. D. Goufo, Extension of matched asymptotic method to fractional boundary layers problems, Math. Probl. Eng., 2014 (2014), 107535. https://doi.org/10.1155/2014/107535 doi: 10.1155/2014/107535
|
| [39] |
Z. Yang, B. Y. C. Hon, An improved modified extended tanh-function method, Z. Naturforsch. A, 61 (2006), 103–115. https://doi.org/10.1515/zna-2006-3-401 doi: 10.1515/zna-2006-3-401
|
| [40] |
O. El-shamy, R. El-barkoki, H. M. Ahmed, W. Abbas, I. Samir, Exploration of new solitons in optical medium with higher-order dispersive and nonlinear effects via improved modified extended tanh function method, Alex. Eng. J., 68 (2023), 611–618. https://doi.org/10.1016/j.aej.2023.01.053 doi: 10.1016/j.aej.2023.01.053
|
| [41] |
K. K. Ahmed, N. M. Badra, H. M. Ahmed, W. B. Rabie, Soliton solutions of generalized Kundu-Eckhaus equation with an extra-dispersion via improved modified extended tanh-function technique, Opt. Quantum Electron., 55 (2023), 299. https://doi.org/10.1007/s11082-023-04599-x doi: 10.1007/s11082-023-04599-x
|