Processing math: 62%
Research article Special Issues

Existence and stability results for impulsive (k,ψ)-Hilfer fractional double integro-differential equation with mixed nonlocal conditions

  • This paper investigates a class of nonlinear impulsive fractional integro-differential equations with mixed nonlocal boundary conditions (multi-point and multi-term) that involves (ρk,ψk)-Hilfer fractional derivative. The main objective is to prove the existence and uniqueness of the solution for the considered problem by means of fixed point theory of Banach's and O'Regan's types, respectively. In this contribution, the transformation of the considered problem into an equivalent integral equation is necessary for our main results. Furthermore, the nonlinear functional analysis technique is used to investigate various types of Ulam's stability results. The applications of main results are guaranteed with three numerical examples.

    Citation: Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson. Existence and stability results for impulsive (k,ψ)-Hilfer fractional double integro-differential equation with mixed nonlocal conditions[J]. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042

    Related Papers:

    [1] Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for $ \psi $-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244
    [2] Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177
    [3] Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861
    [4] Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of $ \psi $-Hilfer generalized proportional fractional nonlocal mixed boundary value problems. AIMS Mathematics, 2023, 8(9): 22009-22036. doi: 10.3934/math.20231122
    [5] Weerawat Sudsutad, Sotiris K. Ntouyas, Chatthai Thaiprayoon . Nonlocal coupled system for $ \psi $-Hilfer fractional order Langevin equations. AIMS Mathematics, 2021, 6(9): 9731-9756. doi: 10.3934/math.2021566
    [6] Karim Guida, Lahcen Ibnelazyz, Khalid Hilal, Said Melliani . Existence and uniqueness results for sequential $ \psi $-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(8): 8239-8255. doi: 10.3934/math.2021477
    [7] Xiaoming Wang, Rizwan Rizwan, Jung Rey Lee, Akbar Zada, Syed Omar Shah . Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives. AIMS Mathematics, 2021, 6(5): 4915-4929. doi: 10.3934/math.2021288
    [8] Sotiris K. Ntouyas, Bashir Ahmad, Jessada Tariboon . Nonlocal integro-multistrip-multipoint boundary value problems for $ \overline{\psi}_{*} $-Hilfer proportional fractional differential equations and inclusions. AIMS Mathematics, 2023, 8(6): 14086-14110. doi: 10.3934/math.2023720
    [9] Arjumand Seemab, Mujeeb ur Rehman, Jehad Alzabut, Yassine Adjabi, Mohammed S. Abdo . Langevin equation with nonlocal boundary conditions involving a $ \psi $-Caputo fractional operators of different orders. AIMS Mathematics, 2021, 6(7): 6749-6780. doi: 10.3934/math.2021397
    [10] Tamer Nabil . Ulam stabilities of nonlinear coupled system of fractional differential equations including generalized Caputo fractional derivative. AIMS Mathematics, 2021, 6(5): 5088-5105. doi: 10.3934/math.2021301
  • This paper investigates a class of nonlinear impulsive fractional integro-differential equations with mixed nonlocal boundary conditions (multi-point and multi-term) that involves (ρk,ψk)-Hilfer fractional derivative. The main objective is to prove the existence and uniqueness of the solution for the considered problem by means of fixed point theory of Banach's and O'Regan's types, respectively. In this contribution, the transformation of the considered problem into an equivalent integral equation is necessary for our main results. Furthermore, the nonlinear functional analysis technique is used to investigate various types of Ulam's stability results. The applications of main results are guaranteed with three numerical examples.



    Fractional calculus (FC) has gained considerable importance in many fields of applied sciences and engineering for solving various differential equations and investigating behaviors of mathematical models simulating real-world problems. Its amazing presence is evident in the modeling of several natural phenomena such as Hamiltonian chaos and fractional dynamics [1], bio-engineering [2], viscoelasticity [3], vibrations and diffusion [4], physics [5,6], financial economics [7] and references cited therein. For more detailed theoretical aspect of FC, see [8,9,10,11,12] and references therein. One of the significant factors that make FC advantageous to ordinary calculus is that fractional-order (non-integer order) derivatives and integral operators (FDO/FIOs) are more effective for describing real-life problems than integer-order ones. Many researchers have attempted to propose various fractional operators that deal with derivatives and integrals of non-integer orders with successful applications to solve many problems. Different definitions of FDO and FIOs have been employed in research papers, mainly focusing on Riemann-Liouville (RL) [13], Caputo [13], Hadamard [13], Katugampola [13], Erdélyi-Kober [13], Hilfer [6], ψ-RL [13], k-RL [14], ψ-Hilfer [15], (k,ψ)-RL [14], (k,ψ)-Hilfer [16], and so on.

    The study of nonlocal boundary value problems (BVP) is expanding quickly. In addition to the theoretical interest, this type of problems can be used to represent several phenomena in engineering, physics, and biological sciences. The nonlocal conditions have been used to describe some properties that occur at various points inside the domain instead of handling initial or boundary conditions. For historical backgrounds, see, e.g., [17,18,19]. At present, research on fractional differential equations (FDE) under various FDO/FIOs has developed rapidly in numerous directions. Fractional integro-differential equations (FIDEs) are the popular subjects that attract many researchers, some of which studied the existence of the solution for FIDEs. We recommend a series of recent works as in 2017, Jalilian and Ghasmi [20] established the existence and uniqueness of solutions for FIDEs with pantograph type by applying lipchitz condition. In 2020, the authors [21] studied the existence and stability of a class of nonlocal BVPs for integro-differential Langevin equation under the generalized Caputo proportional FDO by means of Banach's, Krasnoselskii's, Schaefer's fixed point theorems, and Ulam's stability approach. In 2021, Sudsutad et al. [22] used fixed point theories of Banach's, Krasnoselskii's, and Leray-Schauder nonlinear alternative types to discuss the existence, uniqueness, and stability of BVP for ψ-Hilfer FIDEs with mixed nonlocal boundary conditions, which include multi-point, fractional derivative multi-order, and fractional integral multi-order conditions:

    {HDα,ρ;ψ0+x(t)=f(t,x(t),Iϕ;ψ0+x(t),t(0,T],[0.15cm]x(0)=0,mi=1δix(ηi)+nj=1ωjIβj;ψ0+x(θj)+rk=1λkHDμk,ρ;ψ0+x(ξk)=K, (1.1)

    where the description of parameters can be found in [22]. Later, in 2022, Thaiprayoon et al. [23] studied a class of ψ-Hilfer implicit fractional integro-differential equations with mixed nonlocal conditions:

    {HDα,ρ;ψ0+x(t)=f(t,x(t),HDα,ρ;ψ0+x(t),Iα;ψ0+x(t),t(0,T],[0.15cm]mi=1ωix(ηi)+nj=1kjHDβj,ρ;ψ0+x(ξk)+kr=1σrIδr;ψ0+x(θr)=A, (1.2)

    where the description of parameters can be found in [23]. The existence and uniqueness of a solution for their problem were verified employing Banach's, Schaefer's, and Krasnosellskii's fixed point theorems, and the analysis of the problem was established via various kinds of Ulam stability results. In 2023, Sitho et al. [24] utilized the Banach contraction principle to show the uniqueness of the solution and the Leray-Schauder nonlinear alternative to prove the existence of solutions for a new class of BVP consisting of a mixed-type ψ1-Hilfer and ψ2-Caputo fractional order differential equation with integro-differential nonlocal boundary conditions as follows

    {HDα,β;ψ1(CDγ;ψ2π)(t)=Π(t,π(t)),0<α,β,γ<1,t[0,x1],[0.15cm]CDγ;ψ2π(0)=0,π(T)=mi=1λiCDγ;ψ2π(ηi)+nj=1δjIμj;ψ2π(ξj), (1.3)

    where the description of parameters can be found in [24]. For more interesting works on existence, uniqueness, and Ulam's stability results of these topics, we refer to [25,26,27,28,29,30] and reference cited therein. In parallel with FIDEs, impulsive differential equations play an important role in dynamical systems of evolutionary procedures by exhibiting instantaneous state changes at specific moments. It is thus regarded as an effective instrument for comprehending numerous real-world situations in applied sciences and engineering; see [31,32,33]. Many researchers have attempted FDEs and FIDEs with impulse conditions to develop an excellent qualitative theory. Over the years, they have produced crucial and fascinating insights that greatly aided the mathematical understanding of FDEs with impulse effects. We refer to [34,35,36,37,38,39] for further fascinating works on the subject.

    The inspiration for this paper is based on the previous works mentioned above. The novelty and differences from the others are considered in our work. In this paper, we produce qualitative results of the solutions for the following nonlinear impulsive (ρk,ψk)-Hilfer FIDEs supplemented with mixed nonlocal boundary conditions:

    {HρkDαk,βk;ψkt+ku(t)=f(t,u(t),ρkIσk;ψktku(t),ρkIνk;ψktku(t)),tJk,ttk,k=0,1,,m,[0.2cm]ρkIρk(2γk);ψkt+ku(t+k)ρk1Iρk1(2γk1);ψk1t+k1u(tk)=ϕk(u(tk)),k=1,2,,m,[0.25cm]RLρkDρk(γk1);ψkt+ku(t+k)RLρk1Dρk1(γk11);ψk1t+k1u(tk)=ϕk(u(tk)),k=1,2,,m,[0.15cm]u(0)=0,mi=0μiu(ηi)+nl=0λlρlIθl;ψltlu(ξl)=A,ηi,(ti,ti+1],ξl(tl,tl+1], (1.4)

    where HρkDαk,βK;ψkt+k denotes the (ρk,ψk)-Hilfer-FDO of order αk(1,2] and type βk[0,1], ρkR+, Jk:=(tk,tk+1](a,b] for k=0,1,2,,m, with J0:=[a,t1], J:=[a,b], 0a=t0<t1<<tm<tm+1=bT, ρkIq;ψkt+k is the (ρk,ψk)-RL-FIO with order q{ρk(2γk),ρk1(2γk1),νk,σk,θl}, q>0, k=1,2,,m, l=0,1,,n, RLρkDp;ψkt+k, is the (ρk,ψk)-RL fractional derivative with order p{ρk(γk1),ρk1(γk11)} with p(1,2), k=1,2,,m, ρkIρk(2γk);ψkt+ku(t+k)=limt0+ρkIρk(2γk);ψkt+ku(tk+h), RLρkDρk(γk1);ψkt+ku(t+k)=limh0+RLρkDρk(γk1);ψkt+ku(tk+h), ϕk, ϕkC(R,R), k=1,2,,m, fC(J×R3,R), A, μi, λlR, ηi,(ti,ti+1], ξl(tl,tl+1], i=1,2,,m, and l=0,1,,n.

    The remaining sections of this work are structured as follows: Section 2 presents the prerequisite and relevant facts for the concepts of the (ρ,ψ)-Hilfer fractional operators, as well as some necessary lemmas that examine the solution of the linear variant of the proposed problem in terms of an integral equation. Section 3 proves the existence of the solution using O'Regan's fixed point theorem, while the uniqueness of the solution is investigated by utilizing Banach's fixed point theorem. Later, various Ulam's stability results, such as Ulam-Hyers (UH), generalized Ulam-Hyers (GUH), Ulam-Hyers-Rassias (UHR), and generalized Ulam-Hyers-Rassias (GUHR), are established to ensure the existence results in Section 4. Finally, some illustrative examples are provided to support the main theoretical results in the last section.

    Definition 2.1. [40] Let fL1(J,b) and an increasing function ψ(t):JR with ψ(t)0 for t[a,b]. The (ρ,ψ)-RL-FIO of a function f of order α>0 is defined by

    ρIα;ψa+f(t)=1ρΓρ(α)ta(ψ(t)ψ(s))αρ1ψ(s)f(s)ds,ρ,αR+:=(0,),

    where Γρ() is the ρ-Gamma function introduced by Diaz and Pariguan [41],

    Γρ(z)=0tz1etρρdt,zC,Re(z)>0,ρ>0. (2.1)

    Some other useful properties of (2.1) are well known: Γρ(z+ρ)=zΓρ(z), Γρ(ρ)=1, Γρ(z)=(ρ)zρ1Γ(z/ρ), Γ(z)=limρ1Γρ(z).

    Definition 2.2. [16] Let fCn(J,R) and a function ψ(t)Cn(J,R) with ψ(t)0 for tJ. Then, the (ρ,ψ)-RL-FDO of a function f of order α, ρR+, is defined by

    RLρDα;ψa+f(t)=(ρψ(t)ddt)nρIρnα;ψa+f(t)=δnψρIρnα;ψa+f(t),δnψ=(ρψ(t)ddt)n,n=α/ρ.

    Definition 2.3. [16] Let fCn(J,R), ψCn(J,R), ψ(t)0, for tJ, α, ρR+, and β[0,1]. The (ρ,ψ)-Hilfer FDO of a function f of order α and type β is given by

    HρDα,β;ψa+f(t)=ρIβ(ρnα);ψa+δnψρI(1β)(ρnα);ψa+f(t)=ρIβ(ρnα);ψa+(RLρDγρ;ψa+f)(t), (2.2)

    where (1β)(nρα)=nργρ, δnψ=(ρψ(t)ddt)n and n=α/ρ.

    Lemma 2.1. [16] Let α, ρR+ and βR, such that β/ρ>1. Then we have

    (i) ρIα;ψa+[(ψ(t)ψ(a))βρ]=Γρ(β+ρ)Γρ(β+ρ+α)(ψ(t)ψ(a))β+αρ.

    (ii) RLρDα;ψa+[(ψ(t)ψ(a))βρ]=Γρ(β+ρ)Γρ(β+ρα)(ψ(t)ψ(a))βαρ.

    (iii) ρIα;ϕa+ρIβ;ψa+f(t)=ρIα+β;ψa+f(t)=ρIβ;ϕa+ρIα;ψa+f(t).

    Lemma 2.2. [35] If fCn(J,R), ρ, αR+, β[0,1] and nN, then

    (ρIα;ψa+HρDα,β;ψa+f)(t)=f(t)ni=1(ψ(t)ψ(a))γiρinΓρ(ρ(γi+1))[δniψ(ρIρ(nγ);ψa+f(a))],

    where γ=1ρ(β(ρnα)+α) and n=α/ρ.

    For convenience's sake, we set the notation as follows:

    Ψuψ(t,s)=(ψ(t)ψ(s))u.

    Next, we establish the following auxiliary result:

    Lemma 2.3. Let ν(m1,m), ρ, αR+, mN. If hCn([a,b],R), then

    RLρDα;ψa+[ρIν;ψa+h(t)]=ρIνα;ψa+h(t). (2.3)

    Proof. By applying Definition 2.2 and (ⅲ) of Lemma 2.1, we have

    RLρDα;ψa+[ρIν;ψa+h(t)]=(1ψ(t)ddt)nρn[ρIρnα+ν;ψa+h(t)]. (2.4)

    By using Definition 2.1, for n=1, we obtain

    (1ψ(t)ddt)ρρIρnα+ν;ψa+h(t)=ρψ(t)ddt(1ρΓρ(ρnα+ν)taΨρnα+νρ1ψ(t,s)ψ(s)h(s)ds)=1ρΓρ(ρnα+νρ)taΨρnα+νρρ1ψ(t,s)ψ(s)h(s)ds=ρIρnα+νρ;ψa+h(t).

    In the same way, for n=2, we have

    (1ψ(t)ddt)2ρ2ρIρnα+ν;ψa+h(t)=ρψ(t)ddt(1ρΓρ(ρnα+νρ)taΨρnα+νρρ1ψ(t,s)ψ(s)h(s)ds)=1ρΓρ(ρnα+ν2ρ)taΨρnα+ν2ρρ1ψ(t,s)ψ(s)h(s)ds=ρIρnα+ν2ρ;ψa+h(t).

    Repeating the above method, we obtain

    (1ψ(t)ddt)nρnρIρnα+ν;ψa+h(t)=ρψ(t)ddt(1ρΓρ(ρnα+ν(n1)ρ)taΨρnα+ν(n1)ρρ1ψ(t,s)ψ(s)h(s)ds)=1ρΓρ(να)taΨναρ1ψ(t,s)ψ(s)h(s)ds=ρIνα;ψa+h(t).

    The proof is completed.

    Denote the weighted space

    C2γψ(J,R)={u:(a,b]R|u(a+)exists andΨ2γψ(t,a)u(t)C(J,R)},γ(1,2],

    where C2γψ=C2γψ(J,R). The weighted space of piece-wise continuous functions is defined by

    PC2γkψk(J,R)={u:(a,b]R|uC2γkψk,k=0,1,2,,m,ρkIρk(2γk);ψkt+ku(t+k),ρk1Iρk1(2γk1);ψk1t+k1u(tk)existandρk1Iρk1(2γk1);ψk1t+k1u(tk)=ρk1Iρk1(2γk1);ψk1t+k1u(tk),k=1,,m}.

    Observe that PC=PC2γkψk(J,R) is a Banach space equipped with

    uPC=suptJ|Ψ2γkψk(t,tk)u(t)|.

    Lemma 2.4. Let αk(1,2), βk[0,1], ρk>0, μk>0, νk>0, γk=(1/ρk)(βk(2ρkαk)+αk), ψkC(J,R) with ψk>0, k=0,1,2,,m, hC2γkψk. Then the following linear variant impulsive (ρk,ψk)-Hilfer fractional boundary value problem

    {HρkDαk,βk;ψkt+ku(t)=h(t),ttk,k=0,1,,m,[0.25cm]RLρkDρk(γk1);ψkt+ku(t+k)RLρk1Dρk1(γk11);ψk1t+k1u(tk)=ϕk(u(tk)),k=1,2,,m,[0.25cm]ρkIρk(2γk);ψkt+ku(t+k)ρk1Iρk1(2γk1);ψk1t+k1u(tk)=ϕk(u(tk)),k=1,2,,m,[0.15cm]u(0)=0,m+1i=0μiu(ηi)+nl=0λlρlIθl;ψltlu(ξl)=A,ηi,(ti,ti+1],ξl(tl,tl+1], (2.5)

    satisfies the following integral equation, uPC, as

    u(t)={Ψγk1ψk(t,tk)ΛΓρk(ρkγk)+Ψγk2ψk(t,tk)ΛΓρk(ρk(γk1))k1j=0Ψψj(tj+1,tj)ρj}{A(m+1i=0μiΨγi1ψi(ηi,ti)Γρi(ρiγi)i1j=0(ρjIαjρj(γj1);ψjtjh(tj+1)+ϕj+1(u(tj+1)))+m+1i=0μiΨγi2ψi(ηi,ti)Γρi(ρi(γi1))[i1j=0(ρjIαj+ρj(2γj);ψjtjh(tj+1)+ϕj+1(u(tj+1)))+i1j=1Ψψj(tj+1,tj)ρjj1r=0(ρrIαrρr(γr1);ψrtrh(tr+1)+ϕr+1(u(tr+1)))]+m+1i=0μiρiIαi;ψitih(ηi)+nl=0λlρlIαl+θl;ψltlh(ξl)+nl=0λlΨρl(γl1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)l1j=0(ρjIαjρj(γj1);ψjtjh(tj+1)+ϕj+1(u(tj+1)))+nl=0λlΨρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)[l1j=0(ρjIαj+ρj(2γj);ψjtjh(tj+1)+ϕj+1(u(tj+1)))+l1j=1Ψψj(tj+1,tj)ρjj1r=0(ρrIαrρr(γr1);ψrtrh(tr+1)+ϕr+1(u(tr+1)))])}+ρkIαk;ψktkh(t)+Ψγk1ψk(t,tk)Γρk(ρkγk)k1j=0(ρjIαjρj(γj1);ψjtjh(tj+1)+ϕj+1(u(tj+1)))+Ψγk2ψk(t,tk)Γρk(ρk(γk1))[k1j=0(ρjIαj+ρj(2γj);ψjtjh(tj+1)+ϕj+1(u(tj+1)))+k1j=1Ψψj(tj+1,tj)ρjj1r=0(ρrIαrρr(γr1);ψrtrh(tr+1)+ϕr+1(u(tr+1)))], (2.6)

    where

    Λ=m+1i=0μiΨγi1ψi(ηi,ti)Γρi(ρiγi)+m+1i=0μiΨγi2ψi(ηi,ti)Γρi(ρi(γi1))i1j=0Ψψj(tj+1,tj)ρj+nl=0λlΨρl(γl1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)+nl=0λlΨρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)l1j=0Ψψj(tj+1,tj)ρj. (2.7)

    Proof. Suppose uPC is a solution of the impulsive (ρk,ψk)-Hilfer problem (2.5).

    For t[t0,t1], we have

    u(t)=Ψγ01ψ0(t,t0)Γρ0(ρ0γ0)c1+Ψγ02ψ0(t,t0)Γρ0(ρ0(γ01))c2+ρ0Iα0;ψ0t0h(t),

    where c1=RLρ0Dρ0(γ01);ψ0t0u(t+0) and c2=ρ0Iρ0(2γ0);ψ0t0u(t+0). By using Lemma 2.1 and Lemma 2.3, we obtain

    ρ0Iρ0(2γ0);ψ0t0u(t)=Ψψ0(t,t0)ρ0c1+c2+ρ0Iα0+ρ0(2γ0);ψ0t0h(t), (2.8)
    RLρ0Dρ0(γ01);ψ0t0u(t)=c1+ρ0Iα0ρ0(γ01);ψ0t0h(t). (2.9)

    Putting t=t1 into (2.8) and (2.9), we have

    ρ0Iρ0(2γ0);ψ0t0u(t1)=Ψψ0(t1,t0)ρ0c1+c2+ρ0Iα0+ρ0(2γ0);ψ0t0h(t1), (2.10)
    RLρ0Dρ0(γ01);ψ0t0u(t1)=c1+ρ0Iα0ρ0(γ01);ψ0t0h(t1). (2.11)

    For t(t1,t2], we obtain

    u(t)=Ψγ11ψ1(t,t1)Γρ1(ρ1γ1)RLρ1Dρ1(γ11);ψ1t1u(t+1)+Ψγ12ψ1(t,t1)Γρ1(ρ1(γ11))ρ1Iρ1(2γ1);ψ1t1u(t+1)+ρ1Iα1;ψ1t1h(t).

    From the impulsive conditions, that is RLρ1Dρ1(γ11);ψ1t+1u(t+1)=RLρ0Dρ0(γ01);ψ0t+0u(t1)+ϕ1(u(t1)) and ρ1Iρ1(2γ1);ψ1t+1u(t+1)=ρ0Iρ0(2γ0);ψ0t+0u(t1)+ϕ1(u(t1)), it implies that

    u(t)=(Ψγ11ψ1(t,t1)Γρ1(ρ1γ1)+Ψγ12ψ1(t,t1)Γρ1(ρ1(γ11))Ψψ0(t1,t0)ρ0)c1+Ψγ12ψ1(t,t1)Γρ1(ρ1(γ11))c2+Ψγ11ψ1(t,t1)Γρ1(ρ1γ1)(ρ0Iα0ρ0(γ01);ψ0t0h(t1)+ϕ1(u(t1)))+Ψγ12ψ1(t,t1)Γρ1(ρ1(γ11))(ρ0Iα0+ρ0(2γ0);ψ0t0h(t1)+ϕ1(u(t1)))+ρ1Iα1;ψ1t1h(t).

    By applying Lemmas 2.1 and 2.3, we get

    ρ1Iρ1(2γ1);ψ1t1u(t)=(Ψψ1(t,t1)ρ1+Ψψ0(t1,t0)ρ0)c1+c2+ρ0Iα0+ρ0(2γ0);ψ0t0h(t1)+ϕ1(u(t1))+Ψψ1(t,t1)ρ1(ρ0Iα0ρ0(γ01);ψ0t0h(t1)+ϕ1(u(t1)))+ρ1Iα1+ρ1(2γ1);ψ1t1h(t),RLρ1Dρ1(γ11);ψ1t1u(t)=c1+ρ0Iα0ρ0(γ01);ψ0t0h(t1)+ϕ1(u(t1))+ρ1Iα1ρ1(γ11);ψ1t1h(t).

    In particular for t=t2, we have

    ρ1Iρ1(2γ1);ψ1t1u(t2)=(Ψψ1(t2,t1)ρ1+Ψψ0(t1,t0)ρ0)c1+c2+ρ0Iα0+ρ0(2γ0);ψ0t0h(t1)+ϕ1(u(t1))+Ψψ1(t2,t1)ρ1(ρ0Iα0ρ0(γ01);ψ0t0h(t1)+ϕ1(u(t1)))+ρ1Iα1+ρ1(2γ1);ψ1t1h(t2),RLρ1Dρ1(γ11);ψ1t1u(t2)=c1+ρ0Iα0ρ0(γ01);ψ0t0h(t1)+ϕ1(u(t1))+ρ1Iα1ρ1(γ11);ψ1t1h(t2).

    Under the impulsive conditions, RLρ2Dρ2(γ21);ψ2t+2u(t+2)=RLρ1Dρ1(γ11);ψ1t+1u(t2)+ϕ2(u(t2)) and ρ2Iρ2(2γ2);ψ2t+2u(t+2)=ρ1Iρ1(2γ1);ψ1t+1u(t2)+ϕ2(u(t2)), for t(t2,t3], we get

    u(t)=(Ψγ21ψ2(t,t2)Γρ2(ρ2γ2)+Ψγ22ψ2(t,t2)Γρ2(ρ2(γ21))1j=0Ψψj(tj+1,tj)ρj)c1+Ψγ22ψ2(t,t2)Γρ2(ρ2(γ21))c2+Ψγ21ψ2(t,t2)Γρ2(ρ2γ2)1j=0(ρjIαjρj(γj1);ψjtjh(tj+1)+ϕj+1(u(tj+1)))+Ψγ22ψ2(t,t2)Γρ2(ρ2(γ21))[1j=0(ρjIαj+ρj(2γj);ψjtjH(tj+1)+ϕj+1(u(tj+1)))+Ψψ1(t2,t1)ρ1(ρ0Iα0ρ0(γ01);ψ0t0Fu(t1)+ϕ1(x(t1)))]+ρ2Iα2;ψ2t2h(t).

    Then for t(t3,t4], we have

    u(t)=(Ψγ31ψ3(t,t3)Γρ3(ρ3γ3)+Ψγ32ψ3(t,t3)Γρ3(ρ3(γ31))2j=0Ψψj(tj+1,tj)ρj)c1+Ψγ32ψ3(t,t3)Γρ3(ρ3(γ31))c2+Ψγ31ψ3(t,t3)Γρ3(ρ3γ3)2j=0(ρjIαjρj(γj1);ψjtjh(tj+1)+ϕj+1(u(tj+1)))+Ψγ32ψ3(t,t3)Γρ3(ρ3(γ31))[2j=0(ρjIαj+ρj(2γj);ψjtjh(tj+1)+ϕj+1(u(tj+1)))+2j=1Ψψj(tj+1,tj)ρjj1r=0(ρrIαrρr(γr1);ψrtrh(tr+1)+ϕr+1(u(tr+1)))]+ρ3Iα3;ψ3t3h(t).

    Repeating the above process, for any t(tk,tk+1], k=0,1,,m, one has

    u(t)=(Ψγk1ψk(t,tk)Γρk(ρkγk)+Ψγk2ψk(t,tk)Γρk(ρk(γk1))k1j=0Ψψj(tj+1,tj)ρj)c1+Ψγk2ψk(t,tk)Γρk(ρk(γk1))c2+ρkIαk;ψktkh(t)+Ψγk1ψk(t,tk)Γρk(ρkγk)k1j=0(ρjIαjρj(γj1);ψjtjh(tj+1)+ϕj+1(u(tj+1)))+Ψγk2ψk(t,tk)Γρk(ρk(γk1))[k1j=0(ρjIαj+ρj(2γj);ψjtjh(tj+1)+ϕj+1(u(tj+1)))+k1j=1Ψψj(tj+1,tj)ρjj1r=0(ρrIαrρr(γr1);ψrtrh(tr+1)+ϕr+1(u(tr+1)))]. (2.12)

    By applying the first boundary condition, u(0)=0, we get c2=0. From the second boundary condition, m+1i=0μiu(ηi)+nl=0λlρlIθl;ψltlu(ξl)=A, we have

    c1=1Λ{A(m+1i=0μiΨγi1ψi(ηi,ti)Γρi(ρiγi)i1j=0(ρjIαjρj(γj1);ψjtjh(tj+1)+ϕj+1(u(tj+1)))+m+1i=0μiΨγi2ψi(ηi,ti)Γρi(ρi(γi1))[i1j=0(ρjIαj+ρj(2γj);ψjtjh(tj+1)+ϕj+1(u(tj+1)))+i1j=1Ψψj(tj+1,tj)ρjj1r=0(ρrIαrρr(γr1);ψrtrh(tr+1)+ϕr+1(u(tr+1)))]+m+1i=0μiρiIαi;ψitih(ηi)+nl=0λlρlIαl+θl;ψltlh(ξl)+nl=0λlΨρl(γl1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)l1j=0(ρjIαjρj(γj1);ψjtjh(tj+1)+ϕj+1(u(tj+1)))+nl=0λlΨρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)[l1j=0(ρjIαj+ρj(2γj);ψjtjh(tj+1)+ϕj+1(u(tj+1)))+l1j=1Ψψj(tj+1,tj)ρjj1r=0(ρrIαrρr(γr1);ψrtrh(tr+1)+ϕr+1(u(tr+1)))])},

    where Λ is given by (2.7). Taking the values c1 and c2 in (2.12), we obtain the solution (2.6).

    By applying Lemma 2.4 and Fu(t)=f(t,u(t),ρkIσk;ψktku(t),ρkIνk;ψktku(t)), we set an operator Q:PCPC by

    (Qu)(t)={Ψγk1ψk(t,tk)ΛΓρk(ρkγk)+Ψγk2ψk(t,tk)ΛΓρk(ρk(γk1))k1j=0Ψψj(tj+1,tj)ρj}{A(m+1i=0μiΨγi1ψi(ηi,ti)Γρi(ρiγi)i1j=0(ρjIαjρj(γj1);ψjtjFu(tj+1)+ϕj+1(u(tj+1)))+m+1i=0μiΨγi2ψi(ηi,ti)Γρi(ρi(γi1))[i1j=0(ρjIαj+ρj(2γj);ψjtjFu(tj+1)+ϕj+1(u(tj+1)))+i1j=1Ψψj(tj+1,tj)ρjj1r=0(ρrIαrρr(γr1);ψrtrFu(tr+1)+ϕr+1(u(tr+1)))]+nl=0λlΨρl(γl1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)l1j=0(ρjIαjρj(γj1);ψjtjFu(tj+1)+ϕj+1(u(tj+1)))+nl=0λlΨρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)[l1j=0(ρjIαj+ρj(2γj);ψjtjFu(tj+1)+ϕj+1(u(tj+1)))+l1j=1Ψψj(tj+1,tj)ρjj1r=0(ρrIαrρr(γr1);ψrtrFu(tr+1)+ϕr+1(u(tr+1)))]+m+1i=0μiρiIαi;ψitiFu(ηi)+nl=0λlρlIαl+θl;ψltlFu(ξl))}+ρkIαk;ψktkFu(t)+Ψγk1ψk(t,tk)Γρk(ρkγk)k1j=0(ρjIαjρj(γj1);ψjtjFu(tj+1)+ϕj+1(u(tj+1)))+Ψγk2ψk(t,tk)Γρk(ρk(γk1))[k1j=0(ρjIαj+ρj(2γj);ψjtjFu(tj+1)+ϕj+1(u(tj+1)))+k1j=1Ψψj(tj+1,tj)ρjj1r=0(ρrIαrρr(γr1);ψrtrFu(tr+1)+ϕr+1(u(tr+1)))]. (3.1)

    Note that, the considered problem (1.4) has a solution if and only if Q has fixed points.

    We assign notation for constants that will be used throughout this work

    Ω1:=Ψψm(T,tm)|Λ|Γρm(ρmγm)+m1j=0Ψψj(tj+1,tj)|Λ|ρjΓρm(ρm(γm1)), (3.2)
    Ω2:=m+1i=0|μi|Ψαiρiψi(ηi,ti)Γρi(ρi+αi)+m+1i=0|μi|Ψγi1ψi(ηi,ti)Γρi(ρiγi)i1j=0Ψαjρj(γj1)ρjψj(tj+1,tj)Γρj(ρj+αjρj(γj1))+m+1i=0|μi|Ψγi2ψi(ηi,ti)Γρi(ρi(γi1))i1j=0Ψαj+ρj(2γj)ρjψj(tj+1,tj)Γρj(ρj+αj+ρj(2γj))+nl=0|λl|Ψαl+θlρlψl(ξl,tl)Γρl(ρl+αl+θl)+nl=0|λl|Ψρl(γl1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)l1j=0Ψαjρj(γj1)ρjψj(tj+1,tj)Γρj(ρj+αjρj(γj1))+nl=0|λl|Ψρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)l1j=0Ψαj+ρj(2γj)ρjψj(tj+1,tj)Γρj(ρj+αj+ρj(2γj))+m+1i=0|μi|Ψγi2ψi(ηi,ti)Γρi(ρi(γi1))i1j=1Ψψj(tj+1,tj)ρjj1r=0Ψαrρr(γr1)ρrψr(tr+1,tr)Γρr(ρr+αrρr(γr1))+nl=0|λl|Ψρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)l1j=1Ψψj(tj+1,tj)ρjj1r=0Ψαrρr(γr1)ρrψr(tr+1,tr)Γρr(ρr+αrρr(γr1)), (3.3)
    Ω3:=Ψαmρm+2γmψm(T,tm)Γρm(ρm+αm)+Ψψm(T,tm)Γρm(ρmγm)m1j=0Ψαjρj(γj1)ρjψj(tj+1,tj)Γρj(ρj+αjρj(γj1))+1Γρm(ρm(γm1))m1j=0Ψαj+ρj(2γj)ρjψj(tj+1,tj)Γρj(ρj+αj+ρj(2γj))+m1j=1Ψψj(tj+1,tj)ρjΓρm(ρm(γm1))j1r=0Ψαrρr(γr1)ρrψr(tr+1,tr)Γρr(ρr+αrρr(γr1)), (3.4)
    Ω4:=m+1i=0i|μi|Ψγi1ψi(ηi,ti)Γρi(ρiγi)+m+1i=0|μi|Ψγi2ψi(ηi,ti)Γρi(ρi(γi1))i1j=1jΨψj(tj+1,tj)ρj+nl=0l|λl|Ψρl(γl1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)+nl=0|λl|Ψρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)l1j=1jΨψj(tj+1,tj)ρj, (3.5)
    Ω5:=mΨψm(T,tm)Γρm(ρmγm)+m1j=1jΨψj(tj+1,tj)ρjΓρm(ρm(γm1)), (3.6)
    Ω6:=m+1i=0i|μi|Ψγi2ψi(ηi,ti)Γρi(ρi(γi1))+nl=0l|λl|Ψρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl). (3.7)

    Lemma 3.1. (Banach's fixed point theorem [42]) Let D be a non-empty closed subset of a Banach space E. Then any contraction mapping Q from D into itself has a unique fixed-point.

    Theorem 3.1. Assume ψkC2(J) where ψk(t)>0, k=0,1,2,,m, tJ and fC(J×R3,R), ϕk, ϕkC(R,R), k=1,2,,m, corresponding to the following conditions:

    (H1) There are real constants Li>0, i=1,2,3, so that, for any tJ and ui, viR, i=1,2,3,

    |f(t,u1,u2,u3)f(t,v1,v2,v3)|Ψ2γkψk(t,tk)3i=1Li|uivi|.

    (H2) There are real constants Ii>0, i=1,2, so that, for any tJ and u, vR, k=1,2,,m,

    |ϕk(u)ϕk(v)|I1Ψ2γkψk(t,tk)|uv|,|ϕk(u)ϕk(v)|I2Ψ2γkψk(t,tk)|uv|.

    Then, the considered problem (1.4) has a unique solution on J, if

    Δ1+Δ2<1, (3.8)

    where

    Δ1:=(Ω1Ω2+Ω3)(L1+ΨσmL2+ΨνmL3), (3.9)
    Δ2:=(Ω1Ω4+Ω5)I1+(Ω1Ω6+mΨγm)I2, (3.10)
    Ψσm:=Ψσmρmψm(T,tm)Γρm(ρm+σm),Ψνm:=Ψνmρmψm(T,tm)Γρm(ρm+νm),Ψγm:=1Γρm(ρm(γm1)). (3.11)

    Proof. Clearly, the considered problem (1.4) is corresponding to fixed-point problem u=Qu. Then we will show that Q has a fixed-point by the Banach's fixed-point theorem.

    Define constants Mi, i=1,2,3, by M1:=suptJ|f(t,0,0,0)|, M2:=max{ϕk(0):k=1,2,,m} and M3:=max{ϕk(0):k=1,2,,m}. Let BR1:={uE:uR1} where

    R1(Ω1Ω2+Ω3)M1+(Ω1Ω4+Ω5)M2+(Ω1Ω6+mΨγm)M3+Ω1|A|1(Δ1+Δ2).

    The remaining proof is divided into two steps:

    Step Ⅰ. We will prove that QBR1BR1.

    Suppose that uBR1 and tJ, we obtain

    |Ψ2γkψk(t,tk)(Qu)(t)|{Ψψk(t,tk)|Λ|Γρk(ρkγk)+k1j=0Ψψj(tj+1,tj)|Λ|ρjΓρk(ρk(γk1))}{|A|+m+1i=0|μi|Ψγi1ψi(ηi,ti)Γρi(ρiγi)i1j=0(ρjIαjρj(γj1);ψjtj|Fu(tj+1)|+|ϕj+1(u(tj+1))|)+m+1i=0|μi|Ψγi2ψi(ηi,ti)Γρi(ρi(γi1))[i1j=0(ρjIαj+ρj(2γj);ψjtj|Fu(tj+1)|+|ϕj+1(u(tj+1))|)+i1j=1Ψψj(tj+1,tj)ρjj1r=0(ρrIαrρr(γr1);ψrtr|Fu(tr+1)|+|ϕr+1(u(tr+1))|)]+nl=0|λl|Ψρl(γl1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)l1j=0(ρjIαjρj(γj1);ψjtj|Fu(tj+1)|+|ϕj+1(u(tj+1))|)+nl=0|λl|Ψρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)[l1j=0(ρjIαj+ρj(2γj);ψjtj|Fu(tj+1)|+|ϕj+1(u(tj+1))|)+l1j=1Ψψj(tj+1,tj)ρjj1r=0(ρrIαrρr(γr1);ψrtr|Fu(tr+1)|+|ϕr+1(u(tr+1))|)]+m+1i=0|μi|ρiIαi;ψiti|Fu(ηi)|+nl=0|λl|ρlIαl+θl;ψltl|Fu(ξl)|}+Ψ2γkψk(t,tk)ρkIαk;ψktk|Fu(t)|+Ψψk(t,tk)Γρk(ρkγk)k1j=0(ρjIαjρj(γj1);ψjtj|Fu(tj+1)|+|ϕj+1(u(tj+1))|)+1Γρk(ρk(γk1))[k1j=0(ρjIαj+ρj(2γj);ψjtj|Fu(tj+1)|+|ϕj+1(u(tj+1))|)+k1j=1Ψψj(tj+1,tj)ρjj1r=0(ρrIαrρr(γr1);ψrtr|Fu(tr+1)|+|ϕr+1(u(tr+1))|)]. (3.12)

    By using the property (i) in Lemma 2.1, we get

    Ψ2γkψk(t,tk)|ρkIσk;ψkt+ku(t)|ρkIσk;ψkt+k(1)(t)uPCΨσmρmψm(T,tm)Γρm(ρm+σm)uPC. (3.13)

    From the conditions (H1), (H2) and (3.13), we can find that

    |Fu(t)||f(t,u(t),ρkIσk;ψkt+ku(t),ρkIνk;ψktku(t))f(t,0,0,0)|+|f(t,0,0,0)|L1Ψ2γkψk(t,tk)|u(t)|+L2Ψ2γkψk(t,tk)|ρkIσk;ψkt+ku(t)|+L3Ψ2γkψk(t,tk)|ρkIνk;ψkt+ku(t)|+M1(L1+Ψσmρmψm(T,tm)Γρm(ρm+σm)L2+Ψνmρmψm(T,tm)Γρm(ρm+νm)L3)uPC+M1=(L1+ΨσmL2+ΨνmL3)uPC+M1, (3.14)
    |ϕk(u(tk))||ϕk(u(tk))ϕk(0)|+|ϕk(0)|I1Ψ2γkψk(t,tk)|u(t)|+M2I1uPC+M2, (3.15)
    |ϕk(u(tk))||ϕk(u(tk))ϕk(0)|+|ϕk(0)|I2Ψ2γkψk(t,tk)|u(t)|+M3I2uPC+M3. (3.16)

    Inserting (3.14)–(3.16) into (3.12), we see that

    |Ψ2γkψk(t,tk)(Qu)(t)|{Ψψk(t,tk)|Λ|Γρk(ρkγk)+k1j=0Ψψj(tj+1,tj)|Λ|ρjΓρk(ρk(γk1))}{|A|+m+1i=0|μi|Ψγi1ψi(ηi,ti)Γρi(ρiγi)×i1j=0(ρjIαjρj(γj1);ψjtj(1)(tj+1)[(L1+ΨσmL2+ΨνmL3)uPC+M1]+I1uPC+M2)+m+1i=0|μi|Ψγi2ψi(ηi,ti)Γρi(ρi(γi1))[i1j=0(ρjIαj+ρj(2γj);ψjtj(1)(tj+1)[(L1+ΨσmL2+ΨνmL3)uPC+M1]+I2uPC+M3)+i1j=1Ψψj(tj+1,tj)ρjj1r=0(ρrIαrρr(γr1);ψrtr(1)(tr+1)[(L1+ΨσmL2+ΨνmL3)uPC+M1]+I1uPC+M2)]+m+1i=0|μi|ρiIαi;ψiti(1)(ηi)[(L1+ΨσmL2+ΨνmL3)uPC+M1]+nl=0|λl|ρlIαl+θl;ψltl(1)(ξl)[(L1+ΨσmL2+ΨνmL3)uPC+M1]+nl=0|λl|Ψρl(γl1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)l1j=0(ρjIαjρj(γj1);ψjtj(1)(tj+1)[(L1+ΨσmL2+ΨνmL3)uPC+M1]+I1uPC+M2)+nl=0|λl|Ψρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)[l1j=0(ρjIαj+ρj(2γj);ψjtj(1)(tj+1)×[(L1+ΨσmL2+ΨνmL3)uPC+M1]+I2uPC+M3)+l1j=1Ψψj(tj+1,tj)ρjj1r=0(ρrIαrρr(γr1);ψrtr(1)(tr+1)[(L1+ΨσmL2+ΨνmL3)uPC+M1]+I1uPC+M2)]}+Ψ2γkψk(t,tk)ρkIαk;ψktk(1)(t)[(L1+ΨσmL2+ΨνmL3)uPC+M1]+Ψψk(t,tk)Γρk(ρkγk)k1j=0(ρjIαjρj(γj1);ψjtj(1)(tj+1)[(L1+ΨσmL2+ΨνmL3)uPC+M1]+I1uPC+M2)+1Γρk(ρk(γk1))[k1j=0(ρjIαj+ρj(2γj);ψjtj(1)(tj+1)[(L1+ΨσmL2+ΨνmL3)uPC+M1]+I2uPC+M3)+k1j=1Ψψj(tj+1,tj)ρjj1r=0(ρrIαrρr(γr1);ψrtr(1)(tr+1)[(L1+ΨσmL2+ΨνmL3)uPC+M1]+I1uPC+M2)].

    From the property (i) in Lemma 2.1, it implies that

    |Ψ2γkψk(t,tk)(Qu)(t)|[(L1+ΨσmL2+ΨνmL3)uPC+M1][(Ψψm(T,tm)|Λ|Γρm(ρmγm)+m1j=0Ψψj(tj+1,tj)|Λ|ρjΓρm(ρm(γm1)))×(m+1i=0|μi|Ψαiρiψi(ηi,ti)Γρi(ρi+αi)+m+1i=0|μi|Ψγi1ψi(ηi,ti)Γρi(ρiγi)i1j=0Ψαjρj(γj1)ρjψj(tj+1,tj)Γρj(ρj+αjρj(γj1))+nl=0|λl|Ψαl+θlρlψl(ξl,tl)Γρl(ρl+αl+θl)+m+1i=0|μi|Ψγi2ψi(ηi,ti)Γρi(ρi(γi1))i1j=0Ψαj+ρj(2γj)ρjψj(tj+1,tj)Γρj(ρj+αj+ρj(2γj))+nl=0|λl|Ψρl(γl1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)l1j=0Ψαjρj(γj1)ρjψj(tj+1,tj)Γρj(ρj+αjρj(γj1))+nl=0|λl|Ψρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)l1j=0Ψαj+ρj(2γj)ρjψj(tj+1,tj)Γρj(ρj+αj+ρj(2γj))+m+1i=0|μi|Ψγi2ψi(ηi,ti)Γρi(ρi(γi1))i1j=1Ψψj(tj+1,tj)ρjj1r=0Ψαrρr(γr1)ρrψr(tr+1,tr)Γρr(ρr+αrρr(γr1))+nl=0|λl|Ψρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)l1j=1Ψψj(tj+1,tj)ρjj1r=0Ψαrρr(γr1)ρrψr(tr+1,tr)Γρr(ρr+αrρr(γr1)))+Ψαmρm+2γmψm(T,tm)Γρm(ρm+αm)+Ψψm(T,tm)Γρm(ρmγm)m1j=0Ψαjρj(γj1)ρjψj(tj+1,tj)Γρj(ρj+αjρj(γj1))+1Γρm(ρm(γm1))m1j=0Ψαj+ρj(2γj)ρjψj(tj+1,tj)Γρj(ρj+αj+ρj(2γj))+m1j=1Ψψj(tj+1,tj)ρjΓρm(ρm(γm1))j1r=0Ψαrρr(γr1)ρrψr(tr+1,tr)Γρr(ρr+αrρr(γr1))]+[(Ψψm(T,tm)|Λ|Γρm(ρmγm)+m1j=0Ψψj(tj+1,tj)|Λ|ρjΓρm(ρm(γm1)))(m+1i=0i|μi|Ψγi1ψi(ηi,ti)Γρi(ρiγi)+nl=0l|λl|Ψρl(γl1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)+m+1i=0|μi|Ψγi2ψi(ηi,ti)Γρi(ρi(γi1))i1j=1jΨψj(tj+1,tj)ρj+nl=0|λl|Ψρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)l1j=1jΨψj(tj+1,tj)ρj)+mΨψm(T,tm)Γρm(ρmγm)+m1j=1jΨψj(tj+1,tj)ρjΓρm(ρm(γm1))][I1uPC+M2]+[(Ψψm(T,tm)|Λ|Γρm(ρmγm)+m1j=0Ψψj(tj+1,tj)|Λ|ρjΓρm(ρm(γm1)))×(m+1i=0i|μi|Ψγi2ψi(ηi,ti)Γρi(ρi(γi1))+nl=0l|λl|Ψρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl))+mΓρm(ρm(γm1))][I2uPC+M3]+(Ψψm(T,tm)|Λ|Γρm(ρmγm)+m1j=0Ψψj(tj+1,tj)|Λ|ρjΓρm(ρm(γm1)))|A|=Ω1|A|+[Ω1Ω2+Ω3][(L1+ΨσmL2+ΨνmL3)uPC+M1]+[Ω1Ω4+Ω5][I1uPC+M2]+[Ω1Ω6+mΨγm][I2uPC+M3][(Ω1Ω2+Ω3)(L1+ΨσmL2+ΨνmL3)+(Ω1Ω4+Ω5)I1+(Ω1Ω6+mΨγm)I2]R1+(Ω1Ω2+Ω3)M1+(Ω1Ω4+Ω5)M2+(Ω1Ω6+mΨγm)M3+Ω1|A|R1.

    Hence, QuPCR1, which yields that QBR1BR1.

    Step Ⅱ. We will prove that Q is a contraction.

    Suppose that u, vBR1 and tJ, we have

    |Ψ2γkψk(t,tk)(Qu)(t)Ψ2γkψk(t,tk)(Qv)(t)|{Ψψk(t,tk)|Λ|Γρk(ρkγk)+k1j=0Ψψj(tj+1,tj)|Λ|ρjΓρk(ρk(γk1))}{m+1i=0|μi|Ψγi1ψi(ηi,ti)Γρi(ρiγi)×i1j=0(ρjIαjρj(γj1);ψjtj|Fu(tj+1)Fv(tj+1)|+|ϕj+1(u(tj+1))ϕj+1(v(tj+1))|)+m+1i=0|μi|Ψγi2ψi(ηi,ti)Γρi(ρi(γi1))[i1j=0(ρjIαj+ρj(2γj);ψjtj|Fu(tj+1)Fv(tj+1)|+|ϕj+1(u(tj+1))ϕj+1(v(tj+1))|)+i1j=1Ψψj(tj+1,tj)ρjj1r=0(ρrIαrρr(γr1);ψrtr|Fu(tr+1)Fv(tr+1)|+|ϕr+1(u(tr+1))ϕr+1(v(tr+1))|)]+m+1i=0|μi|ρiIαi;ψiti|Fu(ηi)Fv(ηi)|+nl=0|λl|ρlIαl+θl;ψltl|Fu(ξl)Fv(ξl)|+nl=0|λl|Ψρl(γl1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)l1j=0(ρjIαjρj(γj1);ψjtj|Fu(tj+1)Fv(tj+1)|+|ϕj+1(u(tj+1))ϕj+1(v(tj+1))|)+nl=0|λl|Ψρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)[l1j=0(ρjIαj+ρj(2γj);ψjtj|Fu(tj+1)Fv(tj+1)|+|ϕj+1(u(tj+1))ϕj+1(v(tj+1))|)+l1j=1Ψψj(tj+1,tj)ρjj1r=0(ρrIαrρr(γr1);ψrtr|Fu(tr+1)Fv(tr+1)|+|ϕr+1(u(tr+1))ϕr+1(v(tr+1))|)]}+ρkIαk;ψktk|Fu(t)Fv(t)|+Ψγk1ψk(t,tk)Γρk(ρkγk)k1j=0(ρjIαjρj(γj1);ψjtj|Fu(tj+1)Fv(tj+1)|+|ϕj+1(u(tj+1))ϕj+1(v(tj+1))|)+Ψγk2ψk(t,tk)Γρk(ρk(γk1))[k1j=0(ρjIαj+ρj(2γj);ψjtj|Fu(tj+1)Fv(tj+1)|+|ϕj+1(u(tj+1))ϕj+1(v(tj+1))|)+k1j=1Ψψj(tj+1,tj)ρjj1r=0(ρrIαrρr(γr1);ψrtr|Fu(tr+1)Fv(tr+1)|+|ϕr+1(u(tr+1))ϕr+1(v(tr+1))|)]. (3.17)

    By applying the property (i) in Lemma 2.1, we have

    Ψ2γkψk(t,tk)ρkIσk;ψkt+k|u(t)v(t)|ρkIσk;ψkt+k(1)(t)uPCΨσmρmψm(T,tm)Γρm(ρm+σm)uvPC. (3.18)

    Using the conditions (H1), (H2) and (3.18), we can find that

    |Fu(t)Fv(t)||f(t,u(t),ρkIσk;ψkt+ku(t),ρkIνk;ψktku(t))f(t,v(t),ρkIσk;ψkt+kv(t),ρkIνk;ψktkv(t))|L1Ψ2γkψk(t,tk)|u(t)v(t)|+L2Ψ2γkψk(t,tk)ρkIσk;ψkt+k|u(t)v(t)|+L3Ψ2γkψk(t,tk)ρkIνk;ψkt+k|u(t)v(t)|(L1+ΨσmL2+ΨνmL3)uvPC, (3.19)
    |ϕk(u(tk))ϕk(v(tk))|I1Ψ2γkψk(t,tk)|u(t)v(t)|I1uvPC, (3.20)
    |ϕk(u(tk))ϕk(v(tk))|I2Ψ2γkψk(t,tk)|u(t)v(t)|I2uvPC. (3.21)

    Inserting (3.19)–(3.21) into (3.17), which yields that

    |Ψ2γkψk(t,tk)((Qun)(t)(Qu)(t))|{Ψψm(T,tm)|Λ|Γρm(ρmγm)+m1j=0Ψψj(tj+1,tj)|Λ|ρjΓρm(ρm(γm1))}{m+1i=0|μi|Ψγi1ψi(ηi,ti)Γρi(ρiγi)×i1j=0(Ψαjρj(γj1)ρjψj(tj+1,tj)ΓρJ(ρj+αjρj(γj1))(L1+ΨσmL2+ΨνmL3)uvPC+I1uvPC)+m+1i=0|μi|Ψγi2ψi(ηi,ti)Γρi(ρi(γi1))[i1j=0(Ψαj+ρj(2γj)ρjψj(tj+1,tj)Γρj(ρj+αj+ρj(2γj))(L1+ΨσmL2+ΨνmL3)uvPC+I2uvPC)+i1j=1Ψψj(tj+1,tj)ρjj1r=0(Ψαrρr(γr1)ρrψr(tr+1,tr)Γρr(ρr+αrρr(γr1))(L1+ΨσmL2+ΨνmL3)uvPC+I1uvPC)]+m+1i=0|μi|Ψαiρiψi(ηi,ti)Γρi(ρi+αi)(L1+ΨσmL2+ΨνmL3)uvPC+nl=0|λl|Ψαl+θlρlψl(ξl,tl)Γρl(ρl+αl+θl)(L1+ΨσmL2+ΨνmL3)uvPC+nl=0|λl|Ψρl(γl1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)×l1j=0(Ψαjρj(γj1)ρjψj(tj+1,tj)ΓρJ(ρj+αjρj(γj1))(L1+ΨσmL2+ΨνmL3)uvPC+I1uvPC)+nl=0|λl|Ψρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)[l1j=0(Ψαj+ρj(2γj)ρjψj(tj+1,tj)Γρj(ρj+αj+ρj(2γj))(L1+ΨσmL2+ΨνmL3)uvPC+I2uvPC)+l1j=1Ψψj(tj+1,tj)ρjj1r=0(Ψαrρr(γr1)ρrψr(tr+1,tr)Γρr(ρr+αrρr(γr1))(L1+ΨσmL2+ΨνmL3)uvPC+I1uvPC)]}+Ψαmρm+2γmψm(T,tm)Γρm(ρm+αm)(L1+ΨσmL2+ΨνmL3)uvPC+Ψψm(T,tm)Γρm(ρmγm)m1j=0(Ψαjρj(γj1)ρjψj(tj+1,tj)ΓρJ(ρj+αjρj(γj1))(L1+ΨσmL2+ΨνmL3)uvPC+I1uvPC)+1Γρm(ρm(γm1))[m1j=0(Ψαj+ρj(2γj)ρjψj(tj+1,tj)Γρj(ρj+αj+ρj(2γj))(L1+ΨσmL2+ΨνmL3)uvPC+I2uvPC)+m1j=1Ψψj(tj+1,tj)ρjj1r=0(Ψαrρr(γr1)ρrψr(tr+1,tr)Γρr(ρr+αrρr(γr1))(L1+ΨσmL2+ΨνmL3)uvPC+I1uvPC)][(Ω1Ω2+Ω3)(L1+ΨσmL2+ΨνmL3)+(Ω1Ω4+Ω5)I1+(Ω1Ω6+mΨγm)I2]uvPC.

    It follows that QuQvPC[Δ1+Δ2]uvPC. Condition (3.8) stated that Δ1+Δ2<1. Thus Q is a contraction. By Lemma 3.1, problem (1.4) has a unique solution on J.

    Lemma 3.2. (O'Regan's fixed point theorem [43]) Let O be an open subset of a closed, convex set D in a Banach space E such that 0O. Moreover, let Q:¯OD be such that Q(¯O) is bounded and that Q=Q1+Q2, where Q1:¯OD is continuous and completely continuous and Q2:¯OD is a nonlinear contraction, i.e., there exists a nonnegative nondecreasing function Θ:[0,)[0,), such that Θ(w)<w for any wR+ and Q2uQ2vΘ(uv) for all u, v¯O. Then either (a1). Q has a fixed point u¯O or (a2). there exist a point uK and θ(0,1), such that u=θQu. Here, ¯O and O represent the closure and the boundary of O, respectively.

    Theorem 3.2. Assume ψkC2(J) where ψk(t)>0, k=0,1,2,,m, tJ, fC(J×R3,R), ϕk, ϕkC(R,R), k=1,2,,m satisfying the following conditions:

    (H3) There exist positive real numbers M1, M2 such that

    |ϕk(u)|M1,|ϕk(u)|M2,uR. (3.22)

    (H4) There exist a continuous nondecreasing function Θ:[0,)[0,) and giC(J,R+), i=1,2,3, such that

    |f(t,u,v,w)|g1(t)Θ(Ψ2γkψk(t,tk)|u|)+Ψ2γkψk(t,tk)[g2(t)|v|+g3(t)|w|], (3.23)

    for any u, v, wR, tJ, k=1,2,,m.

    (H5) There exist continuous nondecreasing functions Ki:[0,)[0,), and Ξi, i=1,2, such that

    |ϕk(u)ϕk(v)|K1(Ψγk2ψk(t,tk)|uv|),|ϕk(u)ϕk(v)|K2(Ψγk2ψk(t,tk)|uv|),K1(Ψγk2ψk(t,tk)|u|)Ξ1Ψγk2ψk(t,tk)|u|,K2(Ψγk2ψk(t,tk)|u|)Ξ2Ψγk2ψk(t,tk)|u|,

    for any u, vR, k=1,2,,m, satisfying [(Ω5+Ω1Ω4)Ξ1+(mΨγm+Ω1Ω6)Ξ2]<1 where Ω1, Ω4, Ω5, Ω6 are given by (3.2) and (3.5)–(3.7), respectively.

    (H6)

    supR2(0,)R2g1Θ(R2)(Ω3+Ω1Ω2)+C>11[g2Ψσm+g3Ψνm](Ω3+Ω1Ω2), (3.24)

    with [g2Ψσm+g3Ψνm](Ω3+Ω1Ω2)<1, Ωi are given by (3.2)–(3.4), respectively, and gi=suptJ|gi(t)|, i=1,2,3.

    Then the considered problem (1.4) has at least one solution on J.

    Proof. We will divide the operator Q:PCPC defined by (3.1) into two operators, that is Q1 and Q2, where (Qu)(t)=(Q1u)(t)+(Q2u)(t), for any tJ. The operators Q1 and Q2 are defined by

    (Q1u)(t)=Ψγk1ψk(t,tk)Γρk(ρkγk)k1j=0ρjIαjρj(γj1);ψjtjFu(tj+1)+Ψγk2ψk(t,tk)Γρk(ρk(γk1))k1j=0ρjIαj+ρj(2γj);ψjtjFu(tj+1)+ρkIαk;ψktkFu(t)+Ψγk2ψk(t,tk)Γρk(ρk(γk1))k1j=1Ψψj(tj+1,tj)ρjj1r=0ρrIαrρr(γr1);ψrtrFu(tr+1){Ψγk2ψk(t,tk)ΛΓρk(ρk(γk1))k1j=0Ψψj(tj+1,tj)ρj+Ψγk1ψk(t,tk)ΛΓρk(ρkγk)}{m+1i=0μiρiIαi;ψitiFu(ηi)+nl=0λlρlIαl+θl;ψltlFu(ξl)+m+1i=0μiΨγi1ψi(ηi,ti)Γρi(ρiγi)i1j=0ρjIαjρj(γj1);ψjtjFu(tj+1)+m+1i=0μiΨγi2ψi(ηi,ti)Γρi(ρi(γi1))i1j=1Ψψj(tj+1,tj)ρjj1r=0ρrIαrρr(γr1);ψrtrFu(tr+1)+m+1i=0μiΨγi2ψi(ηi,ti)Γρi(ρi(γi1))i1j=0ρjIαj+ρj(2γj);ψjtjFu(tj+1)+nl=0λlΨρl(γl1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)×l1j=0ρjIαjρj(γj1);ψjtjFu(tj+1)+nl=0λlΨρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)l1j=0ρjIαj+ρj(2γj);ψjtjFu(tj+1)+nl=0λlΨρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)l1j=1Ψψj(tj+1,tj)ρjj1r=0ρrIαrρr(γr1);ψrtrFu(tr+1)}, (3.25)
    (Q2u)(t)=Ψγk1ψk(t,tk)Γρk(ρkγk)k1j=0ϕj+1(u(tj+1))+Ψγk2ψk(t,tk)Γρk(ρk(γk1))k1j=1Ψψj(tj+1,tj)ρjj1r=0ϕr+1(u(tr+1))+Ψγk2ψk(t,tk)Γρk(ρk(γk1))k1j=0ϕj+1(u(tj+1)){Ψγk2ψk(t,tk)ΛΓρk(ρk(γk1))k1j=0Ψψj(tj+1,tj)ρj+Ψγk1ψk(t,tk)ΛΓρk(ρkγk)}{nl=0λlΨρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)l1j=1Ψψj(tj+1,tj)ρjj1r=0ϕr+1(u(tr+1))+m+1i=0μiΨγi1ψi(ηi,ti)Γρi(ρiγi)i1j=0ϕj+1(u(tj+1))+nl=0λlΨρl(γl1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)l1j=0ϕj+1(u(tj+1))+m+1i=0μiΨγi2ψi(ηi,ti)Γρi(ρi(γi1))i1j=1Ψψj(tj+1,tj)ρjj1r=0ϕr+1(u(tr+1))+m+1i=0μiΨγi2ψi(ηi,ti)Γρi(ρi(γi1))i1j=0ϕj+1(u(tj+1))+nl=0λlΨρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)l1j=0ϕj+1(u(tj+1))A}. (3.26)

    Next, assume that BR2={uE:uPCR2} such that

    R2g1Θ(R2)(Ω3+Ω1Ω2)+C>11[g2Ψσm+g3Ψνm](Ω3+Ω1Ω2). (3.27)

    Thanks to Theorem 3.1, we see that Q1 is continuous. For any tJ, we have

    |Ψ2γkψk(t,tk)(Q1u)(t)|Ψψm(T,tm)Γρm(ρmγm)m1j=0ρjIαjρj(γj1);ψjtj|Fu(tj+1)|+1Γρm(ρm(γm1))m1j=0ρjIαj+ρj(2γj);ψjtj|Fu(tj+1)|+Ψ2γmψm(T,tm)ρmIαm;ψmtm|Fu(T)|+m1j=1Ψψj(tj+1,tj)ρjΓρm(ρm(γm1))j1r=0ρrIαrρr(γr1);ψrtr|Fu(tr+1)|+{m1j=0Ψψj(tj+1,tj)ρj|Λ|Γρm(ρm(γm1))+Ψψm(T,tm)|Λ|Γρm(ρmγm)}{m+1i=0|μi|ρiIαi;ψiti|Fu(ηi)|+nl=0|λl|ρlIαl+θl;ψltl|Fu(ξl)|+m+1i=0|μi|Ψγi1ψi(ηi,ti)Γρi(ρiγi)i1j=0ρjIαjρj(γj1);ψjtj|Fu(tj+1)|+m+1i=0|μi|Ψγi2ψi(ηi,ti)Γρi(ρi(γi1))i1j=1Ψψj(tj+1,tj)ρjj1r=0ρrIαrρr(γr1);ψrtr|Fu(tr+1)|+m+1i=0|μi|Ψγi2ψi(ηi,ti)Γρi(ρi(γi1))i1j=0ρjIαj+ρj(2γj);ψjtj|Fu(tj+1)|+nl=0|λl|Ψρl(γl1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)l1j=0ρjIαjρj(γj1);ψjtj|Fu(tj+1)|+nl=0|λl|Ψρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)l1j=0ρjIαj+ρj(2γj);ψjtj|Fu(tj+1)|+nl=0|λl|Ψρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)l1j=1Ψψj(tj+1,tj)ρjj1r=0ρrIαrρr(γr1);ψrtr|Fu(tr+1)|}. (3.28)

    From condition (H4), we obtain

    |Fu(t)|=|f(t,u(t),ρkIσk;ψkt+ku(t),ρkIνk;ψktku(t))|g1Θ(R2)+[g2Ψσm+g3Ψνm]R2. (3.29)

    Substituting (3.29) into (3.28) and using the property (i) in Lemma 2.1, we have

    |Ψ2γkψk(t,tk)(Q1u)(t)|(g1Θ(R2)+[g2Ψσm+g3Ψνm]R2)(Ψψm(T,tm)Γρm(ρmγm)m1j=0Ψαjρj(γj1)ρjψj(tj+1,tj)Γρj(αjρj(γj1)+ρj)+1Γρm(ρm(γm1))×m1j=0Ψαj+ρj(2γj)ρjψj(tj+1,tj)Γρj(αj+ρj(2γj)+ρj)+Ψαmρm+2γmψm(T,tm)Γρm(αm+ρm)+m1j=1Ψψj(tj+1,tj)ρjΓρm(ρm(γm1))×j1r=0Ψαrρr(γr1)ρrψr(tr+1,tr)Γρr(αrρr(γr1)+ρr)+{m1j=0Ψψj(tj+1,tj)ρj|Λ|Γρm(ρm(γm1))+Ψψm(T,tm)|Λ|Γρm(ρmγm)}{m+1i=0|μi|Ψαiρiψi(ηi,ti)Γρi(αi+ρi)+nl=0|λl|Ψαl+θlρlψl(ξl,tl)Γρl(αl+θl+ρl)+m+1i=0|μi|Ψγi1ψi(ηi,ti)Γρi(ρiγi)i1j=0Ψαjρj(γj1)ρjψj(tj+1,tj)Γρj(αjρj(γj1)+ρj)+m+1i=0|μi|Ψγi2ψi(ηi,ti)Γρi(ρi(γi1))i1j=1Ψψj(tj+1,tj)ρjj1r=0Ψαrρr(γr1)ρrψr(tr+1,tr)Γρr(αrρr(γr1)+ρr)+m+1i=0|μi|Ψγi2ψi(ηi,ti)Γρi(ρi(γi1))i1j=0Ψαj+ρj(2γj)ρjψj(tj+1,tj)Γρj(αj+ρj(2γj)+ρj)+nl=0|λl|Ψρl(γl1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)l1j=0Ψαjρj(γj1)ρjψj(tj+1,tj)Γρj(αjρj(γj1)+ρj)+nl=0|λl|Ψρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)l1j=0Ψαj+ρj(2γj)ρjψj(tj+1,tj)Γρj(αj+ρj(2γj)+ρj)+nl=0|λl|Ψρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)l1j=1Ψψj(tj+1,tj)ρjj1r=0Ψαrρr(γr1)ρrψr(tr+1,tr)Γρr(αrρr(γr1)+ρr)})=(g1Θ(R2)+[g2Ψσm+g3Ψνm]R2)(Ω3+Ω1Ω2).

    This yields that Q1(BR2)(g1Θ(R2)+[g2Ψσm+g3Ψνm]R2)(Ω3+Ω1Ω2).

    Now, we will prove that Q1 maps bounded set BR2 into equicontinuous set of E. Suppose that τ1, τ2Jk, k=0,1,,m, under τ1<τ2 and for any uBR2, we obtain that

    |Ψ2γkψk(τ2,tk)(Q1u)(τ2)Ψ2γkψk(τ1,tk)(Q1u)(τ1)|(g1Θ(R2)+[g2Ψσm+g3Ψνm]R2)(Ω3+Ω1Ω2)(|Ψψk(τ2,tk)Ψψk(τ1,tk)|Γρm(ρmγm)m1j=0Ψαjρj(γj1)ρjψj(tj+1,tj)Γρj(αjρj(γj1)+ρj)+Ψ2γmψm(τ2,tm)Ψαmρmψm(τ2,t1)αmΓρm(αm)+1αmΓρm(αm)|Ψαkρk+2γkψk(τ2,tk)Ψαkρk+2γkψk(τ1,tk)Ψ2γkψk(τ2,tk)Ψαkρkψk(τ2,τ1)|+|Ψψk(τ2,tk)Ψψk(τ1,tk)||Λ|Γρm(ρmγm){m+1i=0|μi|Ψαiρiψi(ηi,ti)Γρi(αi+ρi)+nl=0|λl|Ψαl+θlρlψl(ξl,tl)Γρl(αl+θl+ρl)+m+1i=0|μi|Ψγi1ψi(ηi,ti)Γρi(ρiγi)×i1j=0Ψαjρj(γj1)ρjψj(tj+1,tj)Γρj(αjρj(γj1)+ρj)+m+1i=0|μi|Ψγi2ψi(ηi,ti)Γρi(ρi(γi1))i1j=1Ψψj(tj+1,tj)ρjj1r=0Ψαrρr(γr1)ρrψr(tr+1,tr)Γρr(αrρr(γr1)+ρr)
    +m+1i=0|μi|Ψγi2ψi(ηi,ti)Γρi(ρi(γi1))i1j=0Ψαj+ρj(2γj)ρjψj(tj+1,tj)Γρj(αj+ρj(2γj)+ρj)+nl=0|λl|Ψρl(γl1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)l1j=0Ψαjρj(γj1)ρjψj(tj+1,tj)Γρj(αjρj(γj1)+ρj)+nl=0|λl|Ψρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)l1j=0Ψαj+ρj(2γj)ρjψj(tj+1,tj)Γρj(αj+ρj(2γj)+ρj)+nl=0|λl|Ψρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)l1j=1Ψψj(tj+1,tj)ρjj1r=0Ψαrρr(γr1)ρrψr(tr+1,tr)Γρr(αrρr(γr1)+ρr)})=(g1Θ(R2)+[g2Ψσm+g3Ψνm]R2)(Ω3+Ω1Ω2)(|Ψψk(τ2,tk)Ψψk(τ1,tk)|Γρm(ρmγm)m1j=0Ψαjρj(γj1)ρjψj(tj+1,tj)Γρj(αjρj(γj1)+ρj)+Ψ2γmψm(τ2,tm)Ψαmρmψm(τ2,τ1)αmΓρm(αm)+1αmΓρm(αm)|Ψαkρk+2γkψk(τ2,tk)Ψαkρk+2γkψk(τ1,tk)Ψ2γkψk(τ2,tk)Ψαkρkψk(τ2,τ1)|+Ω2|Ψψk(τ2,tk)Ψψk(τ1,tk)||Λ|Γρm(ρmγm)).

    Observe that the above result is independent of uBR2. This implies that

    |Ψ2γkψk(τ2,tk)(Qu1)(τ2)Ψ2γkψk(τ1,tk)(Qu1)(τ1)|0asτ2τ1.

    Since Q1 maps bounded set BR2 into an equicontinuous set of E, by the Arzelá-Ascoli theorem, we obtain that Q1 is completely continuous.

    Next, we will prove that Q2 is a nonlinear contraction. Let Θ:R+R+ be a continuous nondecreasing function given by Θ(ϵ)=[(Ω5+Ω1Ω4)Ξ1+(mΨγm+Ω1Ω6)Ξ2]ϵ, for all ϵ0. It is easy to see that Θ(0)=0. Since [(Ω5+Ω1Ω4)Ξ1+(mΨγm+Ω1Ω6)Ξ2]<1, we have Θ(ϵ)<ϵ for all ϵ>0. For any u, vBR2, we obtain

    |Ψ2γkψk(t,tk)(Q2u)(t)Ψ2γkψk(t,tk)(Q2v)(t)|Ψψm(T,tm)Γρm(ρmγm)m1j=0K1(uvPC)+m1j=1Ψψj(tj+1,tj)ρjΓρm(ρm(γm1))j1r=0K1(uvPC)+1Γρm(ρm(γm1))m1j=0K2(uvPC)+{m1j=0Ψψj(tj+1,tj)ρj|Λ|Γρm(ρm(γm1))+Ψψm(T,tm)|Λ|Γρm(ρmγm)}×{nl=0|λl|Ψρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)l1j=1Ψψj(tj+1,tj)ρjj1r=0K1(uvPC)+m+1i=0|μi|Ψγi1ψi(ηi,ti)Γρi(ρiγi)i1j=0K1(uvPC)+nl=0|λl|Ψρl(γl1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)l1j=0K1(uvPC)+m+1i=0|μi|Ψγi2ψi(ηi,ti)Γρi(ρi(γi1))i1j=1Ψψj(tj+1,tj)ρjj1r=0K1(uvPC)+m+1i=0|μi|Ψγi2ψi(ηi,ti)Γρi(ρi(γi1))i1j=0K2(uvPC)+nl=0|λl|Ψρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)l1j=0K2(uvPC)}[(mΨψm(T,tm)Γρm(ρmγm)+m1j=1jΨψj(tj+1,tj)ρjΓρm(ρm(γm1)))Ξ1+mΓρm(ρm(γm1))Ξ2+{m1j=0Ψψj(tj+1,tj)ρj|Λ|Γρm(ρm(γm1))+Ψψm(T,tm)|Λ|Γρm(ρmγm)}{(m+1i=0i|μi|Ψγi1ψi(ηi,ti)Γρi(ρiγi)+nl=0l|λl|Ψρl(γl1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)+nl=0|λl|Ψρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)l1j=1jΨψj(tj+1,tj)ρj+m+1i=0|μi|Ψγi2ψi(ηi,ti)Γρi(ρi(γi1))i1j=1jΨψj(tj+1,tj)ρj)Ξ1+(m+1i=0i|μi|Ψγi2ψi(ηi,ti)Γρi(ρi(γi1))+nl=0l|λl|Ψρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl))Ξ2}]uvPC=[(Ω5+Ω1Ω4)Ξ1+(mΨγm+Ω1Ω6)Ξ2]uvPC.

    By taking Θ(ϵ)=[(Ω5+Ω1Ω4)Ξ1+(mΨγm+Ω1Ω6)Ξ2]ϵ, we have Θ(0)=0 and Θ(ϵ)<ϵ for all ϵ>0. Then

    Q2uQ2vPCΘ(uvPC).

    This yields that Q2 is a nonlinear contraction.

    Next, we will prove that Q2(BR2) is bounded. By (H3), for any uBR2, it follows that

    |Ψ2γkψk(t,tk)(Q2u)(t)|(mΨψm(T,tm)Γρm(ρmγm)+m1j=1jΨψj(tj+1,tj)ρjΓρm(ρm(γm1)))M1+mΓρm(ρm(γm1))M2+{m1j=0Ψψj(tj+1,tj)ρj|Λ|Γρm(ρm(γm1))+Ψψm(T,tm)|Λ|Γρm(ρmγm)}{(nl=0|λl|Ψρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl)l1j=1jΨψj(tj+1,tj)ρj+m+1i=0i|μi|Ψγi1ψi(ηi,ti)Γρi(ρiγi)+nl=0l|λl|Ψρl(γl1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)+m+1i=0|μi|Ψγi2ψi(ηi,ti)Γρi(ρi(γi1))i1j=1jΨψj(tj+1,tj)ρj)M1+(m+1i=0i|μi|Ψγi2ψi(ηi,ti)Γρi(ρi(γi1))+nl=0l|λl|Ψρl(γl2)+θlρlψl(ξl,tl)Γρl(ρl(γl1)+θl))M2+|A|}=(Ω5+Ω1Ω4)M1+(mΨσm+Ω1Ω6)M2+Ω1|A|.

    Then, Q2(BR2) is bounded with the boundedness of the set Q1(BR2).

    Lastly, we will prove that the assumption (a2) in Lemma 3.2 is not true. Suppose that (a2) is true. Then there exists a constant θ(0,1) such that u=θQu for any uBR2. We obtain that uPCR2 and

    |Ψ2γkψk(t,tk)u(t)|=θ|Ψ2γkψk(t,tk)(Qu)(t)||Ψ2γkψk(t,tk)(Q1u)(t)+Ψ2γkψk(t,tk)(Q2u)(t)|(g1Θ(R2)+[g2Ψσm+g3Ψνm]R2)(Ω3+Ω1Ω2)+(Ω5+Ω1Ω4)M1+(mΨσm+Ω1Ω6)M2+Ω1|A|,

    which implies

    R2(g1Θ(R2)+[g2Ψσm+g3Ψνm]R2)(Ω3+Ω1Ω2)+(Ω5+Ω1Ω4)M1+(mΨσm+Ω1Ω6)M2+Ω1|A|.

    Hence,

    R2g1Θ(R2)(Ω3+Ω1Ω2)+C11[g2Ψσm+g3Ψνm](Ω3+Ω1Ω2),

    where

    C:=(Ω5+Ω1Ω4)M1+(mΨσm+Ω1Ω6)M2+Ω1|A|, (3.30)

    this contradicts the condition (H6). Therefore, Q1 and Q2 satisfy all conditions of Lemma 3.2. Hence, the considered problem (1.4) has a solution on J.

    This section discusses a variety of Ulam-Hyers stability of the considered problem (1.4). Before proving, we will state Ulam-Hyers stability ideas for the considered problem (1.4). Assume that χC(J,R+) is a non-decreasing function and ϵ>0, δ0, zE, so that for any tJk, k=1,2,,m the following important inequalities are satisfied:

    {|HρkDαk,βk;ψkt+kz(t)f(t,z(t),ρkIσk;ψktkz(t),ρkIνk;ψktkz(t))|ϵ,[0.25cm]|ρkIρk(2γk);ψkt+kz(t+k)ρk1Iρk1(2γk1);ψk1t+k1z(tk)ϕk(z(tk))|ϵ,|RLρkDρk(γk1);ψkt+kz(t+k)RLρk1Dρk1(γk11);ψk1t+k1z(tk)ϕk(z(tk))|ϵ, (4.1)
    {|HρkDαk,βk;ψkt+kz(t)f(t,z(t),ρkIσk;ψktkz(t),ρkIνk;ψktkz(t))|χ(t),[0.25cm]|ρkIρk(2γk);ψkt+kz(t+k)ρk1Iρk1(2γk1);ψk1t+k1z(tk)ϕk(z(tk))|δ,|RLρkDρk(γk1);ψkt+kz(t+k)RLρk1Dρk1(γk11);ψk1t+k1z(tk)ϕk(z(tk))|δ, (4.2)
    {|HρkDαk,βk;ψkt+kz(t)f(t,z(t),ρkIσk;ψktkz(t),ρkIνk;ψktkz(t))|ϵχ(t),[0.25cm]|ρkIρk(2γk);ψkt+kz(t+k)ρk1Iρk1(2γk1);ψk1t+k1z(tk)ϕk(z(tk))|ϵδ,|RLρkDρk(γk1);ψkt+kz(t+k)RLρk1Dρk1(γk11);ψk1t+k1z(tk)ϕk(z(tk))|ϵδ. (4.3)

    Definition 4.1. The considered problem (1.4) is said to be Ulam–Hyers (UH) stable, if there exists a real constant CF>0 so that for every ϵ>0 and for any zE of (4.1) there exists uE of (1.4) that satisfies

    |z(t)u(t)|CFϵ,tJ. (4.4)

    Definition 4.2. The considered problem (1.4) is said to be generalized Ulam-Hyers (GUH) stable, if there exists χC(R+,R+) via χ(0)=0 so that for every ϵ>0 and for any zE of (4.2) there exists uE of (1.4) that satisfies

    |z(t)u(t)|χ(ϵ),tJ. (4.5)

    Definition 4.3. The considered problem (1.4) is said to be Ulam-Hyers-Rassias (UHR) stable with respect to (δ,χ), if there exists a real constant CF,χF>0 so that for every ϵ>0 and for any zE of (4.3) there exists uE of (1.4) that satisfies

    |z(t)u(t)|CF,χFϵ(δ+χ(t)),tJ. (4.6)

    Definition 4.4. The considered problem (1.4) is said to be generalized Ulam-Hyers-Rassias (GUHR) stable with respect to (δ,χ), if there exists a real constant CF,χF>0 so that for any zE of (4.2) there exists uE of (1.4) that satisfies

    |z(t)u(t)|CF,χF(δ+χ(t)),tJ. (4.7)

    Remark 4.1. By Definitions 4.1–4.4, we will find out that: (R1) Definition 4.1 Definition 4.2; (R2) Definition 4.3 Definition 4.4; and (R3) Definition 4.3 Definition 4.1.

    Remark 4.2. Assume that zE is the solution of (4.1). If there exists gE with a sequence gk for k=1,2,,m, depending on a function z, such that (A1) |g(t)|ϵ, |gk|ϵ, tJ; (A2) HρkDαk,βk;ψkt+kz(t)=f(t,z(t),ρkIσk;ψktkz(t),ρkIνk;ψktkz(t))+g(t), tJ; (A3) ρkIρk(2γk);ψkt+kz(t+k)ρk1Iρk1(2γk1);ψk1t+k1z(tk)=ϕk(z(tk))+gk, tJ; and (A4) RLρkDρk(γk1);ψkt+kz(t+k)RLρk1Dρk1(γk11);ψk1t+k1z(tk)=ϕk(z(tk))+gk, tJ.

    Remark 4.3. Assume that zE is the solution of (4.2). If there exists gE and gk for k=1,2,,m, depending on a function z, such that (B1) |g(t)|χ(t), |gk|δ, tJ; (B2) HρkDαk,βk;ψkt+kz(t)=f(t,z(t),ρkIσk;ψktkz(t),ρkIνk;ψktkz(t))+g(t), tJ; (B3) ρkIρk(2γk);ψkt+kz(t+k)ρk1Iρk1(2γk1);ψk1t+k1z(tk)=ϕk(z(tk))+gk; and (B4) RLρkDρk(γk1);ψkt+kz(t+k)RLρk1Dρk1(γk11);ψk1t+k1z(tk)=ϕk(z(tk))+gk, tJ.

    Remark 4.4. Assume that zE is the solution of (4.3). If there exists gE and gk for k=1,2,,m, depending on a function z, such that (C1) |g(t)|ϵχ(t), |gk|ϵδ, tJ; (C2) HρkDαk,βk;ψkt+kz(t)=f(t,z(t),ρkIσk;ψktkz(t),ρkIνk;ψktkz(t))+g(t), tJ; (C3) ρkIρk(2γk);ψkt+kz(t+k)ρk1Iρk1(2γk1);ψk1t+k1z(tk)=ϕk(z(tk))+gk; and (C4) RLρkDρk(γk1);ψkt+kz(t+k)RLρk1Dρk1(γk11);ψk1t+k1z(tk)=ϕk(z(tk))+gk, tJ.

    Theorem 4.1. Assume that αk(1,2], βk[0,1], ρkR+, γk=(βk(2ρkαk)+αk)/ρk, ψkC(J,R) where ψk>0, k=1,2,,m and fC(J×R3,R). If the assumptions (H1) and (H2) and the inequality (3.8) hold, then the considered problem (1.4) is UH stable on J.

    Proof. Assume that zPC is the solution of the problem (4.1). Under the conditions (A2) and (A3) of Remark 4.2 and Lemma 2.4, we have

    {HρkDαk,βk;ψkt+kz(t)=Fz(t)+g(t),ttk,k=0,1,,m,[0.25cm]RLρkDρk(γk1);ψkt+kz(t+k)RLρk1Dρk1(γk11);ψk1t+k1z(tk)=ϕk(z(tk))+gk,k=1,2,,m,[0.25cm]ρkIρk(2γk);ψkt+kz(t+k)ρk1Iρk1(2γk1);ψk1t+k1z(tk)=ϕk(z(tk))+gk,k=1,2,,m,[0.15cm]z(0)=0,m+1i=0μiz(ηi)+nl=0λlρlIθl;ψltlz(ξl)=A,ηi,(ti,ti+1],ξl(tl,tl+1]. (4.8)

    Then, the solution of (4.8) is given by

    \begin{eqnarray} && z(t)\\ & = & \Bigg\{ \frac{\Psi_{\psi_{k}}^{\gamma_{k} - 1}(t, t_{k})}{\Lambda \Gamma_{\rho_{k}}(\rho_{k}\gamma_{k})} + \frac{\Psi_{\psi_{k}}^{\gamma_{k} - 2}(t, t_{k})}{\Lambda \Gamma_{\rho_{k}}(\rho_{k}(\gamma_{k}-1))} \sum\limits_{j = 0}^{k-1} \frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}}\Bigg\} \Bigg\{ {A} - \Bigg( \sum\limits_{i = 0}^{m+1}\frac{\mu_{i} \Psi_{\psi_{i}}^{\gamma_{i} - 1}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}\gamma_{i})}\\ && \times \sum\limits_{j = 0}^{i-1}\left( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} {F}_{z}(t_{j+1}) + \phi_{j+1}(z(t_{j+1})) \right) + \sum\limits_{i = 0}^{m+1}\frac{\mu_{i} \Psi_{\psi_{i}}^{\gamma_{i} - 2}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}(\gamma_{i}-1))}\Bigg[ \sum\limits_{j = 0}^{i-1}({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} {F}_{z}(t_{j+1}) \\ && + \phi_{j+1}^{*}(z(t_{j+1})) ) + \sum\limits_{j = 1}^{i-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\left({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} {F}_{z}(t_{r+1}) + \phi_{r+1}(z(t_{r+1})) \right) \Bigg]\\ && + \sum\limits_{l = 0}^{n}\frac{\lambda_{l}\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 1)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}\gamma_{l} + \theta_{l})} \sum\limits_{j = 0}^{l-1}\left( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} {F}_{z}(t_{j+1}) + \phi_{j+1}(z(t_{j+1})) \right)\\ && + \sum\limits_{l = 0}^{n}\frac{\lambda_{l}\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 2)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}(\gamma_{l} - 1) + \theta_{l})} \Bigg[ \sum\limits_{j = 0}^{l-1}\left({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} {F}_{z}(t_{j+1}) + \phi_{j+1}^{*}(z(t_{j+1})) \right)\\ && + \sum\limits_{j = 1}^{l-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\left({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} {F}_{z}(t_{r+1}) + \phi_{r+1}(z(t_{r+1})) \right) \Bigg] + \sum\limits_{i = 0}^{m+1}\mu_{i} {_{\rho_{i}}^{}}{I}_{t_{i}}^{\alpha_{i}; \psi_{i}} {F}_{z}(\eta_{i}) \\ && + \sum\limits_{l = 0}^{n}\lambda_{l}{_{\rho_{l}}^{}}{I}_{t_{l}}^{\alpha_{l}+\theta_{l}; \psi_{l}} {F}_{z}(\xi_{l})\Bigg) \Bigg\} + {_{\rho_{k}}^{}}{I}_{t_{k}}^{\alpha_{k}; \psi_{k}} {F}_{z}(t) + \frac{\Psi_{\psi_{k}}^{\gamma_{k} - 1}(t, t_{k})}{\Gamma_{\rho_{k}}(\rho_{k}\gamma_{k})} \sum\limits_{j = 0}^{k-1}\left( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} {F}_{z}(t_{j+1}) + \phi_{j+1}(z(t_{j+1})) \right)\\ && + \frac{\Psi_{\psi_{k}}^{\gamma_{k} - 2}(t, t_{k})}{\Gamma_{\rho_{k}}(\rho_{k}(\gamma_{k}-1))}\Bigg[ \sum\limits_{j = 0}^{k-1}\left({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} {F}_{z}(t_{j+1}) + \phi_{j+1}^{*}(z(t_{j+1})) \right)\\ && + \sum\limits_{j = 1}^{k-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\left({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} {F}_{z}(t_{r+1}) + \phi_{r+1}(z(t_{r+1})) \right) \Bigg] - \Bigg\{ \frac{\Psi_{\psi_{k}}^{\gamma_{k} - 1}(t, t_{k})}{\Lambda \Gamma_{\rho_{k}}(\rho_{k}\gamma_{k})} \\ && + \frac{\Psi_{\psi_{k}}^{\gamma_{k} - 2}(t, t_{k})}{\Lambda \Gamma_{\rho_{k}}(\rho_{k}(\gamma_{k}-1))} \sum\limits_{j = 0}^{k-1} \frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}}\Bigg\} \Bigg\{ \sum\limits_{i = 0}^{m+1}\frac{\mu_{i} \Psi_{\psi_{i}}^{\gamma_{i} - 1}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}\gamma_{i})} \sum\limits_{j = 0}^{i-1}\left( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} g(t_{j+1}) + g_{j+1} \right)\\ && + \sum\limits_{i = 0}^{m+1}\frac{\mu_{i} \Psi_{\psi_{i}}^{\gamma_{i} - 2}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}(\gamma_{i}-1))}\Bigg[ \sum\limits_{j = 0}^{i-1}\left({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} g(t_{j+1}) + g_{j+1} \right)\\ && + \sum\limits_{j = 1}^{i-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\left({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} g(t_{r+1}) + g_{r+1} \right) \Bigg] + \sum\limits_{i = 0}^{m+1}\mu_{i} {_{\rho_{i}}^{}}{I}_{t_{i}}^{\alpha_{i}; \psi_{i}} g(\eta_{i})\\ && + \sum\limits_{l = 0}^{n}\lambda_{l}{_{\rho_{l}}^{}}{I}_{t_{l}}^{\alpha_{l}+\theta_{l}; \psi_{l}} g(\xi_{l}) + \sum\limits_{l = 0}^{n}\frac{\lambda_{l}\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 1)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}\gamma_{l} + \theta_{l})} \sum\limits_{j = 0}^{l-1}\left( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} g(t_{j+1}) + g_{j+1} \right)\\ && + \sum\limits_{l = 0}^{n}\frac{\lambda_{l}\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 2)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}(\gamma_{l} - 1) + \theta_{l})} \Bigg[ \sum\limits_{j = 0}^{l-1}\left({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} g(t_{j+1}) + g_{j+1} \right)\\ && + \sum\limits_{j = 1}^{l-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\left({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} g(t_{r+1}) + g_{r+1} \right) \Bigg] \Bigg\} + {_{\rho_{k}}^{}}{I}_{t_{k}}^{\alpha_{k}; \psi_{k}} g(t)\\ && + \frac{\Psi_{\psi_{k}}^{\gamma_{k} - 1}(t, t_{k})}{\Gamma_{\rho_{k}}(\rho_{k}\gamma_{k})} \sum\limits_{j = 0}^{k-1}\left( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} g(t_{j+1}) + g_{j+1} \right) + \frac{\Psi_{\psi_{k}}^{\gamma_{k} - 2}(t, t_{k})}{\Gamma_{\rho_{k}}(\rho_{k}(\gamma_{k}-1))}\Bigg[ \sum\limits_{j = 0}^{k-1}\left({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} g(t_{j+1}) + g_{j+1} \right)\\ && + \sum\limits_{j = 1}^{k-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\left({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} g(t_{r+1}) + g_{r+1} \right) \Bigg]. \end{eqnarray} (4.9)

    By applying ({A}_{1}) of Remark 4.2 with ({H}_{1}) and ({H}_{2}) , we obtain

    \begin{eqnarray*} && \left\vert \Psi_{\psi_{k}}^{2-\gamma_{k}}(t, t_{k}) \big( z(t) - u(t) \big) \right\vert\notag\\ &\leq& \Bigg\{ \frac{\Psi_{\psi_{m}}^{}(T, t_{m})}{\vert \Lambda \vert \Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})} + \sum\limits_{j = 0}^{m-1} \frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}\vert \Lambda \vert \Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))}\Bigg\} \Bigg\{\sum\limits_{i = 0}^{m+1}\frac{\vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 1}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}\gamma_{i})} \notag\\ && \times \sum\limits_{j = 0}^{i-1}\Big( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} \vert {F}_{z}(t_{j+1}) - {F}_{u}(t_{j+1}) \vert + \vert \phi_{j+1}(z(t_{j+1})) - \phi_{j+1}(u(t_{j+1})) \vert \Big)\notag\\ && + \sum\limits_{i = 0}^{m+1}\frac{\vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 2}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}(\gamma_{i}-1))}\Bigg[ \sum\limits_{j = 0}^{i-1}\Big({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} \vert {F}_{z}(t_{j+1}) - {F}_{u}(t_{j+1}) \vert + \vert \phi_{j+1}^{*}(z(t_{j+1})) - \phi_{j+1}^{*}(u(t_{j+1})) \vert \Big)\notag\\ && + \sum\limits_{j = 1}^{i-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Big({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} \vert {F}_{z}(t_{r+1}) - {F}_{u}(t_{r+1}) \vert + \vert \phi_{r+1}(z(t_{r+1})) - \phi_{r+1}(u(t_{r+1})) \vert \Big) \Bigg]\notag\\ && + \sum\limits_{l = 0}^{n}\frac{\vert\lambda_{l}\vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 1)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}\gamma_{l} + \theta_{l})} \sum\limits_{j = 0}^{l-1}\Big( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} \vert {F}_{z}(t_{j+1}) - {F}_{u}(t_{j+1}) \vert + \vert \phi_{j+1}(z(t_{j+1})) - \phi_{j+1}(u(t_{j+1})) \vert \Big)\notag\\ && + \sum\limits_{l = 0}^{n}\frac{\vert\lambda_{l}\vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 2)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}(\gamma_{l} - 1) + \theta_{l})} \Bigg[ \sum\limits_{j = 0}^{l-1}\Big({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} \vert {F}_{z}(t_{j+1}) - {F}_{u}(t_{j+1}) \vert + \vert \phi_{j+1}^{*}(z(t_{j+1})) - \phi_{j+1}^{*}(u(t_{j+1})) \vert \Big) \notag\\ && + \sum\limits_{j = 1}^{l-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Big({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} \vert {F}_{z}(t_{r+1}) - {F}_{u}(t_{r+1}) \vert + \vert \phi_{r+1}(z(t_{r+1})) - \phi_{r+1}(u(t_{r+1})) \vert \Big) \Bigg] \notag\\ && + \sum\limits_{i = 0}^{m+1}\vert \mu_{i} \vert {_{\rho_{i}}^{}}{I}_{t_{i}}^{\alpha_{i}; \psi_{i}} \vert {F}_{z}(\eta_{i}) - {F}_{u}(\eta_{i}) \vert + \sum\limits_{l = 0}^{n}\vert \lambda_{l} \vert{_{\rho_{l}}^{}}{I}_{t_{l}}^{\alpha_{l}+\theta_{l}; \psi_{l}} \vert {F}_{z}(\xi_{l}) - {F}_{u}(\xi_{l}) \vert \Bigg\} + \Psi_{\psi_{m}}^{2-\gamma_{m}}(T, t_{m})\notag\\ && \times {_{\rho_{m}}^{}}{I}_{t_{m}}^{\alpha_{m}; \psi_{m}} \vert {F}_{z}(T) - {F}_{u}(T) \vert + \frac{\Psi_{\psi_{m}}^{}(T, t_{m})}{\Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})} \sum\limits_{j = 0}^{m-1}\Big( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} \vert {F}_{z}(t_{j+1}) - {F}_{u}(t_{j+1}) \vert \notag\\ && + \vert \phi_{j+1}(z(t_{j+1})) - \phi_{j+1}(u(t_{j+1})) \vert \Big) + \frac{1}{\Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))}\Bigg[ \sum\limits_{j = 0}^{m-1}\Big({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} \vert {F}_{z}(t_{j+1}) - {F}_{u}(t_{j+1}) \vert\notag\\ && + \vert \phi_{j+1}^{*}(z(t_{j+1})) - \phi_{j+1}^{*}(u(t_{j+1})) \vert \Big) + \sum\limits_{j = 1}^{m-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Big({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} \vert {F}_{z}(t_{r+1}) - {F}_{u}(t_{r+1}) \vert\notag\\ && + \vert \phi_{r+1}(z(t_{r+1})) - \phi_{r+1}(u(t_{r+1})) \vert \Big) \Bigg] + \Bigg\{ \frac{\Psi_{\psi_{m}}^{}(T, t_{m})}{\Lambda \Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})} + \sum\limits_{j = 0}^{m-1} \frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j} \vert \Lambda \vert \Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))}\Bigg\} \notag\\ && \times \Bigg\{ \sum\limits_{i = 0}^{m+1}\frac{\vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 1}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}\gamma_{i})} \sum\limits_{j = 0}^{i-1}\left( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} \vert g(t_{j+1}) \vert + \vert g_{j+1} \vert \right) + \sum\limits_{i = 0}^{m+1}\frac{\vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 2}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}(\gamma_{i}-1))}\notag\\ && \times \Bigg[ \sum\limits_{j = 0}^{i-1}\left({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} \vert g(t_{j+1}) \vert + \vert g_{j+1} \vert \right) + \sum\limits_{j = 1}^{i-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Big({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} \vert g(t_{r+1}) \vert + \vert g_{r+1} \vert \Big) \Bigg] \notag\\ && + \sum\limits_{l = 0}^{n}\frac{\vert \lambda_{l} \vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 1)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}\gamma_{l} + \theta_{l})} \sum\limits_{j = 0}^{l-1}\left( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} \vert g(t_{j+1}) \vert + \vert g_{j+1} \vert \right)\notag\\ && + \sum\limits_{l = 0}^{n}\frac{\vert \lambda_{l} \vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 2)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}(\gamma_{l} - 1) + \theta_{l})} \Bigg[ \sum\limits_{j = 0}^{l-1}\left({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} \vert g(t_{j+1}) \vert + \vert g_{j+1} \vert \right)\notag\\ && + \sum\limits_{j = 1}^{l-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\left({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} \vert g(t_{r+1}) \vert + \vert g_{r+1} \vert \right) \Bigg] + \sum\limits_{i = 0}^{m+1}\vert \mu_{i} \vert {_{\rho_{i}}^{}}{I}_{t_{i}}^{\alpha_{i}; \psi_{i}} \vert g(\eta_{i}) \vert + \sum\limits_{l = 0}^{n}\vert \lambda_{l} \vert{_{\rho_{l}}^{}}{I}_{t_{l}}^{\alpha_{l}+\theta_{l}; \psi_{l}} \vert g(\xi_{l}) \vert \Bigg\}\notag\\ && + \Psi_{\psi_{m}}^{2-\gamma_{m}}(T, t_{m}) {_{\rho_{m}}^{}}{I}_{t_{m}}^{\alpha_{m}; \psi_{m}} \vert g(T) \vert + \frac{\Psi_{\psi_{m}}^{}(T, t_{m})}{\Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})} \sum\limits_{j = 0}^{m-1}\left( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} \vert g(t_{j+1}) \vert + \vert g_{j+1} \vert \right)\notag\\ && + \frac{1}{\Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))} \Bigg[ \sum\limits_{j = 0}^{m-1}\left({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} \vert g(t_{j+1}) \vert + \vert g_{j+1} \vert \right)\notag\\ && + \sum\limits_{j = 1}^{m-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\left({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} \vert g(t_{r+1}) \vert + \vert g_{r+1} \vert \right) \Bigg]\\ &\leq& \Big[ (\Omega_{1} \Omega_{2} + \Omega_{3}) ({L}_{1} + \Psi_{*}^{\sigma_{m}} {L}_{2} + \Psi_{*}^{\nu_{m}} {L}_{3}) + (\Omega_{1} \Omega_{4} + \Omega_{5}) {I}_{1} + ( \Omega_{1} \Omega_{6} + m \Psi_{*}^{\gamma_{m}} ) {I}_{2} \Big] \Vert z-u \Vert_{{PC}}\notag\\ && + \epsilon \Bigg\{ \frac{\Psi_{\psi_{m}}^{}(T, t_{m})}{\Lambda \Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})} + \sum\limits_{j = 0}^{m-1} \frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j} \vert \Lambda \vert \Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))}\Bigg\} \Bigg\{ \sum\limits_{i = 0}^{m+1}\frac{\vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 1}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}\gamma_{i})} \notag\\ && \times \sum\limits_{j = 0}^{i-1}\Bigg( \frac{ \Psi_{\psi_{j}}^{\frac{\alpha_{j} - \rho_{j}(\gamma_{j}-1)}{\rho_{j}}}(t_{j+1}, t_{j})}{\Gamma_{\rho_{j}}(\rho_{j} + \alpha_{j} - \rho_{j}(\gamma_{j}-1))} + 1 \Bigg) + \sum\limits_{i = 0}^{m+1}\frac{\vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 2}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}(\gamma_{i}-1))} \Bigg[ \sum\limits_{j = 0}^{i-1}\Bigg( \frac{\Psi_{\psi_{j}}^{\frac{\alpha_{j} + \rho_{j}(2-\gamma_{j})}{\rho_{J}}}(t_{j+1}, t_{J})}{\Gamma_{\rho_{j}}(\rho_{J}+\alpha_{j} + \rho_{j}(2-\gamma_{j}))} + 1 \Bigg) \notag\\ && + \sum\limits_{j = 1}^{i-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Bigg(\frac{\Psi_{\psi_{r}}^{\frac{\alpha_{r} - \rho_{r}(\gamma_{r}-1)}{\rho_{r}}}(t_{r+1}, t_{r})}{\Gamma_{\rho_{r}}(\rho_{r}+\alpha_{r} - \rho_{r}(\gamma_{r}-1))} + 1 \Bigg) \Bigg] + \sum\limits_{l = 0}^{n}\frac{\vert \lambda_{l} \vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 1)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}\gamma_{l} + \theta_{l})}\notag\\ &&\times \sum\limits_{j = 0}^{l-1}\Bigg( \frac{ \Psi_{\psi_{j}}^{\frac{\alpha_{j} - \rho_{j}(\gamma_{j}-1)}{\rho_{j}}}(t_{j+1}, t_{j})}{\Gamma_{\rho_{j}}(\rho_{j} + \alpha_{j} - \rho_{j}(\gamma_{j}-1))} + 1 \Bigg) + \sum\limits_{l = 0}^{n}\frac{\vert \lambda_{l} \vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 2)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}(\gamma_{l} - 1) + \theta_{l})} \Bigg[\sum\limits_{j = 0}^{l-1}\Bigg(\frac{\Psi_{\psi_{j}}^{\frac{\alpha_{j} + \rho_{j}(2-\gamma_{j})}{\rho_{J}}}(t_{j+1}, t_{J})}{\Gamma_{\rho_{j}}(\rho_{J}+\alpha_{j} + \rho_{j}(2-\gamma_{j}))} + 1 \Bigg)\notag\\ && + \sum\limits_{j = 1}^{l-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Bigg(\frac{\Psi_{\psi_{r}}^{\frac{\alpha_{r} - \rho_{r}(\gamma_{r}-1)}{\rho_{r}}}(t_{r+1}, t_{r})}{\Gamma_{\rho_{r}}(\rho_{r}+\alpha_{r} - \rho_{r}(\gamma_{r}-1))} + 1 \Bigg) \Bigg] + \sum\limits_{i = 0}^{m+1} \frac{\vert \mu_{i} \vert \Psi_{\psi_{i}}^{\frac{\alpha_{i}}{\rho_{i}}}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}+\alpha_{i})} + \sum\limits_{l = 0}^{n} \frac{\vert \lambda_{l} \vert \Psi_{\psi_{l}}^{\frac{\alpha_{l}+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}+\alpha_{l}+\theta_{l})} \Bigg\}\notag\\ && + \Bigg\{ \frac{\Psi_{\psi_{m}}^{\frac{\alpha_{m}}{\rho_{m}}+2-\gamma_{m}}(T, t_{m})}{\Gamma_{\rho_{m}}(\rho_{m}+\alpha_{m})} + \frac{ \Psi_{\psi_{m}}^{}(T, t_{m})}{\Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})} \sum\limits_{j = 0}^{m-1}\Bigg( \frac{ \Psi_{\psi_{j}}^{\frac{\alpha_{j} - \rho_{j}(\gamma_{j}-1)}{\rho_{j}}}(t_{j+1}, t_{j})}{\Gamma_{\rho_{j}}(\rho_{j} + \alpha_{j} - \rho_{j}(\gamma_{j}-1))} + 1 \Bigg)\notag\\ && + \frac{1}{\Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))} \Bigg[ \sum\limits_{j = 0}^{m-1}\Bigg(\frac{\Psi_{\psi_{j}}^{\frac{\alpha_{j} + \rho_{j}(2-\gamma_{j})}{\rho_{J}}}(t_{j+1}, t_{j})}{\Gamma_{\rho_{j}}(\rho_{J}+\alpha_{j} + \rho_{j}(2-\gamma_{j}))} + 1 \Bigg)\notag\\ && + \sum\limits_{j = 1}^{m-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Bigg( \frac{\Psi_{\psi_{r}}^{\frac{\alpha_{r} - \rho_{r}(\gamma_{r}-1)}{\rho_{r}}}(t_{r+1}, t_{r})}{\Gamma_{\rho_{r}}(\rho_{r}+\alpha_{r} - \rho_{r}(\gamma_{r}-1))} + 1 \Bigg) \Bigg] \Bigg\} \epsilon\\ & = & \Big[ (\Omega_{1} \Omega_{2} + \Omega_{3}) ({L}_{1} + \Psi_{*}^{\sigma_{m}} {L}_{2} + \Psi_{*}^{\nu_{m}} {L}_{3}) + (\Omega_{1} \Omega_{4} + \Omega_{5}) {I}_{1} + ( \Omega_{1} \Omega_{6} + m \Psi_{*}^{\gamma_{m}} ) {I}_{2} \Big] \Vert z-u \Vert_{{PC}}\\ && + \epsilon \Big[ \Omega_{1} ( \Omega_{2} + \Omega_{4} + \Omega_{6} ) + \Omega_{3} + \Omega_{5} + m \Psi_{*}^{\gamma_{m}}\Big]\notag\\ & = & [ \Delta_{1} + \Delta_{2} ] \Vert z-u \Vert_{{PC}} + \epsilon [ \Omega_{1} ( \Omega_{2} + \Omega_{4} + \Omega_{6} ) + \Omega_{3} + \Omega_{5} + m \Psi_{*}^{\gamma_{m}}]. \end{eqnarray*}

    This yields that \Vert z-u \Vert_{{PC}} \leq \mathfrak{C}_{{F}} \epsilon , where \mathfrak{C}_{{F}} is given by

    \begin{equation} \mathfrak{C}_{{F}} : = \frac{\Omega_{1} ( \Omega_{2} + \Omega_{4} + \Omega_{6} ) + \Omega_{3} + \Omega_{5} + m \Psi_{*}^{\gamma_{m}}}{1 - (\Delta_{1} + \Delta_{2})}. \end{equation} (4.10)

    Hence, the considered problem (1.4) is UH stable in {E} .

    Corollary 4.1. By taking \chi(\epsilon) = \mathfrak{C}_{{F}} \epsilon and \chi(0) = 0 in Theorem 4.1, we obtain the considered problem (1.4) is GUH stable.

    To prove UHR and GUHR stability results, we will require the following assumption:

    ({U}_{1}) There exist a non-decreasing function \chi \in {C}({J}, {R}) and a positive real constant \mathfrak{C}_{\chi} > 0 such that

    \begin{equation*} {_{\rho_{k}}^{}}{I}_{t_{k}}^{\alpha_{k}; \psi_{k}} \chi(t) \leq \mathfrak{C}_{\chi} \chi(t). \end{equation*}

    Here we give notation for the constants

    \begin{eqnarray} \Omega_{7} &: = & \sum\limits_{i = 0}^{m+1}\vert \mu_{i} \vert + \sum\limits_{l = 0}^{n}\vert \lambda_{l} \vert, \end{eqnarray} (4.11)
    \begin{eqnarray} \Omega_{8} &: = & \sum\limits_{i = 0}^{m+1}\frac{i \vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 1}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}\gamma_{i})} + \sum\limits_{l = 0}^{n}\frac{l \vert \lambda_{l} \vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 1)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}\gamma_{l} + \theta_{l})}, \end{eqnarray} (4.12)
    \begin{eqnarray} \Omega_{9} &: = & \Psi_{\psi_{m}}^{2-\gamma_{m}}(T, t_{m}) + \frac{m \Psi_{\psi_{m}}^{}(T, t_{m})}{\Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})} + \sum\limits_{j = 1}^{m-1}\frac{j \Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}\Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))}. \end{eqnarray} (4.13)

    Theorem 4.2. Assume that \alpha_{k} \in (1, 2] , \beta_{k} \in [0, 1] , \rho_{k} \in {R}^{+} , \gamma_{k} = (\beta_{k}(2\rho_{k}-\alpha_{k})+\alpha_{k})/\rho_{k} , \psi_{k} \in {C}({J}, {R}) where \psi_{k}^{\prime} > 0 , k = 1, 2, \ldots, m and f \in {C}({J}\times{R}^{3}, {R}) . If the assumptions ({H}_{1}) and ({H}_{2}) and the inequality (3.8) hold, then the considered problem (1.4) is UHR stable with respect to (\delta, \chi) on {J} .

    Proof. Assume that z \in {E} is any solution of (4.3) and u \in {E} is a solution of the considered problem (1.4). By the same argument as in Theorem 4.1, it follows that

    \begin{eqnarray*} && \left\vert \Psi_{\psi_{k}}^{2-\gamma_{k}}(t, t_{k}) \big( z(t) - u(t) \big) \right\vert\notag\\ &\leq& \Bigg\{ \frac{\Psi_{\psi_{m}}^{}(T, t_{m})}{\vert \Lambda \vert \Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})} + \sum\limits_{j = 0}^{m-1} \frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}\vert \Lambda \vert \Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))}\Bigg\} \Bigg\{\sum\limits_{i = 0}^{m+1}\frac{\vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 1}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}\gamma_{i})} \notag\\ && \times \sum\limits_{j = 0}^{i-1}\Big( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} \vert {F}_{z}(t_{j+1}) - {F}_{u}(t_{j+1}) \vert + \vert \phi_{j+1}(z(t_{j+1})) - \phi_{j+1}(u(t_{j+1})) \vert \Big)\notag\\ && + \sum\limits_{i = 0}^{m+1}\frac{\vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 2}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}(\gamma_{i}-1))}\Bigg[ \sum\limits_{j = 0}^{i-1}\Big({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} \vert {F}_{z}(t_{j+1}) - {F}_{u}(t_{j+1}) \vert + \vert \phi_{j+1}^{*}(z(t_{j+1})) - \phi_{j+1}^{*}(u(t_{j+1})) \vert \Big)\notag\\ && + \sum\limits_{j = 1}^{i-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Big({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} \vert {F}_{z}(t_{r+1}) - {F}_{u}(t_{r+1}) \vert + \vert \phi_{r+1}(z(t_{r+1})) - \phi_{r+1}(u(t_{r+1})) \vert \Big) \Bigg]\notag\\ && + \sum\limits_{l = 0}^{n}\frac{\vert\lambda_{l}\vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 1)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}\gamma_{l} + \theta_{l})} \sum\limits_{j = 0}^{l-1}\Big( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} \vert {F}_{z}(t_{j+1}) - {F}_{u}(t_{j+1}) \vert + \vert \phi_{j+1}(z(t_{j+1})) - \phi_{j+1}(u(t_{j+1})) \vert \Big)\notag\\ && + \sum\limits_{l = 0}^{n}\frac{\vert\lambda_{l}\vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 2)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}(\gamma_{l} - 1) + \theta_{l})} \Bigg[ \sum\limits_{j = 0}^{l-1}\Big({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} \vert {F}_{z}(t_{j+1}) - {F}_{u}(t_{j+1}) \vert + \vert \phi_{j+1}^{*}(z(t_{j+1})) - \phi_{j+1}^{*}(u(t_{j+1})) \vert \Big) \notag\\ && + \sum\limits_{j = 1}^{l-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Big({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} \vert {F}_{z}(t_{r+1}) - {F}_{u}(t_{r+1}) \vert + \vert \phi_{r+1}(z(t_{r+1})) - \phi_{r+1}(u(t_{r+1})) \vert \Big) \Bigg] \notag\\ && + \sum\limits_{i = 0}^{m+1}\vert \mu_{i} \vert {_{\rho_{i}}^{}}{I}_{t_{i}}^{\alpha_{i}; \psi_{i}} \vert {F}_{z}(\eta_{i}) - {F}_{u}(\eta_{i}) \vert + \sum\limits_{l = 0}^{n}\vert \lambda_{l} \vert{_{\rho_{l}}^{}}{I}_{t_{l}}^{\alpha_{l}+\theta_{l}; \psi_{l}} \vert {F}_{z}(\xi_{l}) - {F}_{u}(\xi_{l}) \vert \Bigg\} + \Psi_{\psi_{m}}^{2-\gamma_{m}}(T, t_{m})\notag\\ && \times {_{\rho_{m}}^{}}{I}_{t_{m}}^{\alpha_{m}; \psi_{m}} \vert {F}_{z}(T) - {F}_{u}(T) \vert + \frac{\Psi_{\psi_{m}}^{}(T, t_{m})}{\Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})} \sum\limits_{j = 0}^{m-1}\Big( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} \vert {F}_{z}(t_{j+1}) - {F}_{u}(t_{j+1}) \vert \notag\\ && + \vert \phi_{j+1}(z(t_{j+1})) - \phi_{j+1}(u(t_{j+1})) \vert \Big) + \frac{1}{\Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))}\Bigg[ \sum\limits_{j = 0}^{m-1}\Big({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} \vert {F}_{z}(t_{j+1}) - {F}_{u}(t_{j+1}) \vert\notag\\ && + \vert \phi_{j+1}^{*}(z(t_{j+1})) - \phi_{j+1}^{*}(u(t_{j+1})) \vert \Big) + \sum\limits_{j = 1}^{m-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Big({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} \vert {F}_{z}(t_{r+1}) - {F}_{u}(t_{r+1}) \vert\notag\\ && + \vert \phi_{r+1}(z(t_{r+1})) - \phi_{r+1}(u(t_{r+1})) \vert \Big) \Bigg] + \Bigg\{ \frac{\Psi_{\psi_{m}}^{}(T, t_{m})}{\Lambda \Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})} + \sum\limits_{j = 0}^{m-1} \frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j} \vert \Lambda \vert \Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))}\Bigg\} \notag\\ && \times \Bigg\{ \sum\limits_{i = 0}^{m+1}\frac{\vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 1}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}\gamma_{i})} \sum\limits_{j = 0}^{i-1}\left( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} \vert g(t_{j+1}) \vert + \vert g_{j+1} \vert \right) + \sum\limits_{i = 0}^{m+1}\frac{\vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 2}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}(\gamma_{i}-1))}\notag\\ && \times \Bigg[ \sum\limits_{j = 0}^{i-1}\left({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} \vert g(t_{j+1}) \vert + \vert g_{j+1} \vert \right) + \sum\limits_{j = 1}^{i-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Big({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} \vert g(t_{r+1}) \vert + \vert g_{r+1} \vert \Big) \Bigg] \notag\\ && + \sum\limits_{l = 0}^{n}\frac{\vert \lambda_{l} \vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 1)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}\gamma_{l} + \theta_{l})} \sum\limits_{j = 0}^{l-1}\left( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} \vert g(t_{j+1}) \vert + \vert g_{j+1} \vert \right)\notag\\ && + \sum\limits_{l = 0}^{n}\frac{\vert \lambda_{l} \vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 2)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}(\gamma_{l} - 1) + \theta_{l})} \Bigg[ \sum\limits_{j = 0}^{l-1}\left({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} \vert g(t_{j+1}) \vert + \vert g_{j+1} \vert \right)\notag\\ && + \sum\limits_{j = 1}^{l-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\left({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} \vert g(t_{r+1}) \vert + \vert g_{r+1} \vert \right) \Bigg] + \sum\limits_{i = 0}^{m+1}\vert \mu_{i} \vert {_{\rho_{i}}^{}}{I}_{t_{i}}^{\alpha_{i}; \psi_{i}} \vert g(\eta_{i}) \vert + \sum\limits_{l = 0}^{n}\vert \lambda_{l} \vert{_{\rho_{l}}^{}}{I}_{t_{l}}^{\alpha_{l}+\theta_{l}; \psi_{l}} \vert g(\xi_{l}) \vert \Bigg\}\notag\\ && + \Psi_{\psi_{m}}^{2-\gamma_{m}}(T, t_{m}) {_{\rho_{m}}^{}}{I}_{t_{m}}^{\alpha_{m}; \psi_{m}} \vert g(T) \vert + \frac{\Psi_{\psi_{m}}^{}(T, t_{m})}{\Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})} \sum\limits_{j = 0}^{m-1}\left( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} \vert g(t_{j+1}) \vert + \vert g_{j+1} \vert \right)\notag\\ && + \frac{1}{\Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))} \Bigg[ \sum\limits_{j = 0}^{m-1}\left({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} \vert g(t_{j+1}) \vert + \vert g_{j+1} \vert \right)\notag\\ && + \sum\limits_{j = 1}^{m-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\left({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} \vert g(t_{r+1}) \vert + \vert g_{r+1} \vert \right) \Bigg]. \end{eqnarray*}

    Under ({C}_{1}) of Remark 4.4 and ({H}_{1}) , ({H}_{2}) and ({U}_{1}) , we see that

    \begin{eqnarray*} && \left\vert \Psi_{\psi_{k}}^{2-\gamma_{k}}(t, t_{k}) \big( z(t) - u(t) \big) \right\vert\notag\\ &\leq& \Big[ (\Omega_{1} \Omega_{2} + \Omega_{3}) ({L}_{1} + \Psi_{*}^{\sigma_{m}} {L}_{2} + \Psi_{*}^{\nu_{m}} {L}_{3}) + (\Omega_{1} \Omega_{4} + \Omega_{5}) {I}_{1} + ( \Omega_{1} \Omega_{6} + m \Psi_{*}^{\gamma_{m}} ) {I}_{2} \Big] \Vert z-u \Vert_{{PC}}\notag\\ && + \epsilon\Bigg\{ \frac{\Psi_{\psi_{m}}^{}(T, t_{m})}{\Lambda \Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})} + \sum\limits_{j = 0}^{m-1} \frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j} \vert \Lambda \vert \Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))}\Bigg\} \Bigg\{ \mathfrak{C}_{\chi} \chi(t) \Bigg( \sum\limits_{i = 0}^{m+1}\frac{i \vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 1}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}\gamma_{i})} \notag\\ && + \sum\limits_{l = 0}^{n}\frac{l \vert \lambda_{l} \vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 1)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}\gamma_{l} + \theta_{l})} + \sum\limits_{i = 0}^{m+1}\vert \mu_{i} \vert + \sum\limits_{l = 0}^{n}\vert \lambda_{l} \vert \Bigg) + \delta \Bigg( \sum\limits_{i = 0}^{m+1}\frac{i \vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 1}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}\gamma_{i})} + \sum\limits_{l = 0}^{n}\frac{l \vert \lambda_{l} \vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 1)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}\gamma_{l} + \theta_{l})} \Bigg)\notag\\ && + (\mathfrak{C}_{\chi} \chi(t) + \delta ) \Bigg(\sum\limits_{i = 0}^{m+1}\frac{\vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 2}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}(\gamma_{i}-1))} \sum\limits_{j = 1}^{i-1}\frac{j\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} + \sum\limits_{i = 0}^{m+1}\frac{i \vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 2}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}(\gamma_{i}-1))} + \sum\limits_{l = 0}^{n}\frac{l \vert \lambda_{l} \vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 2)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}(\gamma_{l} - 1) + \theta_{l})}\notag\\ && + \sum\limits_{l = 0}^{n}\frac{\vert \lambda_{l} \vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 2)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}(\gamma_{l} - 1) + \theta_{l})}\sum\limits_{j = 1}^{l-1}\frac{j \Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \Bigg) \Bigg\} + \epsilon \Bigg\{ \mathfrak{C}_{\chi} \chi(t)\Bigg( \Psi_{\psi_{m}}^{2-\gamma_{m}}(T, t_{m}) + \frac{m \Psi_{\psi_{m}}^{}(T, t_{m})}{\Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})}\Bigg) \notag\\ && + \delta \frac{m \Psi_{\psi_{m}}^{}(T, t_{m})}{\Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})} + (\mathfrak{C}_{\chi} \chi(t) + \delta) \Bigg( \frac{m}{\Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))} + \sum\limits_{j = 1}^{m-1}\frac{j \Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}\Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))} \Bigg) \Bigg\}\notag\\ &\leq& [ \Delta_{1} + \Delta_{2} ] \Vert z-u \Vert_{{PC}} + \epsilon\Big\{ \Omega_{1} \Big[ (\mathfrak{C}_{\chi} \chi(t) + \delta ) \Omega_{4} + \mathfrak{C}_{\chi} \chi(t) ( \Omega_{7} + \Omega_{8} ) + \delta \Omega_{8} \Big]\notag\\ && + \mathfrak{C}_{\chi} \chi(t) ( m \Psi_{*}^{\gamma_{m}} + \Omega_{9} ) + \delta (m \Psi_{*}^{\gamma_{m}} + \Omega_{5}) \Big\}\notag\\ & = & [ \Delta_{1} + \Delta_{2} ] \Vert z-u \Vert_{{PC}} + \epsilon\Big\{ \Omega_{1} \Big[ ( \Omega_{4} + \Omega_{7} + \Omega_{8} ) \mathfrak{C}_{\chi} \chi(t) + (\Omega_{4} + \Omega_{8}) \delta \Big]\notag\\ && + ( m \Psi_{*}^{\gamma_{m}} + \Omega_{9} ) \mathfrak{C}_{\chi}\chi(t) + (m \Psi_{*}^{\gamma_{m}} + \Omega_{5}) \delta \Big\}\notag\\ &\leq& [ \Delta_{1} + \Delta_{2} ] \Vert z-u \Vert_{{PC}} + \Big\{ \Omega_{1} \Big[ ( \Omega_{4} + \Omega_{7} + \Omega_{8} ) \mathfrak{C}_{\chi} + \Omega_{4} + \Omega_{8} \Big]\notag\\ && + ( m \Psi_{*}^{\gamma_{m}} + \Omega_{9} ) \mathfrak{C}_{\chi} + m \Psi_{*}^{\gamma_{m}} + \Omega_{5} \Big\} \epsilon (\delta + \chi(t)). \end{eqnarray*}

    It follows that, \Vert z - u \Vert_{{PC}} \leq \mathfrak{C}_{{F}, \chi_{{F}}} \; \epsilon \; (\delta + \chi(t)) , where

    \begin{equation} \mathfrak{C}_{{F}, \chi_{{F}}} : = \frac{\Omega_{1} [ ( \Omega_{4} + \Omega_{7} + \Omega_{8} ) \mathfrak{C}_{\chi} + \Omega_{4} + \Omega_{8} ] + ( m \Psi_{*}^{\gamma_{m}} + \Omega_{9} ) \mathfrak{C}_{\chi} + m \Psi_{*}^{\gamma_{m}} + \Omega_{5} }{1 - (\Delta_{1} + \Delta_{2})}. \end{equation} (4.14)

    Therefore, the considered problem (1.4) is UHR stable with respect to (\delta, \chi) in {E} .

    Corollary 4.2. By taking \epsilon = 1 and \chi(0) = 0 in Theorem 4.2, we obtain the considered problem (1.4) is GUHR stable.

    Example 5.1. Consider the following impulsive problem of the form:

    \begin{equation} \left\{ \begin{array}{l} {_{\frac{3k+46}{50}}^{H}}\mathfrak{D}_{t_{k}^+}^{\frac{2k+8}{7}, \frac{3-k}{4}; \psi_{k}} u(t) = f(t, u(t), {_{\frac{3k+46}{50}}^{}}{I}_{t_{k}}^{\frac{3k+2}{5-k}; \psi_{k}} u(t), {_{\frac{3k+46}{50}}^{}}{I}_{t_{k}}^{\frac{2k+3}{8}; \psi_{k}} u(t)), \, \, t \neq t_{k}, \, \, k = 0, 1, 2, \\ [0.25cm] {_{\frac{3k+46}{50}}^{}}{I}_{t_{k}^{+}}^{\frac{3k+46}{50}(2-\gamma_{k}); \psi_{k}} u(t_{k}^{+}) - {_{\frac{3k+43}{50}}^{}}{I}_{t_{k-1}^{+}}^{\frac{3k+43}{50}(2-\gamma_{k-1}); \psi_{k-1}} u(t_{k}^{-}) = \phi_{k}(u(t_{k})), \quad k = 1, 2, \\ [0.25cm] {_{\frac{3k+46}{50}}^{{RL}}}\mathfrak{D}_{t_{k}^{+}}^{\frac{3k+46}{50}(\gamma_{k}-1); \psi_{k}} u(t_{k}^{+}) - {_{\frac{3k+43}{50}}^{{RL}}}\mathfrak{D}_{t_{k-1}^{+}}^{\frac{3k+43}{50}(\gamma_{k-1}-1); \psi_{k-1}} u(t_{k}^{-}) = \phi_{k}^{*}(u(t_{k})), \quad k = 1, 2, \\ [0.25cm] u(0) = 0, \quad \sum\limits_{i = 0}^{2}\left(\frac{4i+3}{12-2i}\right) u\left(\frac{2i+2}{5}\right) + \sum\limits_{l = 0}^{2}\left(\frac{2l+2}{7-2l}\right){_{\frac{3l+46}{50}}^{}}{I}_{t_{l}}^{\frac{2l+3}{4}; \psi_{l}} u\left(\frac{3l+2}{6}\right) = e. \end{array} \right. \end{equation} (5.1)

    From the considered problem (5.1), we set \alpha_k = (2k+8)/7 , \beta_k = (3-k)/4 , \rho_k = (3k+46)/50 , \psi_k(t) = 1/(k+2) + \sin((k+2)t/((k+3)t-k+5)) , \sigma_k = (3k+2)/(5-k) , \nu_k = (2k+3)/8 , t_k = k/2 , k = 0, 1, 2 , T = 3/2 , \mu_i = (4i+3)/(12-2i) , \eta_i = (2i+2)/5 , \lambda_l = (2l+2)/(7-2l) , \theta_l = (2l+3)/4 , \xi_l = (3l+2)/6 , i = 0, 1, 2 , l = 0, 1, 2 and {A} = e . Thanks to the given data, we can compute that \Lambda \approx 1.319519900 , \Omega_1 \approx 0.226529808 , \Omega_2 \approx 0.656891205 , \Omega_3 \approx 1.166135348 , \Omega_4 \approx 0.688903756 , \Omega_5 \approx 0.228769110 , \Omega_6 \approx 6.890783193 , \Omega_7 \approx 5.410714286 , \Omega_8 \approx 0.341866237 , and \Omega_9 \approx 0.707853736 . The following functions will be considered for theoretical confirmation:

    \begin{eqnarray*} f(t, u, v, w) & = & \frac{\ln(2t+3)}{\cos(\pi t)+3} + \Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k}) \Bigg(\frac{3e^{-5t}}{(t+2)^2+1}\cdot\frac{|u|}{5|u|+2} + \frac{5-2\sin(t)}{5e^t}\cdot\frac{|v|}{4|u|+3}\\ && +\frac{3\cos(2t)}{7+\tan(t+\pi)}\cdot\frac{|w|}{2|w|+1}\Bigg), \\ \phi_{k}(u(t_{k})) & = & \frac{1}{8t_k}\Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k})u(t_{k}) + e^{t_{k}}, \quad \phi_{k}^{*}(u(t_{k})) = \frac{2t_k}{10t_k+30}\Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k})u(t_{k}) + \ln(t_k +1) . \end{eqnarray*}

    For any u_i , v_i , w_i \in {R} , i = 1, 2 , and t \in [0, 3/2] , it follows that

    \begin{eqnarray*} &&\vert f(t, u_1, u_2, u_3)-f(t, v_1, v_2, v_3)\vert \leq \Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k}) \left( \frac{3}{10} \vert u_1-v_1\vert +\frac{2}{5} \vert u_2-v_2\vert + \frac{3}{7} \vert u_3-v_3 \vert \right), \\ &&\vert\phi_{k}(u)-\phi_{k}(v)\vert \leq \frac{1}{4} \Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k}) \vert u-v\vert , \quad \vert\phi_{k}^{*}(u)-\phi_{k}(v)\vert \leq \frac{2}{35} \Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k}) \vert u-v\vert. \end{eqnarray*}

    It is easy to see that the conditions ({H}_1) and ({H}_2) are fulfilled under {L}_1 = 3/10 , {L}_2 = 2/5 , {L}_3 = 3/7 , {I}_1 = 1/4 and, {I}_2 = 2/35 . Then we have \Delta_{1} \approx 0.449865758 and \Delta_{2} \approx 0.278219606 , which implies that \Delta_{1}+\Delta_{2} \approx 0.728085364 < 1 . Since all the conditions of Theorem 3.1 are satisfied, the considered problem (5.1) has a unique solution on [0, 3/2] . Furthermore, thanks of (4.10), we get

    \begin{equation*} \mathfrak{C}_{{F}} : = \frac{\Omega_{1} ( \Omega_{2} + \Omega_{4} + \Omega_{6} ) + \Omega_{3} + \Omega_{5} + m \Psi_{*}^{\gamma_{m}}}{1 - (\Delta_{1} + \Delta_{2})} \approx 17.965178470 > 0. \end{equation*}

    Therefore, the considered problem (5.1) is UH stable on [0, T] . By setting \chi(\epsilon) = \mathfrak{C}_{{F}} \epsilon via \chi(0) = 0 , we obtain from Corollary 4.1 that the considered problem (5.1) is GUH stable on [0, 3/2] . Moreover, if we put \chi(t) = \Psi_{\psi_{k}}^{\frac{3}{\rho_{k}}}(t, t_{k}) into ({U}_{1}) , we have

    \begin{equation*} {_{\rho_{k}}^{}}{I}_{t_{k}}^{\alpha_{k}; \psi_{k}} \chi(t) = \frac{\Gamma_{\rho_{k}}(3+\rho_{k})\Psi_{\psi_{k}}^{\frac{\alpha_{k}}{\rho_{k}}}(t, t_{k})}{\Gamma_{\rho_{k}}(3+\rho_{k}+\alpha_{k})} \Psi_{\psi_{k}}^{\frac{3}{\rho_{k}}}(t, t_{k}) \leq \frac{\Gamma_{\rho_{k}}(3+\rho_{k})\Psi_{\psi_{k}}^{\frac{\alpha_{k}}{\rho_{k}}}(t, t_{k})}{\Gamma_{\rho_{k}}(3+\rho_{k}+\alpha_{k})} \chi(t). \end{equation*}

    Then, we have

    \begin{equation*} \mathfrak{C}_{\chi} = \max\limits_{k \in \{0, 1, 2 \}}\Bigg\{ \frac{\Gamma_{\rho_{k}}(3+\rho_{k})\Psi_{\psi_{k}}^{\frac{\alpha_{k}}{\rho_{k}}}(t, t_{k})}{\Gamma_{\rho_{k}}(3+\rho_{k}+\alpha_{k})} \Bigg\} \approx 0.017240540. \end{equation*}

    By applying (4.14), one has

    \begin{equation*} \mathfrak{C}_{{F}, \chi_{{F}}} : = \frac{\Omega_{1} [ ( \Omega_{4} + \Omega_{7} + \Omega_{8} ) \mathfrak{C}_{\chi} + \Omega_{4} + \Omega_{8} ] + ( m \Psi_{*}^{\gamma_{m}} + \Omega_{9} ) \mathfrak{C}_{\chi} + m \Psi_{*}^{\gamma_{m}} + \Omega_{5} }{1 - (\Delta_{1} + \Delta_{2})} \approx 7.913856366. \end{equation*}

    Then, by Theorem 4.2, the considered problem (5.1) is UHR stable on [0, 3/2] . Finally, if we set \chi(\epsilon) = \mathfrak{C}_{{F}, \chi_{{F}}} \epsilon via \chi(0) = 0 and \epsilon = 1 in Corollary 4.2, we obtain that the considered problem (5.1) is GUHR stable with respect to (\delta, \chi) on [0, 3/2] . In addition, we will present the graphical relations between \Delta_{1} + \Delta_{2} , \alpha_{k} , and \beta_{k} \in [0, 1] for k = 0, 1, 2 in Figure 1, while Table 1 shows the relationship between \alpha_{k} , \beta_{k} , \Lambda , \Omega_{i} , i = 1, 2, \ldots, 6 , and \Delta_{1} + \Delta_{2} < 1 .

    Figure 1.  The condition \Delta_{1} + \Delta_{2} of Example 5.1 under \alpha_k \in (1, 2] and \beta_k \in [0, 1] for k = 0, 1, 2 .
    Table 1.  The relationship between \alpha_{k} , \beta_{k} , \Lambda , \Omega_{i} , i = 1, 2, \ldots, 6 , and \Delta_{1} + \Delta_{2} < 1 .
    \alpha_{k} \beta_{k} \Lambda \Omega_1 \Omega_2 \Omega_3 \Omega_4 \Omega_5 \Omega_6 \Delta_1 + \Delta_{2} < 1
    1.10 0.00 2.89747 0.02794 0.64651 1.02427 3.17599 0.13384 6.36489 0.42946
    1.17 0.10 3.12101 0.04342 0.69646 1.03920 2.46685 0.16217 12.51157 0.49162
    1.24 0.20 2.73831 0.06766 0.65209 1.05567 1.83607 0.18540 12.78250 0.54965
    1.31 0.30 2.23210 0.10206 0.56559 1.07170 1.35043 0.20338 11.13307 0.60005
    1.38 0.40 1.77633 0.14772 0.46890 1.08537 0.99976 0.21660 9.16775 0.64098
    1.45 0.50 1.41494 0.20455 0.37834 1.09517 0.75403 0.22583 7.43935 0.67190
    1.52 0.60 1.14457 0.27068 0.30046 1.10018 0.58419 0.23191 6.07673 0.69323
    1.59 0.70 0.94888 0.34221 0.23655 1.10018 0.46769 0.23567 5.05917 0.70601
    1.66 0.80 0.81105 0.41335 0.18549 1.09556 0.38856 0.23781 4.32682 0.71166
    1.73 0.90 0.71760 0.47711 0.14527 1.08715 0.33603 0.23891 3.82072 0.71175
    1.80 1.00 0.65893 0.52647 0.11380 1.07611 0.30315 0.239388 3.49485 0.70783

     | Show Table
    DownLoad: CSV

    Example 5.2. Consider the following impulsive problem of the form:

    \begin{equation} \left\{ \begin{array}{l} {_{\frac{3k+46}{50}}^{H}}\mathfrak{D}_{t_{k}^+}^{\frac{e^{k-1}+2}{e^{k-1}+1}, \frac{3-k}{4}; \psi_{k}} u(t) = f(t, u(t), {_{\frac{3k+46}{50}}^{}}{I}_{t_{k}}^{\frac{3k+2}{5-k}; \psi_{k}} u(t), {_{\frac{3k+46}{50}}^{}}{I}_{t_{k}}^{\frac{2k+3}{8}; \psi_{k}} u(t)), \, \, t \neq t_{k}, \, \, k = 0, 1, 2, \\ [0.25cm] {_{\frac{3k+46}{50}}^{}}{I}_{t_{k}^{+}}^{\frac{3k+46}{50}(2-\gamma_{k}); \psi_{k}} u(t_{k}^{+}) - {_{\frac{3k+43}{50}}^{}}{I}_{t_{k-1}^{+}}^{\frac{3k+43}{50}(2-\gamma_{k-1}); \psi_{k-1}} u(t_{k}^{-}) = \phi_{k}(u(t_{k})), \quad k = 1, 2, \\ [0.25cm] {_{\frac{3k+46}{50}}^{{RL}}}\mathfrak{D}_{t_{k}^{+}}^{\frac{3k+46}{50}(\gamma_{k}-1); \psi_{k}} u(t_{k}^{+}) - {_{\frac{3k+43}{50}}^{{RL}}}\mathfrak{D}_{t_{k-1}^{+}}^{\frac{3k+43}{50}(\gamma_{k-1}-1); \psi_{k-1}} u(t_{k}^{-}) = \phi_{k}^{*}(u(t_{k})), \quad k = 1, 2, \\ [0.15cm] u(0) = 0, \quad \sum\limits_{i = 0}^{2}\left(\frac{4i+3}{12-2i}\right) u\left(\frac{2i+2}{5}\right) + \sum\limits_{l = 0}^{1}\left(\frac{2l+2}{7-2l}\right){_{\frac{3l+46}{50}}^{}}{I}_{t_{l}}^{\frac{2l+3}{4}; \psi_{l}} u\left(\frac{3l+2}{6}\right) = e. \end{array} \right. \end{equation} (5.2)

    From the considered problem (5.1), we set \alpha_k = (e^{k-1}+2)/(e^{k-1}+1) , \beta_k = (3-k)/4 , \rho_k = (3k+46)/50 , \psi_k(t) = (t^{t^2-k+2})/(t+2k+10) , \sigma_k = (3k+2)/(5-k) , \nu_k = (2k+3)/8 , t_k = k/2 , k = 0, 1, 2 , T = 3/2 , \mu_i = (4i+3)/(12-2i) , \eta_i = (2i+2)/5 , \lambda_l = (2l+2)/(7-2l) , \theta_l = (2l+3)/4 , \xi_l = (3l+2)/6 , i = 0, 1, 2 , l = 0, 1 and {A} = e . Thanks to the given data, we can compute that \Lambda \approx 0.812170396 , \Omega_1 \approx 0.167309417 , \Omega_2 \approx 0.079568573 , \Omega_3 \approx 1.027705947 , \Omega_4 \approx 0.923594556 , \Omega_5 \approx 0.229753595 , \Omega_6 \approx 14.887728830 . The following functions will be considered for theoretical confirmation:

    \begin{eqnarray*} f(t, u, v, w) & = & \frac{(3t+5)\Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k})}{t^2+5t+25} \left(\frac{2|u|^2+7|u|}{|u|+3}-1\right) \\ && + \Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k}) \left(\frac{\sin(t)}{2e^t}\cdot\frac{|v|}{|v|+2} +\frac{\ln(t+8)}{\cos^2(t)+3}\cdot\frac{|w|}{3|w|+1}\right), \\ \phi_{k}(u(t_{k})) & = & \frac{e^{t_{k}-1}}{2t_k}\Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k})\frac{|u(t_{k})|}{3|u(t_{k})|+5}, \qquad \phi_{k}^{*}(u(t_{k})) = \frac{\cos(\pi t_{k})}{4t_k+3}\Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k})\frac{|u(t_{k})|}{|u(t_{k})|+2}. \end{eqnarray*}

    For any u , v , w \in {R} , and t \in [0, 3/2] , it follows that

    \begin{eqnarray*} \vert f(t, u, v, w)\vert &\leq& \frac{(3t+5)}{t^2+5t+25} \left(2\Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k})|u|+1\right) + \Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k}) \left(\frac{\sin(t)|v|}{4} +\frac{|w|\ln(t+8)}{3}\right), \\ \vert\phi_{k}(u)\vert &\leq& \frac{1}{3} \Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k}) \vert u\vert , \qquad\qquad \vert\phi_{k}^{*}(u)\vert \leq \frac{1}{5} \Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k}) \vert u\vert, \\ \vert\phi_{k}(u)-\phi_{k}(v)\vert &\leq& \frac{1}{5} \Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k}) \vert u-v\vert , \qquad\, \, \vert\phi_{k}^{*}(u)-\phi_{k}(v)\vert \leq \frac{1}{10} \Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k}) \vert u-v\vert. \end{eqnarray*}

    By applying ({H}_{3}) ({H}_{5}) with \Theta(u) = 2|u|+1 , we obtain that {M}_1 = 0.296890807 , {M}_2 = 0.178134484 , g_{1}^{*} = 0.273381295 , g_{2}^{*} = 0.249373747 , g_{3}^{*} = 0.750430599 , \Xi_1 = 1/5 , \Xi_2 = 1/10 , and

    \begin{equation*} [ ( \Omega_{5} + \Omega_{1} \Omega_{4} ) \Xi_{1} + ( m \Psi_{*}^{\gamma_{m}} + \Omega_{1} \Omega_{6} ) \Xi_{2} ] \approx 0.421759604 < 1. \end{equation*}

    By using (3.30) and ({H}_{6}) , we have that

    \begin{equation*} \mathfrak{C}^{*} : = (\Omega_{5} + \Omega_{1} \Omega_{4}) {M}_{1} + (m \Psi_{*}^{\sigma_{m}} + \Omega_{1}\Omega_{6}) {M}_{2} + \Omega_{1} \vert {A} \vert \approx 1.081294628. \end{equation*}

    Then,

    \begin{eqnarray*} \sup\limits_{\mathfrak{R}_{2}\in (0, \infty)}\frac{\mathfrak{R}_{2}}{g_{1}^{*}\Theta( \mathfrak{R}_{2} )(\Omega_{3} + \Omega_{1} \Omega_{2} ) + \mathfrak{C}^{*} } &\approx& 1.756882645, \notag\\ \frac{1}{1 - [ g_{2}^{*} \Psi_{*}^{\sigma_{m}} + g_{3}^{*} \Psi_{*}^{\nu_{m}} ] (\Omega_{3} + \Omega_{1} \Omega_{2} )} &\approx& 1.123309473, \end{eqnarray*}

    which yields \mathfrak{R}_{2} > 4.041270259 . Since all the conditions of Theorem 3.2 are satisfied, the considered problem (5.2) has a solution on [0, 3/2] .

    Example 5.3. Consider the following the impulsive (\rho_{k}, \psi_{k}) - {HFP} - {IDE} - {MIBC} s of the form:

    \begin{equation} \left\{ \begin{array}{l} {_{\frac{k+18}{20}}^{H}}\mathfrak{D}_{t_{k}^+}^{\alpha_{k}, \frac{4-k}{5}; \psi_{k}} u(t) = 2, \, \, t \neq t_{k}, \, \, k = 0, 1, 2, \\ [0.15cm] {_{\frac{k+18}{20}}^{}}{I}_{t_{k}^{+}}^{\frac{k+18}{20}(2-\gamma_{k}); \psi_{k}} u(t_{k}^{+}) - {_{\frac{k+17}{20}}^{}}{I}_{t_{k-1}^{+}}^{\frac{k+17}{20}(2-\gamma_{k-1}); \psi_{k-1}} u(t_{k}^{-}) = -\frac{k+1}{k+2}, \quad k = 1, 2, \\ [0.25cm] {_{\frac{k+18}{20}}^{{RL}}}\mathfrak{D}_{t_{k}^{+}}^{\frac{k+18}{20}(\gamma_{k}-1); \psi_{k}} u(t_{k}^{+}) - {_{\frac{k+17}{20}}^{{RL}}}\mathfrak{D}_{t_{k-1}^{+}}^{\frac{k+17}{20}(\gamma_{k-1}-1); \psi_{k-1}} u(t_{k}^{-}) = (-1)^{k}\frac{3}{2}, \quad k = 1, 2, \\ [0.15cm] u(0) = 0, \quad \sum\limits_{i = 0}^{3}\left(\frac{4i+3}{12-2i}\right) u\left(\frac{2i+2}{5}\right) + \sum\limits_{l = 0}^{3}\left(\frac{2l+2}{7-2l}\right) {_{\frac{l+18}{20}}^{}}{I}_{t_{l}}^{\frac{2l+3}{4}; \psi_{l}} u\left(\frac{3l+2}{6}\right) = e. \end{array} \right. \end{equation} (5.3)

    Form the considered problem (5.3), we set \alpha_k \in \{(2\pi+k-2)/4, 1+\sqrt{(k+1)/(k+6)}, (e^{k-1}+2)/(e^{k-1}+1), \ln(k+4)\} , \beta_k = (4-k)/5 , \rho_k = (k+18)/20 , \psi_k(t) \in \{1/(k+2) + \sin((k+2)t/((k+3)t-k+5)) , (k+4)/2-\arccos((t^2+kt-2)/10), (t^{t^2-k+3})/(t+2k+8) , 2-(\ln[(k+2)t+3k+3])/(\ln\left[(k+1)t+2k+2\right])\} , t_k = k/2 , k = 0, 1, 2, 3 , T = 2 , \phi_{k}(u(t_{k})) = -(k+1)/(k+2) , \phi_{k}^{*}(u(t_{k})) = (-1)^k (3/2) , k = 1, 2, 3 , \mu_i = (4i+3)/(12-2i) , \eta_i = (2i+2)/5 , \lambda_l = (2l+2)/(7-2l) , \theta_l = (2l+3)/4 , \xi_l = (3l+2)/6 , i = 0, 1, 2, 3 , l = 0, 1, 2, 3 , and {A} = e . Thanks to the given data, we can compute that \Lambda \approx 1.3195199 . By using Lemma 2.6 with f(t, u(t), {_{\rho_{k}}^{}}{I}_{t_{k}}^{\sigma_{k}; \psi_{k}} u(t), {_{\rho_{k}}^{}}{I}_{t_{k}}^{\nu_{k}; \psi_{k}} u(t)) = 2 , the solution of the considered problem (5.3) can be written as

    \begin{eqnarray} && u(t)\\ & = & \Bigg\{ \frac{\Psi_{\psi_{k}}^{\gamma_{k} - 1}(t, t_{k})}{\Lambda \Gamma_{\rho_{k}}(\rho_{k}\gamma_{k})} + \frac{\Psi_{\psi_{k}}^{\gamma_{k} - 2}(t, t_{k})}{\Lambda \Gamma_{\rho_{k}}(\rho_{k}(\gamma_{k}-1))} \sum\limits_{j = 0}^{k-1} \frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}}\Bigg\} \Bigg\{ e \\ && - \Bigg( \sum\limits_{i = 0}^{4}\left(\frac{4i+3}{12-2i}\right)\frac{ \Psi_{\psi_{i}}^{\gamma_{i} - 1}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}\gamma_{i})} \sum\limits_{j = 0}^{i-1}\Bigg( \frac{2\Psi_{\psi_{j}}^{\frac{\alpha_{j} - \rho_{j}(\gamma_{j}-1)}{\rho_{j}}}(t_{j+1}, t_{j})}{\Gamma_{\rho_{j}}(\alpha_{j} - \rho_{j}(\gamma_{j}-1)+\rho_{j})} - \frac{j+2}{j+3} \Bigg)\\ && + \sum\limits_{i = 0}^{4}\left(\frac{4i+3}{12-2i}\right)\frac{ \Psi_{\psi_{i}}^{\gamma_{i} - 2}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}(\gamma_{i}-1))}\Bigg[ \sum\limits_{j = 0}^{i-1}\Bigg(\frac{2\Psi_{\psi_{j}}^{\frac{\alpha_{j} + \rho_{j}(2-\gamma_{j})}{\rho_{j}}}(t_{j+1}, t_{j})}{\Gamma_{\rho_{j}}(\alpha_{j} + \rho_{j}(2-\gamma_{j})+\rho_{j})} + (-1)^{j+1} \frac{ 3}{2} \Bigg)\\ && + \sum\limits_{j = 1}^{i-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Bigg(\frac{2\Psi_{\psi_{r}}^{\frac{\alpha_{r} - \rho_{r}(\gamma_{r}-1)}{\rho_{r}}}(t_{r+1}, t_{r})}{\Gamma_{\rho_{r}}(\alpha_{r} - \rho_{r}(\gamma_{r}-1)+\rho_{r})} - \frac{r+2}{r+3} \Bigg) \Bigg] + \sum\limits_{i = 0}^{4}\left(\frac{4i+3}{6-i}\right) \frac{\Psi_{\psi_{i}}^{\frac{\alpha_{i}}{\rho_{i}}}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\alpha_{i}+\rho_{i})} \\ && + \sum\limits_{l = 0}^{3}\left(\frac{4l+4}{7-2l}\right) \frac{\Psi_{\psi_{l}}^{\frac{\alpha_{l}+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\alpha_{l}+\theta_{l}+\rho_{l})} + \sum\limits_{l = 0}^{3}\left(\frac{2l+2}{7-2l}\right)\frac{\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 1)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}\gamma_{l} + \theta_{l})} \sum\limits_{j = 0}^{l-1}\Bigg(\frac{2\Psi_{\psi_{j}}^{\frac{\alpha_{j} - \rho_{j}(\gamma_{j}-1)}{\rho_{j}}}(t_{j+1}, t_{j})}{\Gamma_{\rho_{j}}(\alpha_{j} - \rho_{j}(\gamma_{j}-1)+\rho_{j})} - \frac{j+2}{j+3} \Bigg)\\ && + \sum\limits_{l = 0}^{3}\left(\frac{2l+2}{7-2l}\right)\frac{\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 2)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}(\gamma_{l} - 1) + \theta_{l})} \Bigg[ \sum\limits_{j = 0}^{l-1}\Bigg(\frac{2\Psi_{\psi_{j}}^{\frac{\alpha_{j} + \rho_{j}(2-\gamma_{j})}{\rho_{j}}}(t_{j+1}, t_{j})}{\Gamma_{\rho_{j}}(\alpha_{j} + \rho_{j}(2-\gamma_{j})+\rho_{j})} + (-1)^{j+1} \frac{ 3}{2} \Bigg)\\ && + \sum\limits_{j = 1}^{l-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Bigg(\frac{2\Psi_{\psi_{r}}^{\frac{\alpha_{r} - \rho_{r}(\gamma_{r}-1)}{\rho_{r}}}(t_{r+1}, t_{r})}{\Gamma_{\rho_{r}}(\alpha_{r} - \rho_{r}(\gamma_{r}-1)+\rho_{r})} - \frac{r+2}{r+3} \Bigg) \Bigg] \Bigg) \Bigg\}\\ && + \frac{2\Psi_{\psi_{k}}^{\frac{\alpha_{k}}{\rho_{k}}}(t, t_{k})}{\Gamma_{\rho_{k}}(\alpha_{k}+\rho_{k})} + \frac{\Psi_{\psi_{k}}^{\gamma_{k} - 1}(t, t_{k})}{\Gamma_{\rho_{k}}(\rho_{k}\gamma_{k})} \sum\limits_{j = 0}^{k-1}\Bigg(\frac{2\Psi_{\psi_{j}}^{\frac{\alpha_{j} - \rho_{j}(\gamma_{j}-1)}{\rho_{j}}}(t_{j+1}, t_{j})}{\Gamma_{\rho_{j}}(\alpha_{j} - \rho_{j}(\gamma_{j}-1)+\rho_{j})} - \frac{j+2}{j+3} \Bigg)\\ && + \frac{\Psi_{\psi_{k}}^{\gamma_{k} - 2}(t, t_{k})}{\Gamma_{\rho_{k}}(\rho_{k}(\gamma_{k}-1))}\Bigg[ \sum\limits_{j = 0}^{k-1}\Bigg(\frac{2\Psi_{\psi_{j}}^{\frac{\alpha_{j} + \rho_{j}(2-\gamma_{j})}{\rho_{j}}}(t_{j+1}, t_{j})}{\Gamma_{\rho_{j}}(\alpha_{j} + \rho_{j}(2-\gamma_{j})+\rho_{j})} + (-1)^{j+1} \frac{ 3}{2} \Bigg)\\ && + \sum\limits_{j = 1}^{k-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Bigg(\frac{2\Psi_{\psi_{r}}^{\frac{\alpha_{r} - \rho_{r}(\gamma_{r}-1)}{\rho_{r}}}(t_{r+1}, t_{r})}{\Gamma_{\rho_{r}}(\alpha_{r} - \rho_{r}(\gamma_{r}-1)+\rho_{r})} - \frac{r+2}{r+3} \Bigg) \Bigg]. \end{eqnarray} (5.4)

    Hence, the solution of the considered problem (5.3) is divided into three cases.

    Case Ⅰ. If we set \alpha_{k} \in \{ \pi/2 + (k-2)/4 , 1 + \sqrt{(k+1)/(k+6)} , (e^{k-1}+2)/(e^{k-1}+1) , \ln(k+4)\} and \psi_{k}(t) = 1/(k+2) + \sin(((k+2)t)/((k+3)t+(5-k))) for k = 0, 1, 2, 3 , then the solution of the considered problem (5.3) is displayed in Figure 2.

    Figure 2.  The solution of Example (5.3) via \alpha_k \in \{\frac{\pi}{2} + \frac{k-2}{4}, 1+\sqrt{\frac{k+1}{k+6}}, \frac{e^{k-1}+2}{e^{k-1}+1}, \ln(k+4)\} and \psi_{k}(t) = \frac{1}{k+2} + \sin(\frac{(k+2)t}{(k+3)t+(5-k)}) for k = 0, 1, 2, 3 .

    Case Ⅱ. If we set \alpha_{k} = \pi/2 + (k-2)/4 and \psi_{k}(t) \in \{ 1/(k+2) + \sin(((k+2)t)/((k+3)t-k+5)), (k+4)/(2) - \arccos((t^2+kt-2)/(10)), (t^{t^2-k+3})/(t+2k+8), 2 - (\ln[(k+2)t+3k+3])/(\ln[(k+1)t+2k+2]) \} for k = 0, 1, 2, 3 , then the solution of the considered problem (5.3) is displayed in Figure 3.

    Figure 3.  The solution of Example (5.3) via \alpha_{k} = \frac{\pi}{2} + \frac{k-2}{4} and \psi_k(t) \in \{ \frac{1}{k+2}+\sin(\frac{(k+2)t}{(k+3)t-k+5}), \frac{k+4}{2}-\arccos(\frac{t^2+kt-2}{10}), \frac{t^{t^2-k+3}}{t+2k+8}, 2-\frac{\ln[(k+2)t+3k+3]}{\ln[(k+1)t+2k+2]} \} for k = 0, 1, 2, 3 .

    Case Ⅲ. If we set \alpha_{k} \in \{ \pi/2 + (k-2)/4 , 1 + \sqrt{(k+1)/(k+6)} , (e^{k-1}+2)/(e^{k-1}+1) , \ln(k+4)\} and \psi_{k}(t) \in \{ 1/(k+2) + \sin(((k+2)t)/((k+3)t-k+5)), (k+4)/(2) - \arccos((t^2+kt-2)/(10)), (t^{t^2-k+3})/(t+2k+8), 2 - (\ln[(k+2)t+3k+3])/(\ln[(k+1)t+2k+2]) \} for k = 0, 1, 2, 3 , then the solution of the considered problem (5.3) is displayed in Figure 4.

    Figure 4.  The solution of Example (5.3) via \alpha_k \in \{\frac{\pi}{2} + \frac{k-2}{4}, 1+\sqrt{\frac{k+1}{k+6}}, \frac{e^{k-1}+2}{e^{k-1}+1}, \ln(k+4)\} and \psi_k(t) \in \{ \frac{1}{k+2}+\sin(\frac{(k+2)t}{(k+3)t-k+5}), \frac{k+4}{2}-\arccos(\frac{t^2+kt-2}{10}), \frac{t^{t^2-k+3}}{t+2k+8}, 2-\frac{\ln[(k+2)t+3k+3]}{\ln[(k+1)t+2k+2]} \} for k = 0, 1, 2, 3 .

    In this paper, we have investigated existence theory and stability results for a class of nonlinear impulsive boundary value problem of fractional integro-differential equations supplemented with mixed nonlocal multi-point and multi-term integral boundary conditions in the context of the (\rho_{k}, \psi_{k}) -Hilfer fractional derivatve. Firstly, the solution to the linear variant impulsive considered problem was introduced in terms of a Volterra integral equation. The uniqueness result was proved by using Banach's fixed point theorem, while the existence result was established by means of a fixed point theorem due to O'Regan. In addition, a variety of Ulam's stability such as UH, GUH, UHR and GUHR stability were studied by applying nonlinear functional analysis technique. Finally, three examples illustrating the results are also provided to confirm the correctness of the theoretical results. The novelty of our results is not only finding a distinctive qualitative theory for this problem within the given frame but also addressing some new, interesting exceptional cases for various values of the parameters related to the considered problem. For example,

    (i) If we set \lambda_{l} = 0 for all l = 0, 1, \ldots, n , then the considered problem (1.4) reduces to {BVP} for nonlinear impulsive (\rho_{k}, \psi_{k}) -Hilfer-FIDEs under nonlocal multi-point boundary conditions: u(0) = 0 , \sum_{i = 0}^{m}\mu_{i} u(\eta_{i}) = {A} .

    (ii) If we set \mu_{i} = 0 for all i = 0, 1, \ldots, m , then the considered problem (1.4) reduces to {BVP} for nonlinear impulsive (\rho_{k}, \psi_{k}) -Hilfer-FIDEs under nonlocal multi-term integral boundary conditions: u(0) = 0,\sum\nolimits_{l = 0}^n {{\lambda _l}{_{{\rho _l}}} I}_{{t_l}}^{{\theta _l};{\psi _l}}u({\xi _l}) = A.

    This research would provide a significant contribution to the literature on the qualitative theory, which might involve the growth of the idea introduced in this field as well as the possibility for further generalizations in a wide range of exclusive outputs for applications and theories. One proposal is that future studies explore the existence and uniqueness of solutions for additional forms of nonlinear differential-integral equations in the setting of other fractional operators with varied boundary conditions.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    W. Sudsutad would like to thank you for supporting this paper through Ramkhamhaeng University. C. Thaiprayoon and J. Kongson would like to extend their appreciation to Burapha University.

    The authors declare no conflict of interest.



    [1] G. M. Zaslavsky, Hamiltonian chaos and fractional dynamics, New York: Oxford University Press, 2005.
    [2] R. L. Magin, Fractional calculus in bioengineering, 2006.
    [3] F. Mainardi, Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models, Imperial College Press, 2010.
    [4] T. M. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica, Fractional calculus with application in mechanics: Vibrations and diffusion processes, Wiley, 2014.
    [5] R. Herrmann, Fractional calculus: An introduction for physicsts, World Scientific, 2014.
    [6] R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000.
    [7] H. A. Fallahgoul, S. M. Focardi, F. J. Fabozzi, Fractional calculus and fractional processes with applications to financial economics: Theory and application, Elsevier, 2017.
    [8] S. G. Samko, A. Kilbas, O. Marichev, Fractional integrals and drivatives, Gordon and Breach Science Publishers, 1993.
    [9] I. Podlubny, Fractional differential equations, Academic Press, 1999.
    [10] V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, 2009.
    [11] K. Diethelm, The analysis of fractional differential equations, In: Lecture notes in mathematics, Berlin: Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2
    [12] Y. Zhou, Basic theory of fractional differential equations, World Scientific, 2014.
    [13] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [14] G. A. Dorrego, An alternative definition for the k-Riemann-Liouville fractional derivative, Appl. Math. Sci., 9 (2015), 481–491. https://doi.org/10.12988/ams.2015.411893 doi: 10.12988/ams.2015.411893
    [15] J. V. C. Sousa, E. C. de Oliveira, On the \psi-Hilfer fractional derivative, Commun. Nonlinear Sci., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005
    [16] K. D. Kucche, A. D. Mali, On the nonlinear (k, \psi)-Hilfer fractional differential equations, Chaos Soliton. Fract., 152 (2021), 111335. https://doi.org/10.1016/j.chaos.2021.111335 doi: 10.1016/j.chaos.2021.111335
    [17] A. Bitsadze, A. Samarskii, On some simple generalizations of linear elliptic boundary problems, Sov. Math. Dokl., 10 (1969), 398–400.
    [18] M. Picone, Su un problema al contorno nelle equazioni differenziali lineari ordinarie del secondo ordine, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 1908.
    [19] W. M. Whyburn, Differential equations with general boundary conditions, Bull. Amer. Math. Soc., 48 (1942), 692–704.
    [20] Y. Jalilian, M. Ghasmi, On the solutions of a nonlinear fractional integro-differential equation of Pantograph type, Mediterr. J. Math., 14 (2017), 194. https://doi.org/10.1007/s00009-017-0993-8 doi: 10.1007/s00009-017-0993-8
    [21] B. Khaminsou, C. Thaiprayoon, J. Alzabut, W. Sudsutad, Nonlocal boundary value problems for integro-differential Langevin equation via the generalized Caputo proportional fractional derivative, Bound. Value. Probl., 2020 (2020), 176. https://doi.org/10.1186/s13661-020-01473-7 doi: 10.1186/s13661-020-01473-7
    [22] W. Sudsutad, C. Thaiprayoon, S. K. Ntouyas, Existence and stability results for \psi-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions, AIMS Math., 6 (2021), 4119–4141. https://doi.org/10.3934/math.2021244 doi: 10.3934/math.2021244
    [23] C. Thaiprayoon, W. Sudsutad, S. K. Ntouyas, Mixed nonlocal boundary value problem for implicit fractional integro-differential equations via \psi-Hilfer fractional derivative, Adv. Differ. Equ., 2021 (2021), 50. https://doi.org/10.1186/s13662-021-03214-1 doi: 10.1186/s13662-021-03214-1
    [24] S. Sitho, S.K. Ntouyas, C. Sudprasert, J. Tariboon. Integro-differential boundary conditions to the sequential \psi_1-Hilfer and \psi_2-Caputo fractional differential equations, Mathematics, 11 (2023), 867. https://doi.org/10.3390/math11040867 doi: 10.3390/math11040867
    [25] D. Foukrach, S. Bouriah, S. Abbas, M. Benchohra, Periodic solutions of nonlinear fractional pantograph integro-differential equations with \psi-Caputo derivative, Ann. Univ. Ferrara., 69 (2023), 1–22. https://doi.org/10.1007/s11565-022-00396-8 doi: 10.1007/s11565-022-00396-8
    [26] H. Jafari, N. A. Tuan, R. M. Ganji, A new numerical scheme for solving pantograph type nonlinear fractional integro-differential equations, J. King Saud Univ. Sci., 33 (2021), 101185. https://doi.org/10.1016/j.jksus.2020.08.029 doi: 10.1016/j.jksus.2020.08.029
    [27] M. A. Almalahi, S. K. Panchal, Existence results of \psi-Hilfer integro-differential equations with fractional order in Banach space, Ann. U. Paedag. St. Math., 19 (2020), 171–192. https://doi.org/10.2478/aupcsm-2020-0013 doi: 10.2478/aupcsm-2020-0013
    [28] H. Vu, N. V. Hoa, Ulam-Hyers stability for a nonlinear Volterra integro-differential equation, Hacet. J. Math. Stat., 49 (2020), 1261–1269. https://doi.org/10.15672/hujms.483606 doi: 10.15672/hujms.483606
    [29] K. Liu, M. Fečkan, D. O'Regan, J. R. Wang, Hyers-Ulam stability and existence of solutions for differential equations with Caputo-Fabrizio fractional derivative, Mathematics, 7 (2019), 333. https://doi.org/10.3390/math7040333 doi: 10.3390/math7040333
    [30] A. Zada, S. O. Shah. Hyers-Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses, Hacet. J. Math. Stat., 47 (2018), 1196–1205.
    [31] D. Bainov, P. Simeonov, Impulsive differential equations: Periodic solutions and applications, CRC Press, 1993.
    [32] A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, World Scientific, 1995.
    [33] M. Benchohra, J. Henderson, S. K. Ntouyas, Impulsive differential equations and inclusions, New York: Hindawi Publishing Corporation, 2006.
    [34] K. D. Kucche, J. P. Kharade, J. V. C de Sousa, On the nonlinear impulsive \psi-Hilfer fractional differential equations, Math. Model. Anal., 25 (2020), 642–660. https://doi.org/10.3846/mma.2020.11445 doi: 10.3846/mma.2020.11445
    [35] A. Salim, M. Benchohra, J. E. Lazreg, J. Henderson, On k-generalized \psi-Hilfer boundary value problems with retardation and anticipation, Adv. Theor. Nonlinear Anal. Appl., 6 (2022), 173–190. https://doi.org/10.31197/atnaa.973992 doi: 10.31197/atnaa.973992
    [36] M. Kaewsuwan, R. Phuwapathanapun, W. Sudsutad, J. Alzabut, C. Thaiprayoon, J. Kongson, Nonlocal impulsive fractional integral boundary value problem for (\rho_k, \psi_k)-Hilfer fractional integro-differential equations, Mathematics, 10 (2022), 3874. https://doi.org/10.3390/math10203874 doi: 10.3390/math10203874
    [37] M. Feckan, Y. Zhou, J. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci., 17 (2012), 3050–3060. https://doi.org/10.1016/j.cnsns.2011.11.017 doi: 10.1016/j.cnsns.2011.11.017
    [38] T. L. Guo, W. Jiang, Impulsive functional differential equations, Comput. Math. Appl., 64 (2012), 3414–3424. https://doi.org/10.1016/j.camwa.2011.12.054 doi: 10.1016/j.camwa.2011.12.054
    [39] M. Zuo, X. Hao, L. Liu, Y. Cui, Existence results for impulsive fractional integro-differential equation of mixed type with constant coefficient and antiperiodic boundary conditions, Bound. Value Probl., 2017 (2017), 161. https://doi.org/10.1186/s13661-017-0892-8 doi: 10.1186/s13661-017-0892-8
    [40] Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, S. M. Kang, Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE Access, 6 (2018), 64946–64953. https://doi.org/10.1109/ACCESS.2018.2878266 doi: 10.1109/ACCESS.2018.2878266
    [41] R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulgaciones Mat., 15 (2007), 179–192.
    [42] A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003.
    [43] D. O'Regan, Fixed-point theory for the sum of two operators, Appl. Math. Lett., 9 (1966), 1–8.
  • This article has been cited by:

    1. F. M. Ismaael, On a New Class of Impulsive η-Hilfer Fractional Volterra-Fredholm Integro-Differential Equations, 2023, 17, 1823-8343, 691, 10.47836/mjms.17.4.10
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1877) PDF downloads(172) Cited by(1)

Figures and Tables

Figures(4)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog