
This paper investigates a class of nonlinear impulsive fractional integro-differential equations with mixed nonlocal boundary conditions (multi-point and multi-term) that involves (ρk,ψk)-Hilfer fractional derivative. The main objective is to prove the existence and uniqueness of the solution for the considered problem by means of fixed point theory of Banach's and O'Regan's types, respectively. In this contribution, the transformation of the considered problem into an equivalent integral equation is necessary for our main results. Furthermore, the nonlinear functional analysis technique is used to investigate various types of Ulam's stability results. The applications of main results are guaranteed with three numerical examples.
Citation: Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson. Existence and stability results for impulsive (k,ψ)-Hilfer fractional double integro-differential equation with mixed nonlocal conditions[J]. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042
[1] | Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for $ \psi $-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244 |
[2] | Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177 |
[3] | Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861 |
[4] | Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of $ \psi $-Hilfer generalized proportional fractional nonlocal mixed boundary value problems. AIMS Mathematics, 2023, 8(9): 22009-22036. doi: 10.3934/math.20231122 |
[5] | Weerawat Sudsutad, Sotiris K. Ntouyas, Chatthai Thaiprayoon . Nonlocal coupled system for $ \psi $-Hilfer fractional order Langevin equations. AIMS Mathematics, 2021, 6(9): 9731-9756. doi: 10.3934/math.2021566 |
[6] | Karim Guida, Lahcen Ibnelazyz, Khalid Hilal, Said Melliani . Existence and uniqueness results for sequential $ \psi $-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(8): 8239-8255. doi: 10.3934/math.2021477 |
[7] | Xiaoming Wang, Rizwan Rizwan, Jung Rey Lee, Akbar Zada, Syed Omar Shah . Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives. AIMS Mathematics, 2021, 6(5): 4915-4929. doi: 10.3934/math.2021288 |
[8] | Sotiris K. Ntouyas, Bashir Ahmad, Jessada Tariboon . Nonlocal integro-multistrip-multipoint boundary value problems for $ \overline{\psi}_{*} $-Hilfer proportional fractional differential equations and inclusions. AIMS Mathematics, 2023, 8(6): 14086-14110. doi: 10.3934/math.2023720 |
[9] | Arjumand Seemab, Mujeeb ur Rehman, Jehad Alzabut, Yassine Adjabi, Mohammed S. Abdo . Langevin equation with nonlocal boundary conditions involving a $ \psi $-Caputo fractional operators of different orders. AIMS Mathematics, 2021, 6(7): 6749-6780. doi: 10.3934/math.2021397 |
[10] | Tamer Nabil . Ulam stabilities of nonlinear coupled system of fractional differential equations including generalized Caputo fractional derivative. AIMS Mathematics, 2021, 6(5): 5088-5105. doi: 10.3934/math.2021301 |
This paper investigates a class of nonlinear impulsive fractional integro-differential equations with mixed nonlocal boundary conditions (multi-point and multi-term) that involves (ρk,ψk)-Hilfer fractional derivative. The main objective is to prove the existence and uniqueness of the solution for the considered problem by means of fixed point theory of Banach's and O'Regan's types, respectively. In this contribution, the transformation of the considered problem into an equivalent integral equation is necessary for our main results. Furthermore, the nonlinear functional analysis technique is used to investigate various types of Ulam's stability results. The applications of main results are guaranteed with three numerical examples.
Fractional calculus (FC) has gained considerable importance in many fields of applied sciences and engineering for solving various differential equations and investigating behaviors of mathematical models simulating real-world problems. Its amazing presence is evident in the modeling of several natural phenomena such as Hamiltonian chaos and fractional dynamics [1], bio-engineering [2], viscoelasticity [3], vibrations and diffusion [4], physics [5,6], financial economics [7] and references cited therein. For more detailed theoretical aspect of FC, see [8,9,10,11,12] and references therein. One of the significant factors that make FC advantageous to ordinary calculus is that fractional-order (non-integer order) derivatives and integral operators (FDO/FIOs) are more effective for describing real-life problems than integer-order ones. Many researchers have attempted to propose various fractional operators that deal with derivatives and integrals of non-integer orders with successful applications to solve many problems. Different definitions of FDO and FIOs have been employed in research papers, mainly focusing on Riemann-Liouville (RL) [13], Caputo [13], Hadamard [13], Katugampola [13], Erdélyi-Kober [13], Hilfer [6], ψ-RL [13], k-RL [14], ψ-Hilfer [15], (k,ψ)-RL [14], (k,ψ)-Hilfer [16], and so on.
The study of nonlocal boundary value problems (BVP) is expanding quickly. In addition to the theoretical interest, this type of problems can be used to represent several phenomena in engineering, physics, and biological sciences. The nonlocal conditions have been used to describe some properties that occur at various points inside the domain instead of handling initial or boundary conditions. For historical backgrounds, see, e.g., [17,18,19]. At present, research on fractional differential equations (FDE) under various FDO/FIOs has developed rapidly in numerous directions. Fractional integro-differential equations (FIDEs) are the popular subjects that attract many researchers, some of which studied the existence of the solution for FIDEs. We recommend a series of recent works as in 2017, Jalilian and Ghasmi [20] established the existence and uniqueness of solutions for FIDEs with pantograph type by applying lipchitz condition. In 2020, the authors [21] studied the existence and stability of a class of nonlocal BVPs for integro-differential Langevin equation under the generalized Caputo proportional FDO by means of Banach's, Krasnoselskii's, Schaefer's fixed point theorems, and Ulam's stability approach. In 2021, Sudsutad et al. [22] used fixed point theories of Banach's, Krasnoselskii's, and Leray-Schauder nonlinear alternative types to discuss the existence, uniqueness, and stability of BVP for ψ-Hilfer FIDEs with mixed nonlocal boundary conditions, which include multi-point, fractional derivative multi-order, and fractional integral multi-order conditions:
{HDα,ρ;ψ0+x(t)=f(t,x(t),Iϕ;ψ0+x(t),t∈(0,T],[0.15cm]x(0)=0,m∑i=1δix(ηi)+∑nj=1ωjIβj;ψ0+x(θj)+r∑k=1λkHDμk,ρ;ψ0+x(ξk)=K, | (1.1) |
where the description of parameters can be found in [22]. Later, in 2022, Thaiprayoon et al. [23] studied a class of ψ-Hilfer implicit fractional integro-differential equations with mixed nonlocal conditions:
{HDα,ρ;ψ0+x(t)=f(t,x(t),HDα,ρ;ψ0+x(t),Iα;ψ0+x(t),t∈(0,T],[0.15cm]m∑i=1ωix(ηi)+n∑j=1kjHDβj,ρ;ψ0+x(ξk)+k∑r=1σrIδr;ψ0+x(θr)=A, | (1.2) |
where the description of parameters can be found in [23]. The existence and uniqueness of a solution for their problem were verified employing Banach's, Schaefer's, and Krasnosellskii's fixed point theorems, and the analysis of the problem was established via various kinds of Ulam stability results. In 2023, Sitho et al. [24] utilized the Banach contraction principle to show the uniqueness of the solution and the Leray-Schauder nonlinear alternative to prove the existence of solutions for a new class of BVP consisting of a mixed-type ψ1-Hilfer and ψ2-Caputo fractional order differential equation with integro-differential nonlocal boundary conditions as follows
{HDα,β;ψ1(CDγ;ψ2π)(t)=Π(t,π(t)),0<α,β,γ<1,t∈[0,x1],[0.15cm]CDγ;ψ2π(0)=0,π(T)=m∑i=1λiCDγ;ψ2π(ηi)+n∑j=1δjIμj;ψ2π(ξj), | (1.3) |
where the description of parameters can be found in [24]. For more interesting works on existence, uniqueness, and Ulam's stability results of these topics, we refer to [25,26,27,28,29,30] and reference cited therein. In parallel with FIDEs, impulsive differential equations play an important role in dynamical systems of evolutionary procedures by exhibiting instantaneous state changes at specific moments. It is thus regarded as an effective instrument for comprehending numerous real-world situations in applied sciences and engineering; see [31,32,33]. Many researchers have attempted FDEs and FIDEs with impulse conditions to develop an excellent qualitative theory. Over the years, they have produced crucial and fascinating insights that greatly aided the mathematical understanding of FDEs with impulse effects. We refer to [34,35,36,37,38,39] for further fascinating works on the subject.
The inspiration for this paper is based on the previous works mentioned above. The novelty and differences from the others are considered in our work. In this paper, we produce qualitative results of the solutions for the following nonlinear impulsive (ρk,ψk)-Hilfer FIDEs supplemented with mixed nonlocal boundary conditions:
{HρkDαk,βk;ψkt+ku(t)=f(t,u(t),ρkIσk;ψktku(t),ρkIνk;ψktku(t)),t∈Jk,t≠tk,k=0,1,…,m,[0.2cm]ρkIρk(2−γk);ψkt+ku(t+k)−ρk−1Iρk−1(2−γk−1);ψk−1t+k−1u(t−k)=ϕk(u(tk)),k=1,2,…,m,[0.25cm]RLρkDρk(γk−1);ψkt+ku(t+k)−RLρk−1Dρk−1(γk−1−1);ψk−1t+k−1u(t−k)=ϕ∗k(u(tk)),k=1,2,…,m,[0.15cm]u(0)=0,m∑i=0μiu(ηi)+n∑l=0λlρlIθl;ψltlu(ξl)=A,ηi,∈(ti,ti+1],ξl∈(tl,tl+1], | (1.4) |
where HρkDαk,βK;ψkt+k denotes the (ρk,ψk)-Hilfer-FDO of order αk∈(1,2] and type βk∈[0,1], ρk∈R+, Jk:=(tk,tk+1]⊂(a,b] for k=0,1,2,…,m, with J0:=[a,t1], J:=[a,b], 0≤a=t0<t1<⋯<tm<tm+1=b≤T, ρkIq;ψkt+k is the (ρk,ψk)-RL-FIO with order q∈{ρk(2−γk),ρk−1(2−γk−1),νk,σk,θl}, q>0, k=1,2,…,m, l=0,1,…,n, RLρkDp;ψkt+k, is the (ρk,ψk)-RL fractional derivative with order p∈{ρk(γk−1),ρk−1(γk−1−1)} with p∈(1,2), k=1,2,…,m, ρkIρk(2−γk);ψkt+ku(t+k)=limt→0+ρkIρk(2−γk);ψkt+ku(tk+h), RLρkDρk(γk−1);ψkt+ku(t+k)=limh→0+RLρkDρk(γk−1);ψkt+ku(tk+h), ϕk, ϕ∗k∈C(R,R), k=1,2,…,m, f∈C(J×R3,R), A, μi, λl∈R, ηi,∈(ti,ti+1], ξl∈(tl,tl+1], i=1,2,…,m, and l=0,1,…,n.
The remaining sections of this work are structured as follows: Section 2 presents the prerequisite and relevant facts for the concepts of the (ρ,ψ)-Hilfer fractional operators, as well as some necessary lemmas that examine the solution of the linear variant of the proposed problem in terms of an integral equation. Section 3 proves the existence of the solution using O'Regan's fixed point theorem, while the uniqueness of the solution is investigated by utilizing Banach's fixed point theorem. Later, various Ulam's stability results, such as Ulam-Hyers (UH), generalized Ulam-Hyers (GUH), Ulam-Hyers-Rassias (UHR), and generalized Ulam-Hyers-Rassias (GUHR), are established to ensure the existence results in Section 4. Finally, some illustrative examples are provided to support the main theoretical results in the last section.
Definition 2.1. [40] Let f∈L1(J,b) and an increasing function ψ(t):J→R with ψ′(t)≠0 for t∈[a,b]. The (ρ,ψ)-RL-FIO of a function f of order α>0 is defined by
ρIα;ψa+f(t)=1ρΓρ(α)∫ta(ψ(t)−ψ(s))αρ−1ψ′(s)f(s)ds,ρ,α∈R+:=(0,∞), |
where Γρ(⋅) is the ρ-Gamma function introduced by Diaz and Pariguan [41],
Γρ(z)=∫∞0tz−1e−tρρdt,z∈C,Re(z)>0,ρ>0. | (2.1) |
Some other useful properties of (2.1) are well known: Γρ(z+ρ)=zΓρ(z), Γρ(ρ)=1, Γρ(z)=(ρ)zρ−1Γ(z/ρ), Γ(z)=limρ→1Γρ(z).
Definition 2.2. [16] Let f∈Cn(J,R) and a function ψ(t)∈Cn(J,R) with ψ′(t)≠0 for t∈J. Then, the (ρ,ψ)-RL-FDO of a function f of order α, ρ∈R+, is defined by
RLρDα;ψa+f(t)=(ρψ′(t)⋅ddt)nρIρn−α;ψa+f(t)=δnψρIρn−α;ψa+f(t),δnψ=(ρψ′(t)⋅ddt)n,n=⌈α/ρ⌉. |
Definition 2.3. [16] Let f∈Cn(J,R), ψ∈Cn(J,R), ψ′(t)≠0, for t∈J, α, ρ∈R+, and β∈[0,1]. The (ρ,ψ)-Hilfer FDO of a function f of order α and type β is given by
HρDα,β;ψa+f(t)=ρIβ(ρn−α);ψa+δnψρI(1−β)(ρn−α);ψa+f(t)=ρIβ(ρn−α);ψa+(RLρDγρ;ψa+f)(t), | (2.2) |
where (1−β)(nρ−α)=nρ−γρ, δnψ=(ρψ′(t)ddt)n and n=⌈α/ρ⌉.
Lemma 2.1. [16] Let α, ρ∈R+ and β∈R, such that β/ρ>−1. Then we have
(i) ρIα;ψa+[(ψ(t)−ψ(a))βρ]=Γρ(β+ρ)Γρ(β+ρ+α)(ψ(t)−ψ(a))β+αρ.
(ii) RLρDα;ψa+[(ψ(t)−ψ(a))βρ]=Γρ(β+ρ)Γρ(β+ρ−α)(ψ(t)−ψ(a))β−αρ.
(iii) ρIα;ϕa+ρIβ;ψa+f(t)=ρIα+β;ψa+f(t)=ρIβ;ϕa+ρIα;ψa+f(t).
Lemma 2.2. [35] If f∈Cn(J,R), ρ, α∈R+, β∈[0,1] and n∈N, then
(ρIα;ψa+HρDα,β;ψa+f)(t)=f(t)−n∑i=1(ψ(t)−ψ(a))γ−iρi−nΓρ(ρ(γ−i+1))[δn−iψ(ρIρ(n−γ);ψa+f(a))], |
where γ=1ρ(β(ρn−α)+α) and n=⌈α/ρ⌉.
For convenience's sake, we set the notation as follows:
Ψuψ(t,s)=(ψ(t)−ψ(s))u. |
Next, we establish the following auxiliary result:
Lemma 2.3. Let ν∈(m−1,m), ρ, α∈R+, m∈N. If h∈Cn([a,b],R), then
RLρDα;ψa+[ρIν;ψa+h(t)]=ρIν−α;ψa+h(t). | (2.3) |
Proof. By applying Definition 2.2 and (ⅲ) of Lemma 2.1, we have
RLρDα;ψa+[ρIν;ψa+h(t)]=(1ψ′(t)⋅ddt)nρn[ρIρn−α+ν;ψa+h(t)]. | (2.4) |
By using Definition 2.1, for n=1, we obtain
(1ψ′(t)⋅ddt)ρρIρn−α+ν;ψa+h(t)=ρψ′(t)⋅ddt(1ρΓρ(ρn−α+ν)∫taΨρn−α+νρ−1ψ(t,s)ψ′(s)h(s)ds)=1ρΓρ(ρn−α+ν−ρ)∫taΨρn−α+ν−ρρ−1ψ(t,s)ψ′(s)h(s)ds=ρIρn−α+ν−ρ;ψa+h(t). |
In the same way, for n=2, we have
(1ψ′(t)⋅ddt)2ρ2ρIρn−α+ν;ψa+h(t)=ρψ′(t)⋅ddt(1ρΓρ(ρn−α+ν−ρ)∫taΨρn−α+ν−ρρ−1ψ(t,s)ψ′(s)h(s)ds)=1ρΓρ(ρn−α+ν−2ρ)∫taΨρn−α+ν−2ρρ−1ψ(t,s)ψ′(s)h(s)ds=ρIρn−α+ν−2ρ;ψa+h(t). |
Repeating the above method, we obtain
(1ψ′(t)⋅ddt)nρnρIρn−α+ν;ψa+h(t)=ρψ′(t)⋅ddt(1ρΓρ(ρn−α+ν−(n−1)ρ)∫taΨρn−α+ν−(n−1)ρρ−1ψ(t,s)ψ′(s)h(s)ds)=1ρΓρ(ν−α)∫taΨν−αρ−1ψ(t,s)ψ′(s)h(s)ds=ρIν−α;ψa+h(t). |
The proof is completed.
Denote the weighted space
C2−γψ(J,R)={u:(a,b]→R|u(a+)exists andΨ2−γψ(t,a)u(t)∈C(J,R)},γ∈(1,2], |
where C2−γψ=C2−γψ(J,R). The weighted space of piece-wise continuous functions is defined by
PC2−γkψk(J,R)={u:(a,b]→R|u∈C2−γkψk,k=0,1,2,…,m,ρkIρk(2−γk);ψkt+ku(t+k),ρk−1Iρk−1(2−γk−1);ψk−1t+k−1u(t−k)existandρk−1Iρk−1(2−γk−1);ψk−1t+k−1u(t−k)=ρk−1Iρk−1(2−γk−1);ψk−1t+k−1u(tk),k=1,…,m}. |
Observe that PC=PC2−γkψk(J,R) is a Banach space equipped with
‖u‖PC=supt∈J|Ψ2−γkψk(t,tk)u(t)|. |
Lemma 2.4. Let αk∈(1,2), βk∈[0,1], ρk>0, μk>0, νk>0, γk=(1/ρk)(βk(2ρk−αk)+αk), ψk∈C(J,R) with ψ′k>0, k=0,1,2,…,m, h∈C2−γkψk. Then the following linear variant impulsive (ρk,ψk)-Hilfer fractional boundary value problem
{HρkDαk,βk;ψkt+ku(t)=h(t),t≠tk,k=0,1,…,m,[0.25cm]RLρkDρk(γk−1);ψkt+ku(t+k)−RLρk−1Dρk−1(γk−1−1);ψk−1t+k−1u(t−k)=ϕk(u(tk)),k=1,2,…,m,[0.25cm]ρkIρk(2−γk);ψkt+ku(t+k)−ρk−1Iρk−1(2−γk−1);ψk−1t+k−1u(t−k)=ϕ∗k(u(tk)),k=1,2,…,m,[0.15cm]u(0)=0,m+1∑i=0μiu(ηi)+n∑l=0λlρlIθl;ψltlu(ξl)=A,ηi,∈(ti,ti+1],ξl∈(tl,tl+1], | (2.5) |
satisfies the following integral equation, u∈PC, as
u(t)={Ψγk−1ψk(t,tk)ΛΓρk(ρkγk)+Ψγk−2ψk(t,tk)ΛΓρk(ρk(γk−1))k−1∑j=0Ψψj(tj+1,tj)ρj}{A−(m+1∑i=0μiΨγi−1ψi(ηi,ti)Γρi(ρiγi)i−1∑j=0(ρjIαj−ρj(γj−1);ψjtjh(tj+1)+ϕj+1(u(tj+1)))+m+1∑i=0μiΨγi−2ψi(ηi,ti)Γρi(ρi(γi−1))[i−1∑j=0(ρjIαj+ρj(2−γj);ψjtjh(tj+1)+ϕ∗j+1(u(tj+1)))+i−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0(ρrIαr−ρr(γr−1);ψrtrh(tr+1)+ϕr+1(u(tr+1)))]+m+1∑i=0μiρiIαi;ψitih(ηi)+n∑l=0λlρlIαl+θl;ψltlh(ξl)+n∑l=0λlΨρl(γl−1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)l−1∑j=0(ρjIαj−ρj(γj−1);ψjtjh(tj+1)+ϕj+1(u(tj+1)))+n∑l=0λlΨρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)[l−1∑j=0(ρjIαj+ρj(2−γj);ψjtjh(tj+1)+ϕ∗j+1(u(tj+1)))+l−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0(ρrIαr−ρr(γr−1);ψrtrh(tr+1)+ϕr+1(u(tr+1)))])}+ρkIαk;ψktkh(t)+Ψγk−1ψk(t,tk)Γρk(ρkγk)k−1∑j=0(ρjIαj−ρj(γj−1);ψjtjh(tj+1)+ϕj+1(u(tj+1)))+Ψγk−2ψk(t,tk)Γρk(ρk(γk−1))[k−1∑j=0(ρjIαj+ρj(2−γj);ψjtjh(tj+1)+ϕ∗j+1(u(tj+1)))+k−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0(ρrIαr−ρr(γr−1);ψrtrh(tr+1)+ϕr+1(u(tr+1)))], | (2.6) |
where
Λ=m+1∑i=0μiΨγi−1ψi(ηi,ti)Γρi(ρiγi)+m+1∑i=0μiΨγi−2ψi(ηi,ti)Γρi(ρi(γi−1))i−1∑j=0Ψψj(tj+1,tj)ρj+n∑l=0λlΨρl(γl−1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)+n∑l=0λlΨρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)l−1∑j=0Ψψj(tj+1,tj)ρj. | (2.7) |
Proof. Suppose u∈PC is a solution of the impulsive (ρk,ψk)-Hilfer problem (2.5).
For t∈[t0,t1], we have
u(t)=Ψγ0−1ψ0(t,t0)Γρ0(ρ0γ0)c1+Ψγ0−2ψ0(t,t0)Γρ0(ρ0(γ0−1))c2+ρ0Iα0;ψ0t0h(t), |
where c1=RLρ0Dρ0(γ0−1);ψ0t0u(t+0) and c2=ρ0Iρ0(2−γ0);ψ0t0u(t+0). By using Lemma 2.1 and Lemma 2.3, we obtain
ρ0Iρ0(2−γ0);ψ0t0u(t)=Ψψ0(t,t0)ρ0c1+c2+ρ0Iα0+ρ0(2−γ0);ψ0t0h(t), | (2.8) |
RLρ0Dρ0(γ0−1);ψ0t0u(t)=c1+ρ0Iα0−ρ0(γ0−1);ψ0t0h(t). | (2.9) |
Putting t=t1 into (2.8) and (2.9), we have
ρ0Iρ0(2−γ0);ψ0t0u(t1)=Ψψ0(t1,t0)ρ0c1+c2+ρ0Iα0+ρ0(2−γ0);ψ0t0h(t1), | (2.10) |
RLρ0Dρ0(γ0−1);ψ0t0u(t1)=c1+ρ0Iα0−ρ0(γ0−1);ψ0t0h(t1). | (2.11) |
For t∈(t1,t2], we obtain
u(t)=Ψγ1−1ψ1(t,t1)Γρ1(ρ1γ1)RLρ1Dρ1(γ1−1);ψ1t1u(t+1)+Ψγ1−2ψ1(t,t1)Γρ1(ρ1(γ1−1))ρ1Iρ1(2−γ1);ψ1t1u(t+1)+ρ1Iα1;ψ1t1h(t). |
From the impulsive conditions, that is RLρ1Dρ1(γ1−1);ψ1t+1u(t+1)=RLρ0Dρ0(γ0−1);ψ0t+0u(t1)+ϕ1(u(t1)) and ρ1Iρ1(2−γ1);ψ1t+1u(t+1)=ρ0Iρ0(2−γ0);ψ0t+0u(t1)+ϕ∗1(u(t1)), it implies that
u(t)=(Ψγ1−1ψ1(t,t1)Γρ1(ρ1γ1)+Ψγ1−2ψ1(t,t1)Γρ1(ρ1(γ1−1))⋅Ψψ0(t1,t0)ρ0)c1+Ψγ1−2ψ1(t,t1)Γρ1(ρ1(γ1−1))c2+Ψγ1−1ψ1(t,t1)Γρ1(ρ1γ1)(ρ0Iα0−ρ0(γ0−1);ψ0t0h(t1)+ϕ1(u(t1)))+Ψγ1−2ψ1(t,t1)Γρ1(ρ1(γ1−1))(ρ0Iα0+ρ0(2−γ0);ψ0t0h(t1)+ϕ∗1(u(t1)))+ρ1Iα1;ψ1t1h(t). |
By applying Lemmas 2.1 and 2.3, we get
ρ1Iρ1(2−γ1);ψ1t1u(t)=(Ψψ1(t,t1)ρ1+Ψψ0(t1,t0)ρ0)c1+c2+ρ0Iα0+ρ0(2−γ0);ψ0t0h(t1)+ϕ∗1(u(t1))+Ψψ1(t,t1)ρ1(ρ0Iα0−ρ0(γ0−1);ψ0t0h(t1)+ϕ1(u(t1)))+ρ1Iα1+ρ1(2−γ1);ψ1t1h(t),RLρ1Dρ1(γ1−1);ψ1t1u(t)=c1+ρ0Iα0−ρ0(γ0−1);ψ0t0h(t1)+ϕ1(u(t1))+ρ1Iα1−ρ1(γ1−1);ψ1t1h(t). |
In particular for t=t2, we have
ρ1Iρ1(2−γ1);ψ1t1u(t2)=(Ψψ1(t2,t1)ρ1+Ψψ0(t1,t0)ρ0)c1+c2+ρ0Iα0+ρ0(2−γ0);ψ0t0h(t1)+ϕ∗1(u(t1))+Ψψ1(t2,t1)ρ1(ρ0Iα0−ρ0(γ0−1);ψ0t0h(t1)+ϕ1(u(t1)))+ρ1Iα1+ρ1(2−γ1);ψ1t1h(t2),RLρ1Dρ1(γ1−1);ψ1t1u(t2)=c1+ρ0Iα0−ρ0(γ0−1);ψ0t0h(t1)+ϕ1(u(t1))+ρ1Iα1−ρ1(γ1−1);ψ1t1h(t2). |
Under the impulsive conditions, RLρ2Dρ2(γ2−1);ψ2t+2u(t+2)=RLρ1Dρ1(γ1−1);ψ1t+1u(t2)+ϕ2(u(t2)) and ρ2Iρ2(2−γ2);ψ2t+2u(t+2)=ρ1Iρ1(2−γ1);ψ1t+1u(t2)+ϕ∗2(u(t2)), for t∈(t2,t3], we get
u(t)=(Ψγ2−1ψ2(t,t2)Γρ2(ρ2γ2)+Ψγ2−2ψ2(t,t2)Γρ2(ρ2(γ2−1))1∑j=0Ψψj(tj+1,tj)ρj)c1+Ψγ2−2ψ2(t,t2)Γρ2(ρ2(γ2−1))c2+Ψγ2−1ψ2(t,t2)Γρ2(ρ2γ2)1∑j=0(ρjIαj−ρj(γj−1);ψjtjh(tj+1)+ϕj+1(u(tj+1)))+Ψγ2−2ψ2(t,t2)Γρ2(ρ2(γ2−1))[1∑j=0(ρjIαj+ρj(2−γj);ψjtjH(tj+1)+ϕ∗j+1(u(tj+1)))+Ψψ1(t2,t1)ρ1(ρ0Iα0−ρ0(γ0−1);ψ0t0Fu(t1)+ϕ1(x(t1)))]+ρ2Iα2;ψ2t2h(t). |
Then for t∈(t3,t4], we have
u(t)=(Ψγ3−1ψ3(t,t3)Γρ3(ρ3γ3)+Ψγ3−2ψ3(t,t3)Γρ3(ρ3(γ3−1))2∑j=0Ψψj(tj+1,tj)ρj)c1+Ψγ3−2ψ3(t,t3)Γρ3(ρ3(γ3−1))c2+Ψγ3−1ψ3(t,t3)Γρ3(ρ3γ3)2∑j=0(ρjIαj−ρj(γj−1);ψjtjh(tj+1)+ϕj+1(u(tj+1)))+Ψγ3−2ψ3(t,t3)Γρ3(ρ3(γ3−1))[2∑j=0(ρjIαj+ρj(2−γj);ψjtjh(tj+1)+ϕ∗j+1(u(tj+1)))+2∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0(ρrIαr−ρr(γr−1);ψrtrh(tr+1)+ϕr+1(u(tr+1)))]+ρ3Iα3;ψ3t3h(t). |
Repeating the above process, for any t∈(tk,tk+1], k=0,1,…,m, one has
u(t)=(Ψγk−1ψk(t,tk)Γρk(ρkγk)+Ψγk−2ψk(t,tk)Γρk(ρk(γk−1))k−1∑j=0Ψψj(tj+1,tj)ρj)c1+Ψγk−2ψk(t,tk)Γρk(ρk(γk−1))c2+ρkIαk;ψktkh(t)+Ψγk−1ψk(t,tk)Γρk(ρkγk)k−1∑j=0(ρjIαj−ρj(γj−1);ψjtjh(tj+1)+ϕj+1(u(tj+1)))+Ψγk−2ψk(t,tk)Γρk(ρk(γk−1))[k−1∑j=0(ρjIαj+ρj(2−γj);ψjtjh(tj+1)+ϕ∗j+1(u(tj+1)))+k−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0(ρrIαr−ρr(γr−1);ψrtrh(tr+1)+ϕr+1(u(tr+1)))]. | (2.12) |
By applying the first boundary condition, u(0)=0, we get c2=0. From the second boundary condition, ∑m+1i=0μiu(ηi)+∑nl=0λlρlIθl;ψltlu(ξl)=A, we have
c1=1Λ{A−(m+1∑i=0μiΨγi−1ψi(ηi,ti)Γρi(ρiγi)i−1∑j=0(ρjIαj−ρj(γj−1);ψjtjh(tj+1)+ϕj+1(u(tj+1)))+m+1∑i=0μiΨγi−2ψi(ηi,ti)Γρi(ρi(γi−1))[i−1∑j=0(ρjIαj+ρj(2−γj);ψjtjh(tj+1)+ϕ∗j+1(u(tj+1)))+i−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0(ρrIαr−ρr(γr−1);ψrtrh(tr+1)+ϕr+1(u(tr+1)))]+m+1∑i=0μiρiIαi;ψitih(ηi)+n∑l=0λlρlIαl+θl;ψltlh(ξl)+n∑l=0λlΨρl(γl−1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)l−1∑j=0(ρjIαj−ρj(γj−1);ψjtjh(tj+1)+ϕj+1(u(tj+1)))+n∑l=0λlΨρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)[l−1∑j=0(ρjIαj+ρj(2−γj);ψjtjh(tj+1)+ϕ∗j+1(u(tj+1)))+l−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0(ρrIαr−ρr(γr−1);ψrtrh(tr+1)+ϕr+1(u(tr+1)))])}, |
where Λ is given by (2.7). Taking the values c1 and c2 in (2.12), we obtain the solution (2.6).
By applying Lemma 2.4 and Fu(t)=f(t,u(t),ρkIσk;ψktku(t),ρkIνk;ψktku(t)), we set an operator Q:PC→PC by
(Qu)(t)={Ψγk−1ψk(t,tk)ΛΓρk(ρkγk)+Ψγk−2ψk(t,tk)ΛΓρk(ρk(γk−1))k−1∑j=0Ψψj(tj+1,tj)ρj}{A−(m+1∑i=0μiΨγi−1ψi(ηi,ti)Γρi(ρiγi)i−1∑j=0(ρjIαj−ρj(γj−1);ψjtjFu(tj+1)+ϕj+1(u(tj+1)))+m+1∑i=0μiΨγi−2ψi(ηi,ti)Γρi(ρi(γi−1))[i−1∑j=0(ρjIαj+ρj(2−γj);ψjtjFu(tj+1)+ϕ∗j+1(u(tj+1)))+i−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0(ρrIαr−ρr(γr−1);ψrtrFu(tr+1)+ϕr+1(u(tr+1)))]+n∑l=0λlΨρl(γl−1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)l−1∑j=0(ρjIαj−ρj(γj−1);ψjtjFu(tj+1)+ϕj+1(u(tj+1)))+n∑l=0λlΨρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)[l−1∑j=0(ρjIαj+ρj(2−γj);ψjtjFu(tj+1)+ϕ∗j+1(u(tj+1)))+l−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0(ρrIαr−ρr(γr−1);ψrtrFu(tr+1)+ϕr+1(u(tr+1)))]+m+1∑i=0μiρiIαi;ψitiFu(ηi)+n∑l=0λlρlIαl+θl;ψltlFu(ξl))}+ρkIαk;ψktkFu(t)+Ψγk−1ψk(t,tk)Γρk(ρkγk)k−1∑j=0(ρjIαj−ρj(γj−1);ψjtjFu(tj+1)+ϕj+1(u(tj+1)))+Ψγk−2ψk(t,tk)Γρk(ρk(γk−1))[k−1∑j=0(ρjIαj+ρj(2−γj);ψjtjFu(tj+1)+ϕ∗j+1(u(tj+1)))+k−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0(ρrIαr−ρr(γr−1);ψrtrFu(tr+1)+ϕr+1(u(tr+1)))]. | (3.1) |
Note that, the considered problem (1.4) has a solution if and only if Q has fixed points.
We assign notation for constants that will be used throughout this work
Ω1:=Ψψm(T,tm)|Λ|Γρm(ρmγm)+m−1∑j=0Ψψj(tj+1,tj)|Λ|ρjΓρm(ρm(γm−1)), | (3.2) |
Ω2:=m+1∑i=0|μi|Ψαiρiψi(ηi,ti)Γρi(ρi+αi)+m+1∑i=0|μi|Ψγi−1ψi(ηi,ti)Γρi(ρiγi)i−1∑j=0Ψαj−ρj(γj−1)ρjψj(tj+1,tj)Γρj(ρj+αj−ρj(γj−1))+m+1∑i=0|μi|Ψγi−2ψi(ηi,ti)Γρi(ρi(γi−1))i−1∑j=0Ψαj+ρj(2−γj)ρjψj(tj+1,tj)Γρj(ρj+αj+ρj(2−γj))+n∑l=0|λl|Ψαl+θlρlψl(ξl,tl)Γρl(ρl+αl+θl)+n∑l=0|λl|Ψρl(γl−1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)l−1∑j=0Ψαj−ρj(γj−1)ρjψj(tj+1,tj)Γρj(ρj+αj−ρj(γj−1))+n∑l=0|λl|Ψρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)l−1∑j=0Ψαj+ρj(2−γj)ρjψj(tj+1,tj)Γρj(ρj+αj+ρj(2−γj))+m+1∑i=0|μi|Ψγi−2ψi(ηi,ti)Γρi(ρi(γi−1))i−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0Ψαr−ρr(γr−1)ρrψr(tr+1,tr)Γρr(ρr+αr−ρr(γr−1))+n∑l=0|λl|Ψρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)l−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0Ψαr−ρr(γr−1)ρrψr(tr+1,tr)Γρr(ρr+αr−ρr(γr−1)), | (3.3) |
Ω3:=Ψαmρm+2−γmψm(T,tm)Γρm(ρm+αm)+Ψψm(T,tm)Γρm(ρmγm)m−1∑j=0Ψαj−ρj(γj−1)ρjψj(tj+1,tj)Γρj(ρj+αj−ρj(γj−1))+1Γρm(ρm(γm−1))m−1∑j=0Ψαj+ρj(2−γj)ρjψj(tj+1,tj)Γρj(ρj+αj+ρj(2−γj))+m−1∑j=1Ψψj(tj+1,tj)ρjΓρm(ρm(γm−1))j−1∑r=0Ψαr−ρr(γr−1)ρrψr(tr+1,tr)Γρr(ρr+αr−ρr(γr−1)), | (3.4) |
Ω4:=m+1∑i=0i|μi|Ψγi−1ψi(ηi,ti)Γρi(ρiγi)+m+1∑i=0|μi|Ψγi−2ψi(ηi,ti)Γρi(ρi(γi−1))i−1∑j=1jΨψj(tj+1,tj)ρj+n∑l=0l|λl|Ψρl(γl−1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)+n∑l=0|λl|Ψρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)l−1∑j=1jΨψj(tj+1,tj)ρj, | (3.5) |
Ω5:=mΨψm(T,tm)Γρm(ρmγm)+m−1∑j=1jΨψj(tj+1,tj)ρjΓρm(ρm(γm−1)), | (3.6) |
Ω6:=m+1∑i=0i|μi|Ψγi−2ψi(ηi,ti)Γρi(ρi(γi−1))+n∑l=0l|λl|Ψρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl). | (3.7) |
Lemma 3.1. (Banach's fixed point theorem [42]) Let D be a non-empty closed subset of a Banach space E. Then any contraction mapping Q from D into itself has a unique fixed-point.
Theorem 3.1. Assume ψk∈C2(J) where ψ′k(t)>0, k=0,1,2,…,m, t∈J and f∈C(J×R3,R), ϕk, ϕ∗k∈C(R,R), k=1,2,…,m, corresponding to the following conditions:
(H1) There are real constants Li>0, i=1,2,3, so that, for any t∈J and ui, vi∈R, i=1,2,3,
|f(t,u1,u2,u3)−f(t,v1,v2,v3)|≤Ψ2−γkψk(t,tk)3∑i=1Li|ui−vi|. |
(H2) There are real constants Ii>0, i=1,2, so that, for any t∈J and u, v∈R, k=1,2,…,m,
|ϕk(u)−ϕk(v)|≤I1Ψ2−γkψk(t,tk)|u−v|,|ϕ∗k(u)−ϕ∗k(v)|≤I2Ψ2−γkψk(t,tk)|u−v|. |
Then, the considered problem (1.4) has a unique solution on J, if
Δ1+Δ2<1, | (3.8) |
where
Δ1:=(Ω1Ω2+Ω3)(L1+Ψσm∗L2+Ψνm∗L3), | (3.9) |
Δ2:=(Ω1Ω4+Ω5)I1+(Ω1Ω6+mΨγm∗)I2, | (3.10) |
Ψσm∗:=Ψσmρmψm(T,tm)Γρm(ρm+σm),Ψνm∗:=Ψνmρmψm(T,tm)Γρm(ρm+νm),Ψγm∗:=1Γρm(ρm(γm−1)). | (3.11) |
Proof. Clearly, the considered problem (1.4) is corresponding to fixed-point problem u=Qu. Then we will show that Q has a fixed-point by the Banach's fixed-point theorem.
Define constants Mi, i=1,2,3, by M1:=supt∈J|f(t,0,0,0)|, M2:=max{ϕk(0):k=1,2,…,m} and M3:=max{ϕ∗k(0):k=1,2,…,m}. Let BR1:={u∈E:‖u‖≤R1} where
R1≥(Ω1Ω2+Ω3)M1+(Ω1Ω4+Ω5)M2+(Ω1Ω6+mΨγm∗)M3+Ω1|A|1−(Δ1+Δ2). |
The remaining proof is divided into two steps:
Step Ⅰ. We will prove that QBR1⊂BR1.
Suppose that u∈BR1 and t∈J, we obtain
|Ψ2−γkψk(t,tk)(Qu)(t)|≤{Ψψk(t,tk)|Λ|Γρk(ρkγk)+k−1∑j=0Ψψj(tj+1,tj)|Λ|ρjΓρk(ρk(γk−1))}{|A|+m+1∑i=0|μi|Ψγi−1ψi(ηi,ti)Γρi(ρiγi)i−1∑j=0(ρjIαj−ρj(γj−1);ψjtj|Fu(tj+1)|+|ϕj+1(u(tj+1))|)+m+1∑i=0|μi|Ψγi−2ψi(ηi,ti)Γρi(ρi(γi−1))[i−1∑j=0(ρjIαj+ρj(2−γj);ψjtj|Fu(tj+1)|+|ϕ∗j+1(u(tj+1))|)+i−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0(ρrIαr−ρr(γr−1);ψrtr|Fu(tr+1)|+|ϕr+1(u(tr+1))|)]+n∑l=0|λl|Ψρl(γl−1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)l−1∑j=0(ρjIαj−ρj(γj−1);ψjtj|Fu(tj+1)|+|ϕj+1(u(tj+1))|)+n∑l=0|λl|Ψρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)[l−1∑j=0(ρjIαj+ρj(2−γj);ψjtj|Fu(tj+1)|+|ϕ∗j+1(u(tj+1))|)+l−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0(ρrIαr−ρr(γr−1);ψrtr|Fu(tr+1)|+|ϕr+1(u(tr+1))|)]+m+1∑i=0|μi|ρiIαi;ψiti|Fu(ηi)|+n∑l=0|λl|ρlIαl+θl;ψltl|Fu(ξl)|}+Ψ2−γkψk(t,tk)ρkIαk;ψktk|Fu(t)|+Ψψk(t,tk)Γρk(ρkγk)k−1∑j=0(ρjIαj−ρj(γj−1);ψjtj|Fu(tj+1)|+|ϕj+1(u(tj+1))|)+1Γρk(ρk(γk−1))[k−1∑j=0(ρjIαj+ρj(2−γj);ψjtj|Fu(tj+1)|+|ϕ∗j+1(u(tj+1))|)+k−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0(ρrIαr−ρr(γr−1);ψrtr|Fu(tr+1)|+|ϕr+1(u(tr+1))|)]. | (3.12) |
By using the property (i) in Lemma 2.1, we get
Ψ2−γkψk(t,tk)|ρkIσk;ψkt+ku(t)|≤ρkIσk;ψkt+k(1)(t)‖u‖PC≤Ψσmρmψm(T,tm)Γρm(ρm+σm)‖u‖PC. | (3.13) |
From the conditions (H1), (H2) and (3.13), we can find that
|Fu(t)|≤|f(t,u(t),ρkIσk;ψkt+ku(t),ρkIνk;ψktku(t))−f(t,0,0,0)|+|f(t,0,0,0)|≤L1Ψ2−γkψk(t,tk)|u(t)|+L2Ψ2−γkψk(t,tk)|ρkIσk;ψkt+ku(t)|+L3Ψ2−γkψk(t,tk)|ρkIνk;ψkt+ku(t)|+M1≤(L1+Ψσmρmψm(T,tm)Γρm(ρm+σm)L2+Ψνmρmψm(T,tm)Γρm(ρm+νm)L3)‖u‖PC+M1=(L1+Ψσm∗L2+Ψνm∗L3)‖u‖PC+M1, | (3.14) |
|ϕk(u(tk))|≤|ϕk(u(tk))−ϕk(0)|+|ϕk(0)|≤I1Ψ2−γkψk(t,tk)|u(t)|+M2≤I1‖u‖PC+M2, | (3.15) |
|ϕ∗k(u(tk))|≤|ϕ∗k(u(tk))−ϕ∗k(0)|+|ϕ∗k(0)|≤I2Ψ2−γkψk(t,tk)|u(t)|+M3≤I2‖u‖PC+M3. | (3.16) |
Inserting (3.14)–(3.16) into (3.12), we see that
|Ψ2−γkψk(t,tk)(Qu)(t)|≤{Ψψk(t,tk)|Λ|Γρk(ρkγk)+k−1∑j=0Ψψj(tj+1,tj)|Λ|ρjΓρk(ρk(γk−1))}{|A|+m+1∑i=0|μi|Ψγi−1ψi(ηi,ti)Γρi(ρiγi)×i−1∑j=0(ρjIαj−ρj(γj−1);ψjtj(1)(tj+1)[(L1+Ψσm∗L2+Ψνm∗L3)‖u‖PC+M1]+I1‖u‖PC+M2)+m+1∑i=0|μi|Ψγi−2ψi(ηi,ti)Γρi(ρi(γi−1))[i−1∑j=0(ρjIαj+ρj(2−γj);ψjtj(1)(tj+1)[(L1+Ψσm∗L2+Ψνm∗L3)‖u‖PC+M1]+I2‖u‖PC+M3)+i−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0(ρrIαr−ρr(γr−1);ψrtr(1)(tr+1)[(L1+Ψσm∗L2+Ψνm∗L3)‖u‖PC+M1]+I1‖u‖PC+M2)]+m+1∑i=0|μi|ρiIαi;ψiti(1)(ηi)[(L1+Ψσm∗L2+Ψνm∗L3)‖u‖PC+M1]+n∑l=0|λl|ρlIαl+θl;ψltl(1)(ξl)[(L1+Ψσm∗L2+Ψνm∗L3)‖u‖PC+M1]+n∑l=0|λl|Ψρl(γl−1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)l−1∑j=0(ρjIαj−ρj(γj−1);ψjtj(1)(tj+1)[(L1+Ψσm∗L2+Ψνm∗L3)‖u‖PC+M1]+I1‖u‖PC+M2)+n∑l=0|λl|Ψρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)[l−1∑j=0(ρjIαj+ρj(2−γj);ψjtj(1)(tj+1)×[(L1+Ψσm∗L2+Ψνm∗L3)‖u‖PC+M1]+I2‖u‖PC+M3)+l−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0(ρrIαr−ρr(γr−1);ψrtr(1)(tr+1)[(L1+Ψσm∗L2+Ψνm∗L3)‖u‖PC+M1]+I1‖u‖PC+M2)]}+Ψ2−γkψk(t,tk)ρkIαk;ψktk(1)(t)[(L1+Ψσm∗L2+Ψνm∗L3)‖u‖PC+M1]+Ψψk(t,tk)Γρk(ρkγk)k−1∑j=0(ρjIαj−ρj(γj−1);ψjtj(1)(tj+1)[(L1+Ψσm∗L2+Ψνm∗L3)‖u‖PC+M1]+I1‖u‖PC+M2)+1Γρk(ρk(γk−1))[k−1∑j=0(ρjIαj+ρj(2−γj);ψjtj(1)(tj+1)[(L1+Ψσm∗L2+Ψνm∗L3)‖u‖PC+M1]+I2‖u‖PC+M3)+k−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0(ρrIαr−ρr(γr−1);ψrtr(1)(tr+1)[(L1+Ψσm∗L2+Ψνm∗L3)‖u‖PC+M1]+I1‖u‖PC+M2)]. |
From the property (i) in Lemma 2.1, it implies that
|Ψ2−γkψk(t,tk)(Qu)(t)|≤[(L1+Ψσm∗L2+Ψνm∗L3)‖u‖PC+M1][(Ψψm(T,tm)|Λ|Γρm(ρmγm)+m−1∑j=0Ψψj(tj+1,tj)|Λ|ρjΓρm(ρm(γm−1)))×(m+1∑i=0|μi|Ψαiρiψi(ηi,ti)Γρi(ρi+αi)+m+1∑i=0|μi|Ψγi−1ψi(ηi,ti)Γρi(ρiγi)i−1∑j=0Ψαj−ρj(γj−1)ρjψj(tj+1,tj)Γρj(ρj+αj−ρj(γj−1))+n∑l=0|λl|Ψαl+θlρlψl(ξl,tl)Γρl(ρl+αl+θl)+m+1∑i=0|μi|Ψγi−2ψi(ηi,ti)Γρi(ρi(γi−1))i−1∑j=0Ψαj+ρj(2−γj)ρjψj(tj+1,tj)Γρj(ρj+αj+ρj(2−γj))+n∑l=0|λl|Ψρl(γl−1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)l−1∑j=0Ψαj−ρj(γj−1)ρjψj(tj+1,tj)Γρj(ρj+αj−ρj(γj−1))+n∑l=0|λl|Ψρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)l−1∑j=0Ψαj+ρj(2−γj)ρjψj(tj+1,tj)Γρj(ρj+αj+ρj(2−γj))+m+1∑i=0|μi|Ψγi−2ψi(ηi,ti)Γρi(ρi(γi−1))i−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0Ψαr−ρr(γr−1)ρrψr(tr+1,tr)Γρr(ρr+αr−ρr(γr−1))+n∑l=0|λl|Ψρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)l−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0Ψαr−ρr(γr−1)ρrψr(tr+1,tr)Γρr(ρr+αr−ρr(γr−1)))+Ψαmρm+2−γmψm(T,tm)Γρm(ρm+αm)+Ψψm(T,tm)Γρm(ρmγm)m−1∑j=0Ψαj−ρj(γj−1)ρjψj(tj+1,tj)Γρj(ρj+αj−ρj(γj−1))+1Γρm(ρm(γm−1))m−1∑j=0Ψαj+ρj(2−γj)ρjψj(tj+1,tj)Γρj(ρj+αj+ρj(2−γj))+m−1∑j=1Ψψj(tj+1,tj)ρjΓρm(ρm(γm−1))j−1∑r=0Ψαr−ρr(γr−1)ρrψr(tr+1,tr)Γρr(ρr+αr−ρr(γr−1))]+[(Ψψm(T,tm)|Λ|Γρm(ρmγm)+m−1∑j=0Ψψj(tj+1,tj)|Λ|ρjΓρm(ρm(γm−1)))(m+1∑i=0i|μi|Ψγi−1ψi(ηi,ti)Γρi(ρiγi)+n∑l=0l|λl|Ψρl(γl−1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)+m+1∑i=0|μi|Ψγi−2ψi(ηi,ti)Γρi(ρi(γi−1))i−1∑j=1jΨψj(tj+1,tj)ρj+n∑l=0|λl|Ψρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)l−1∑j=1jΨψj(tj+1,tj)ρj)+mΨψm(T,tm)Γρm(ρmγm)+m−1∑j=1jΨψj(tj+1,tj)ρjΓρm(ρm(γm−1))][I1‖u‖PC+M2]+[(Ψψm(T,tm)|Λ|Γρm(ρmγm)+m−1∑j=0Ψψj(tj+1,tj)|Λ|ρjΓρm(ρm(γm−1)))×(m+1∑i=0i|μi|Ψγi−2ψi(ηi,ti)Γρi(ρi(γi−1))+n∑l=0l|λl|Ψρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl))+mΓρm(ρm(γm−1))][I2‖u‖PC+M3]+(Ψψm(T,tm)|Λ|Γρm(ρmγm)+m−1∑j=0Ψψj(tj+1,tj)|Λ|ρjΓρm(ρm(γm−1)))|A|=Ω1|A|+[Ω1Ω2+Ω3][(L1+Ψσm∗L2+Ψνm∗L3)‖u‖PC+M1]+[Ω1Ω4+Ω5][I1‖u‖PC+M2]+[Ω1Ω6+mΨγm∗][I2‖u‖PC+M3]≤[(Ω1Ω2+Ω3)(L1+Ψσm∗L2+Ψνm∗L3)+(Ω1Ω4+Ω5)I1+(Ω1Ω6+mΨγm∗)I2]R1+(Ω1Ω2+Ω3)M1+(Ω1Ω4+Ω5)M2+(Ω1Ω6+mΨγm∗)M3+Ω1|A|≤R1. |
Hence, ‖Qu‖PC≤R1, which yields that QBR1⊂BR1.
Step Ⅱ. We will prove that Q is a contraction.
Suppose that u, v∈BR1 and t∈J, we have
|Ψ2−γkψk(t,tk)(Qu)(t)−Ψ2−γkψk(t,tk)(Qv)(t)|≤{Ψψk(t,tk)|Λ|Γρk(ρkγk)+k−1∑j=0Ψψj(tj+1,tj)|Λ|ρjΓρk(ρk(γk−1))}{m+1∑i=0|μi|Ψγi−1ψi(ηi,ti)Γρi(ρiγi)×i−1∑j=0(ρjIαj−ρj(γj−1);ψjtj|Fu(tj+1)−Fv(tj+1)|+|ϕj+1(u(tj+1))−ϕj+1(v(tj+1))|)+m+1∑i=0|μi|Ψγi−2ψi(ηi,ti)Γρi(ρi(γi−1))[i−1∑j=0(ρjIαj+ρj(2−γj);ψjtj|Fu(tj+1)−Fv(tj+1)|+|ϕ∗j+1(u(tj+1))−ϕ∗j+1(v(tj+1))|)+i−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0(ρrIαr−ρr(γr−1);ψrtr|Fu(tr+1)−Fv(tr+1)|+|ϕr+1(u(tr+1))−ϕr+1(v(tr+1))|)]+m+1∑i=0|μi|ρiIαi;ψiti|Fu(ηi)−Fv(ηi)|+n∑l=0|λl|ρlIαl+θl;ψltl|Fu(ξl)−Fv(ξl)|+n∑l=0|λl|Ψρl(γl−1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)l−1∑j=0(ρjIαj−ρj(γj−1);ψjtj|Fu(tj+1)−Fv(tj+1)|+|ϕj+1(u(tj+1))−ϕj+1(v(tj+1))|)+n∑l=0|λl|Ψρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)[l−1∑j=0(ρjIαj+ρj(2−γj);ψjtj|Fu(tj+1)−Fv(tj+1)|+|ϕ∗j+1(u(tj+1))−ϕ∗j+1(v(tj+1))|)+l−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0(ρrIαr−ρr(γr−1);ψrtr|Fu(tr+1)−Fv(tr+1)|+|ϕr+1(u(tr+1))−ϕr+1(v(tr+1))|)]}+ρkIαk;ψktk|Fu(t)−Fv(t)|+Ψγk−1ψk(t,tk)Γρk(ρkγk)k−1∑j=0(ρjIαj−ρj(γj−1);ψjtj|Fu(tj+1)−Fv(tj+1)|+|ϕj+1(u(tj+1))−ϕj+1(v(tj+1))|)+Ψγk−2ψk(t,tk)Γρk(ρk(γk−1))[k−1∑j=0(ρjIαj+ρj(2−γj);ψjtj|Fu(tj+1)−Fv(tj+1)|+|ϕ∗j+1(u(tj+1))−ϕ∗j+1(v(tj+1))|)+k−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0(ρrIαr−ρr(γr−1);ψrtr|Fu(tr+1)−Fv(tr+1)|+|ϕr+1(u(tr+1))−ϕr+1(v(tr+1))|)]. | (3.17) |
By applying the property (i) in Lemma 2.1, we have
Ψ2−γkψk(t,tk)ρkIσk;ψkt+k|u(t)−v(t)|≤ρkIσk;ψkt+k(1)(t)‖u‖PC≤Ψσmρmψm(T,tm)Γρm(ρm+σm)‖u−v‖PC. | (3.18) |
Using the conditions (H1), (H2) and (3.18), we can find that
|Fu(t)−Fv(t)|≤|f(t,u(t),ρkIσk;ψkt+ku(t),ρkIνk;ψktku(t))−f(t,v(t),ρkIσk;ψkt+kv(t),ρkIνk;ψktkv(t))|≤L1Ψ2−γkψk(t,tk)|u(t)−v(t)|+L2Ψ2−γkψk(t,tk)ρkIσk;ψkt+k|u(t)−v(t)|+L3Ψ2−γkψk(t,tk)ρkIνk;ψkt+k|u(t)−v(t)|≤(L1+Ψσm∗L2+Ψνm∗L3)‖u−v‖PC, | (3.19) |
|ϕk(u(tk))−ϕk(v(tk))|≤I1Ψ2−γkψk(t,tk)|u(t)−v(t)|≤I1‖u−v‖PC, | (3.20) |
|ϕ∗k(u(tk))−ϕ∗k(v(tk))|≤I2Ψ2−γkψk(t,tk)|u(t)−v(t)|≤I2‖u−v‖PC. | (3.21) |
Inserting (3.19)–(3.21) into (3.17), which yields that
|Ψ2−γkψk(t,tk)((Qun)(t)−(Qu)(t))|≤{Ψψm(T,tm)|Λ|Γρm(ρmγm)+m−1∑j=0Ψψj(tj+1,tj)|Λ|ρjΓρm(ρm(γm−1))}{m+1∑i=0|μi|Ψγi−1ψi(ηi,ti)Γρi(ρiγi)×i−1∑j=0(Ψαj−ρj(γj−1)ρjψj(tj+1,tj)ΓρJ(ρj+αj−ρj(γj−1))(L1+Ψσm∗L2+Ψνm∗L3)‖u−v‖PC+I1‖u−v‖PC)+m+1∑i=0|μi|Ψγi−2ψi(ηi,ti)Γρi(ρi(γi−1))[i−1∑j=0(Ψαj+ρj(2−γj)ρjψj(tj+1,tj)Γρj(ρj+αj+ρj(2−γj))(L1+Ψσm∗L2+Ψνm∗L3)‖u−v‖PC+I2‖u−v‖PC)+i−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0(Ψαr−ρr(γr−1)ρrψr(tr+1,tr)Γρr(ρr+αr−ρr(γr−1))(L1+Ψσm∗L2+Ψνm∗L3)‖u−v‖PC+I1‖u−v‖PC)]+m+1∑i=0|μi|Ψαiρiψi(ηi,ti)Γρi(ρi+αi)(L1+Ψσm∗L2+Ψνm∗L3)‖u−v‖PC+n∑l=0|λl|Ψαl+θlρlψl(ξl,tl)Γρl(ρl+αl+θl)(L1+Ψσm∗L2+Ψνm∗L3)‖u−v‖PC+n∑l=0|λl|Ψρl(γl−1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)×l−1∑j=0(Ψαj−ρj(γj−1)ρjψj(tj+1,tj)ΓρJ(ρj+αj−ρj(γj−1))(L1+Ψσm∗L2+Ψνm∗L3)‖u−v‖PC+I1‖u−v‖PC)+n∑l=0|λl|Ψρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)[l−1∑j=0(Ψαj+ρj(2−γj)ρjψj(tj+1,tj)Γρj(ρj+αj+ρj(2−γj))(L1+Ψσm∗L2+Ψνm∗L3)‖u−v‖PC+I2‖u−v‖PC)+l−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0(Ψαr−ρr(γr−1)ρrψr(tr+1,tr)Γρr(ρr+αr−ρr(γr−1))(L1+Ψσm∗L2+Ψνm∗L3)‖u−v‖PC+I1‖u−v‖PC)]}+Ψαmρm+2−γmψm(T,tm)Γρm(ρm+αm)(L1+Ψσm∗L2+Ψνm∗L3)‖u−v‖PC+Ψψm(T,tm)Γρm(ρmγm)m−1∑j=0(Ψαj−ρj(γj−1)ρjψj(tj+1,tj)ΓρJ(ρj+αj−ρj(γj−1))(L1+Ψσm∗L2+Ψνm∗L3)‖u−v‖PC+I1‖u−v‖PC)+1Γρm(ρm(γm−1))[m−1∑j=0(Ψαj+ρj(2−γj)ρjψj(tj+1,tj)Γρj(ρj+αj+ρj(2−γj))(L1+Ψσm∗L2+Ψνm∗L3)‖u−v‖PC+I2‖u−v‖PC)+m−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0(Ψαr−ρr(γr−1)ρrψr(tr+1,tr)Γρr(ρr+αr−ρr(γr−1))(L1+Ψσm∗L2+Ψνm∗L3)‖u−v‖PC+I1‖u−v‖PC)]≤[(Ω1Ω2+Ω3)(L1+Ψσm∗L2+Ψνm∗L3)+(Ω1Ω4+Ω5)I1+(Ω1Ω6+mΨγm∗)I2]‖u−v‖PC. |
It follows that ‖Qu−Qv‖PC≤[Δ1+Δ2]‖u−v‖PC. Condition (3.8) stated that Δ1+Δ2<1. Thus Q is a contraction. By Lemma 3.1, problem (1.4) has a unique solution on J.
Lemma 3.2. (O'Regan's fixed point theorem [43]) Let O be an open subset of a closed, convex set D in a Banach space E such that 0∈O. Moreover, let Q:¯O→D be such that Q(¯O) is bounded and that Q=Q1+Q2, where Q1:¯O→D is continuous and completely continuous and Q2:¯O→D is a nonlinear contraction, i.e., there exists a nonnegative nondecreasing function Θ:[0,∞)→[0,∞), such that Θ(w)<w for any w∈R+ and ‖Q2u−Q2v‖≤Θ(‖u−v‖) for all u, v∈¯O. Then either (a1). Q has a fixed point u∈¯O or (a2). there exist a point u∈∂K and θ∈(0,1), such that u=θQu. Here, ¯O and ∂O represent the closure and the boundary of O, respectively.
Theorem 3.2. Assume ψk∈C2(J) where ψ′k(t)>0, k=0,1,2,…,m, t∈J, f∈C(J×R3,R), ϕk, ϕ∗k∈C(R,R), k=1,2,…,m satisfying the following conditions:
(H3) There exist positive real numbers M1, M2 such that
|ϕk(u)|≤M1,|ϕ∗k(u)|≤M2,u∈R. | (3.22) |
(H4) There exist a continuous nondecreasing function Θ:[0,∞)→[0,∞) and gi∈C(J,R+), i=1,2,3, such that
|f(t,u,v,w)|≤g1(t)Θ(Ψ2−γkψk(t,tk)|u|)+Ψ2−γkψk(t,tk)[g2(t)|v|+g3(t)|w|], | (3.23) |
for any u, v, w∈R, t∈J, k=1,2,…,m.
(H5) There exist continuous nondecreasing functions Ki:[0,∞)→[0,∞), and Ξi, i=1,2, such that
|ϕk(u)−ϕk(v)|≤K1(Ψγk−2ψk(t,tk)|u−v|),|ϕ∗k(u)−ϕ∗k(v)|≤K2(Ψγk−2ψk(t,tk)|u−v|),K1(Ψγk−2ψk(t,tk)|u|)≤Ξ1Ψγk−2ψk(t,tk)|u|,K2(Ψγk−2ψk(t,tk)|u|)≤Ξ2Ψγk−2ψk(t,tk)|u|, |
for any u, v∈R, k=1,2,…,m, satisfying [(Ω5+Ω1Ω4)Ξ1+(mΨγm∗+Ω1Ω6)Ξ2]<1 where Ω1, Ω4, Ω5, Ω6 are given by (3.2) and (3.5)–(3.7), respectively.
(H6)
supR2∈(0,∞)R2g∗1Θ(R2)(Ω3+Ω1Ω2)+C∗>11−[g∗2Ψσm∗+g∗3Ψνm∗](Ω3+Ω1Ω2), | (3.24) |
with [g∗2Ψσm∗+g∗3Ψνm∗](Ω3+Ω1Ω2)<1, Ωi are given by (3.2)–(3.4), respectively, and g∗i=supt∈J|gi(t)|, i=1,2,3.
Then the considered problem (1.4) has at least one solution on J.
Proof. We will divide the operator Q:PC→PC defined by (3.1) into two operators, that is Q1 and Q2, where (Qu)(t)=(Q1u)(t)+(Q2u)(t), for any t∈J. The operators Q1 and Q2 are defined by
(Q1u)(t)=Ψγk−1ψk(t,tk)Γρk(ρkγk)k−1∑j=0ρjIαj−ρj(γj−1);ψjtjFu(tj+1)+Ψγk−2ψk(t,tk)Γρk(ρk(γk−1))k−1∑j=0ρjIαj+ρj(2−γj);ψjtjFu(tj+1)+ρkIαk;ψktkFu(t)+Ψγk−2ψk(t,tk)Γρk(ρk(γk−1))k−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0ρrIαr−ρr(γr−1);ψrtrFu(tr+1)−{Ψγk−2ψk(t,tk)ΛΓρk(ρk(γk−1))k−1∑j=0Ψψj(tj+1,tj)ρj+Ψγk−1ψk(t,tk)ΛΓρk(ρkγk)}{m+1∑i=0μiρiIαi;ψitiFu(ηi)+n∑l=0λlρlIαl+θl;ψltlFu(ξl)+m+1∑i=0μiΨγi−1ψi(ηi,ti)Γρi(ρiγi)i−1∑j=0ρjIαj−ρj(γj−1);ψjtjFu(tj+1)+m+1∑i=0μiΨγi−2ψi(ηi,ti)Γρi(ρi(γi−1))i−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0ρrIαr−ρr(γr−1);ψrtrFu(tr+1)+m+1∑i=0μiΨγi−2ψi(ηi,ti)Γρi(ρi(γi−1))i−1∑j=0ρjIαj+ρj(2−γj);ψjtjFu(tj+1)+n∑l=0λlΨρl(γl−1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)×l−1∑j=0ρjIαj−ρj(γj−1);ψjtjFu(tj+1)+n∑l=0λlΨρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)l−1∑j=0ρjIαj+ρj(2−γj);ψjtjFu(tj+1)+n∑l=0λlΨρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)l−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0ρrIαr−ρr(γr−1);ψrtrFu(tr+1)}, | (3.25) |
(Q2u)(t)=Ψγk−1ψk(t,tk)Γρk(ρkγk)k−1∑j=0ϕj+1(u(tj+1))+Ψγk−2ψk(t,tk)Γρk(ρk(γk−1))k−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0ϕr+1(u(tr+1))+Ψγk−2ψk(t,tk)Γρk(ρk(γk−1))k−1∑j=0ϕ∗j+1(u(tj+1))−{Ψγk−2ψk(t,tk)ΛΓρk(ρk(γk−1))k−1∑j=0Ψψj(tj+1,tj)ρj+Ψγk−1ψk(t,tk)ΛΓρk(ρkγk)}{n∑l=0λlΨρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)l−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0ϕr+1(u(tr+1))+m+1∑i=0μiΨγi−1ψi(ηi,ti)Γρi(ρiγi)i−1∑j=0ϕj+1(u(tj+1))+n∑l=0λlΨρl(γl−1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)l−1∑j=0ϕj+1(u(tj+1))+m+1∑i=0μiΨγi−2ψi(ηi,ti)Γρi(ρi(γi−1))i−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0ϕr+1(u(tr+1))+m+1∑i=0μiΨγi−2ψi(ηi,ti)Γρi(ρi(γi−1))i−1∑j=0ϕ∗j+1(u(tj+1))+n∑l=0λlΨρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)l−1∑j=0ϕ∗j+1(u(tj+1))−A}. | (3.26) |
Next, assume that BR2={u∈E:‖u‖PC≤R2} such that
R2g∗1Θ(R2)(Ω3+Ω1Ω2)+C∗>11−[g∗2Ψσm∗+g∗3Ψνm∗](Ω3+Ω1Ω2). | (3.27) |
Thanks to Theorem 3.1, we see that Q1 is continuous. For any t∈J, we have
|Ψ2−γkψk(t,tk)(Q1u)(t)|≤Ψψm(T,tm)Γρm(ρmγm)m−1∑j=0ρjIαj−ρj(γj−1);ψjtj|Fu(tj+1)|+1Γρm(ρm(γm−1))m−1∑j=0ρjIαj+ρj(2−γj);ψjtj|Fu(tj+1)|+Ψ2−γmψm(T,tm)ρmIαm;ψmtm|Fu(T)|+m−1∑j=1Ψψj(tj+1,tj)ρjΓρm(ρm(γm−1))j−1∑r=0ρrIαr−ρr(γr−1);ψrtr|Fu(tr+1)|+{m−1∑j=0Ψψj(tj+1,tj)ρj|Λ|Γρm(ρm(γm−1))+Ψψm(T,tm)|Λ|Γρm(ρmγm)}{m+1∑i=0|μi|ρiIαi;ψiti|Fu(ηi)|+n∑l=0|λl|ρlIαl+θl;ψltl|Fu(ξl)|+m+1∑i=0|μi|Ψγi−1ψi(ηi,ti)Γρi(ρiγi)i−1∑j=0ρjIαj−ρj(γj−1);ψjtj|Fu(tj+1)|+m+1∑i=0|μi|Ψγi−2ψi(ηi,ti)Γρi(ρi(γi−1))i−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0ρrIαr−ρr(γr−1);ψrtr|Fu(tr+1)|+m+1∑i=0|μi|Ψγi−2ψi(ηi,ti)Γρi(ρi(γi−1))i−1∑j=0ρjIαj+ρj(2−γj);ψjtj|Fu(tj+1)|+n∑l=0|λl|Ψρl(γl−1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)l−1∑j=0ρjIαj−ρj(γj−1);ψjtj|Fu(tj+1)|+n∑l=0|λl|Ψρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)l−1∑j=0ρjIαj+ρj(2−γj);ψjtj|Fu(tj+1)|+n∑l=0|λl|Ψρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)l−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0ρrIαr−ρr(γr−1);ψrtr|Fu(tr+1)|}. | (3.28) |
From condition (H4), we obtain
|Fu(t)|=|f(t,u(t),ρkIσk;ψkt+ku(t),ρkIνk;ψktku(t))|≤g∗1Θ(R2)+[g∗2Ψσm∗+g∗3Ψνm∗]R2. | (3.29) |
Substituting (3.29) into (3.28) and using the property (i) in Lemma 2.1, we have
|Ψ2−γkψk(t,tk)(Q1u)(t)|≤(g∗1Θ(R2)+[g∗2Ψσm∗+g∗3Ψνm∗]R2)(Ψψm(T,tm)Γρm(ρmγm)m−1∑j=0Ψαj−ρj(γj−1)ρjψj(tj+1,tj)Γρj(αj−ρj(γj−1)+ρj)+1Γρm(ρm(γm−1))×m−1∑j=0Ψαj+ρj(2−γj)ρjψj(tj+1,tj)Γρj(αj+ρj(2−γj)+ρj)+Ψαmρm+2−γmψm(T,tm)Γρm(αm+ρm)+m−1∑j=1Ψψj(tj+1,tj)ρjΓρm(ρm(γm−1))×j−1∑r=0Ψαr−ρr(γr−1)ρrψr(tr+1,tr)Γρr(αr−ρr(γr−1)+ρr)+{m−1∑j=0Ψψj(tj+1,tj)ρj|Λ|Γρm(ρm(γm−1))+Ψψm(T,tm)|Λ|Γρm(ρmγm)}{m+1∑i=0|μi|Ψαiρiψi(ηi,ti)Γρi(αi+ρi)+n∑l=0|λl|Ψαl+θlρlψl(ξl,tl)Γρl(αl+θl+ρl)+m+1∑i=0|μi|Ψγi−1ψi(ηi,ti)Γρi(ρiγi)i−1∑j=0Ψαj−ρj(γj−1)ρjψj(tj+1,tj)Γρj(αj−ρj(γj−1)+ρj)+m+1∑i=0|μi|Ψγi−2ψi(ηi,ti)Γρi(ρi(γi−1))i−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0Ψαr−ρr(γr−1)ρrψr(tr+1,tr)Γρr(αr−ρr(γr−1)+ρr)+m+1∑i=0|μi|Ψγi−2ψi(ηi,ti)Γρi(ρi(γi−1))i−1∑j=0Ψαj+ρj(2−γj)ρjψj(tj+1,tj)Γρj(αj+ρj(2−γj)+ρj)+n∑l=0|λl|Ψρl(γl−1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)l−1∑j=0Ψαj−ρj(γj−1)ρjψj(tj+1,tj)Γρj(αj−ρj(γj−1)+ρj)+n∑l=0|λl|Ψρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)l−1∑j=0Ψαj+ρj(2−γj)ρjψj(tj+1,tj)Γρj(αj+ρj(2−γj)+ρj)+n∑l=0|λl|Ψρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)l−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0Ψαr−ρr(γr−1)ρrψr(tr+1,tr)Γρr(αr−ρr(γr−1)+ρr)})=(g∗1Θ(R2)+[g∗2Ψσm∗+g∗3Ψνm∗]R2)(Ω3+Ω1Ω2). |
This yields that Q1(BR2)≤(g∗1Θ(R2)+[g∗2Ψσm∗+g∗3Ψνm∗]R2)(Ω3+Ω1Ω2).
Now, we will prove that Q1 maps bounded set BR2 into equicontinuous set of E. Suppose that τ1, τ2∈Jk, k=0,1,…,m, under τ1<τ2 and for any u∈BR2, we obtain that
|Ψ2−γkψk(τ2,tk)(Q1u)(τ2)−Ψ2−γkψk(τ1,tk)(Q1u)(τ1)|≤(g∗1Θ(R2)+[g∗2Ψσm∗+g∗3Ψνm∗]R2)(Ω3+Ω1Ω2)(|Ψψk(τ2,tk)−Ψψk(τ1,tk)|Γρm(ρmγm)m−1∑j=0Ψαj−ρj(γj−1)ρjψj(tj+1,tj)Γρj(αj−ρj(γj−1)+ρj)+Ψ2−γmψm(τ2,tm)Ψαmρmψm(τ2,t1)αmΓρm(αm)+1αmΓρm(αm)|Ψαkρk+2−γkψk(τ2,tk)−Ψαkρk+2−γkψk(τ1,tk)−Ψ2−γkψk(τ2,tk)Ψαkρkψk(τ2,τ1)|+|Ψψk(τ2,tk)−Ψψk(τ1,tk)||Λ|Γρm(ρmγm){m+1∑i=0|μi|Ψαiρiψi(ηi,ti)Γρi(αi+ρi)+n∑l=0|λl|Ψαl+θlρlψl(ξl,tl)Γρl(αl+θl+ρl)+m+1∑i=0|μi|Ψγi−1ψi(ηi,ti)Γρi(ρiγi)×i−1∑j=0Ψαj−ρj(γj−1)ρjψj(tj+1,tj)Γρj(αj−ρj(γj−1)+ρj)+m+1∑i=0|μi|Ψγi−2ψi(ηi,ti)Γρi(ρi(γi−1))i−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0Ψαr−ρr(γr−1)ρrψr(tr+1,tr)Γρr(αr−ρr(γr−1)+ρr) |
+m+1∑i=0|μi|Ψγi−2ψi(ηi,ti)Γρi(ρi(γi−1))i−1∑j=0Ψαj+ρj(2−γj)ρjψj(tj+1,tj)Γρj(αj+ρj(2−γj)+ρj)+n∑l=0|λl|Ψρl(γl−1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)l−1∑j=0Ψαj−ρj(γj−1)ρjψj(tj+1,tj)Γρj(αj−ρj(γj−1)+ρj)+n∑l=0|λl|Ψρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)l−1∑j=0Ψαj+ρj(2−γj)ρjψj(tj+1,tj)Γρj(αj+ρj(2−γj)+ρj)+n∑l=0|λl|Ψρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)l−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0Ψαr−ρr(γr−1)ρrψr(tr+1,tr)Γρr(αr−ρr(γr−1)+ρr)})=(g∗1Θ(R2)+[g∗2Ψσm∗+g∗3Ψνm∗]R2)(Ω3+Ω1Ω2)(|Ψψk(τ2,tk)−Ψψk(τ1,tk)|Γρm(ρmγm)m−1∑j=0Ψαj−ρj(γj−1)ρjψj(tj+1,tj)Γρj(αj−ρj(γj−1)+ρj)+Ψ2−γmψm(τ2,tm)Ψαmρmψm(τ2,τ1)αmΓρm(αm)+1αmΓρm(αm)|Ψαkρk+2−γkψk(τ2,tk)−Ψαkρk+2−γkψk(τ1,tk)−Ψ2−γkψk(τ2,tk)Ψαkρkψk(τ2,τ1)|+Ω2|Ψψk(τ2,tk)−Ψψk(τ1,tk)||Λ|Γρm(ρmγm)). |
Observe that the above result is independent of u∈BR2. This implies that
|Ψ2−γkψk(τ2,tk)(Qu1)(τ2)−Ψ2−γkψk(τ1,tk)(Qu1)(τ1)|→0asτ2→τ1. |
Since Q1 maps bounded set BR2 into an equicontinuous set of E, by the Arzelá-Ascoli theorem, we obtain that Q1 is completely continuous.
Next, we will prove that Q2 is a nonlinear contraction. Let Θ:R+→R+ be a continuous nondecreasing function given by Θ(ϵ)=[(Ω5+Ω1Ω4)Ξ1+(mΨγm∗+Ω1Ω6)Ξ2]ϵ, for all ϵ≥0. It is easy to see that Θ(0)=0. Since [(Ω5+Ω1Ω4)Ξ1+(mΨγm∗+Ω1Ω6)Ξ2]<1, we have Θ(ϵ)<ϵ for all ϵ>0. For any u, v∈BR2, we obtain
|Ψ2−γkψk(t,tk)(Q2u)(t)−Ψ2−γkψk(t,tk)(Q2v)(t)|≤Ψψm(T,tm)Γρm(ρmγm)m−1∑j=0K1(‖u−v‖PC)+m−1∑j=1Ψψj(tj+1,tj)ρjΓρm(ρm(γm−1))j−1∑r=0K1(‖u−v‖PC)+1Γρm(ρm(γm−1))m−1∑j=0K2(‖u−v‖PC)+{m−1∑j=0Ψψj(tj+1,tj)ρj|Λ|Γρm(ρm(γm−1))+Ψψm(T,tm)|Λ|Γρm(ρmγm)}×{n∑l=0|λl|Ψρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)l−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0K1(‖u−v‖PC)+m+1∑i=0|μi|Ψγi−1ψi(ηi,ti)Γρi(ρiγi)i−1∑j=0K1(‖u−v‖PC)+n∑l=0|λl|Ψρl(γl−1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)l−1∑j=0K1(‖u−v‖PC)+m+1∑i=0|μi|Ψγi−2ψi(ηi,ti)Γρi(ρi(γi−1))i−1∑j=1Ψψj(tj+1,tj)ρjj−1∑r=0K1(‖u−v‖PC)+m+1∑i=0|μi|Ψγi−2ψi(ηi,ti)Γρi(ρi(γi−1))i−1∑j=0K2(‖u−v‖PC)+n∑l=0|λl|Ψρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)l−1∑j=0K2(‖u−v‖PC)}≤[(mΨψm(T,tm)Γρm(ρmγm)+m−1∑j=1jΨψj(tj+1,tj)ρjΓρm(ρm(γm−1)))Ξ1+mΓρm(ρm(γm−1))Ξ2+{m−1∑j=0Ψψj(tj+1,tj)ρj|Λ|Γρm(ρm(γm−1))+Ψψm(T,tm)|Λ|Γρm(ρmγm)}{(m+1∑i=0i|μi|Ψγi−1ψi(ηi,ti)Γρi(ρiγi)+n∑l=0l|λl|Ψρl(γl−1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)+n∑l=0|λl|Ψρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)l−1∑j=1jΨψj(tj+1,tj)ρj+m+1∑i=0|μi|Ψγi−2ψi(ηi,ti)Γρi(ρi(γi−1))i−1∑j=1jΨψj(tj+1,tj)ρj)Ξ1+(m+1∑i=0i|μi|Ψγi−2ψi(ηi,ti)Γρi(ρi(γi−1))+n∑l=0l|λl|Ψρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl))Ξ2}]‖u−v‖PC=[(Ω5+Ω1Ω4)Ξ1+(mΨγm∗+Ω1Ω6)Ξ2]‖u−v‖PC. |
By taking Θ(ϵ)=[(Ω5+Ω1Ω4)Ξ1+(mΨγm∗+Ω1Ω6)Ξ2]ϵ, we have Θ(0)=0 and Θ(ϵ)<ϵ for all ϵ>0. Then
‖Q2u−Q2v‖PC≤Θ(‖u−v‖PC). |
This yields that Q2 is a nonlinear contraction.
Next, we will prove that Q2(BR2) is bounded. By (H3), for any u∈BR2, it follows that
|Ψ2−γkψk(t,tk)(Q2u)(t)|≤(mΨψm(T,tm)Γρm(ρmγm)+m−1∑j=1jΨψj(tj+1,tj)ρjΓρm(ρm(γm−1)))M1+mΓρm(ρm(γm−1))M2+{m−1∑j=0Ψψj(tj+1,tj)ρj|Λ|Γρm(ρm(γm−1))+Ψψm(T,tm)|Λ|Γρm(ρmγm)}{(n∑l=0|λl|Ψρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl)l−1∑j=1jΨψj(tj+1,tj)ρj+m+1∑i=0i|μi|Ψγi−1ψi(ηi,ti)Γρi(ρiγi)+n∑l=0l|λl|Ψρl(γl−1)+θlρlψl(ξl,tl)Γρl(ρlγl+θl)+m+1∑i=0|μi|Ψγi−2ψi(ηi,ti)Γρi(ρi(γi−1))i−1∑j=1jΨψj(tj+1,tj)ρj)M1+(m+1∑i=0i|μi|Ψγi−2ψi(ηi,ti)Γρi(ρi(γi−1))+n∑l=0l|λl|Ψρl(γl−2)+θlρlψl(ξl,tl)Γρl(ρl(γl−1)+θl))M2+|A|}=(Ω5+Ω1Ω4)M1+(mΨσm∗+Ω1Ω6)M2+Ω1|A|. |
Then, Q2(BR2) is bounded with the boundedness of the set Q1(BR2).
Lastly, we will prove that the assumption (a2) in Lemma 3.2 is not true. Suppose that (a2) is true. Then there exists a constant θ∈(0,1) such that u=θQu for any u∈BR2. We obtain that ‖u‖PC≤R2 and
|Ψ2−γkψk(t,tk)u(t)|=θ|Ψ2−γkψk(t,tk)(Qu)(t)|≤|Ψ2−γkψk(t,tk)(Q1u)(t)+Ψ2−γkψk(t,tk)(Q2u)(t)|≤(g∗1Θ(R2)+[g∗2Ψσm∗+g∗3Ψνm∗]R2)(Ω3+Ω1Ω2)+(Ω5+Ω1Ω4)M1+(mΨσm∗+Ω1Ω6)M2+Ω1|A|, |
which implies
R2≤(g∗1Θ(R2)+[g∗2Ψσm∗+g∗3Ψνm∗]R2)(Ω3+Ω1Ω2)+(Ω5+Ω1Ω4)M1+(mΨσm∗+Ω1Ω6)M2+Ω1|A|. |
Hence,
R2g∗1Θ(R2)(Ω3+Ω1Ω2)+C∗≤11−[g∗2Ψσm∗+g∗3Ψνm∗](Ω3+Ω1Ω2), |
where
C∗:=(Ω5+Ω1Ω4)M1+(mΨσm∗+Ω1Ω6)M2+Ω1|A|, | (3.30) |
this contradicts the condition (H6). Therefore, Q1 and Q2 satisfy all conditions of Lemma 3.2. Hence, the considered problem (1.4) has a solution on J.
This section discusses a variety of Ulam-Hyers stability of the considered problem (1.4). Before proving, we will state Ulam-Hyers stability ideas for the considered problem (1.4). Assume that χ∈C(J,R+) is a non-decreasing function and ϵ>0, δ≥0, z∈E, so that for any t∈Jk, k=1,2,…,m the following important inequalities are satisfied:
{|HρkDαk,βk;ψkt+kz(t)−f(t,z(t),ρkIσk;ψktkz(t),ρkIνk;ψktkz(t))|≤ϵ,[0.25cm]|ρkIρk(2−γk);ψkt+kz(t+k)−ρk−1Iρk−1(2−γk−1);ψk−1t+k−1z(t−k)−ϕk(z(tk))|≤ϵ,|RLρkDρk(γk−1);ψkt+kz(t+k)−RLρk−1Dρk−1(γk−1−1);ψk−1t+k−1z(t−k)−ϕ∗k(z(tk))|≤ϵ, | (4.1) |
{|HρkDαk,βk;ψkt+kz(t)−f(t,z(t),ρkIσk;ψktkz(t),ρkIνk;ψktkz(t))|≤χ(t),[0.25cm]|ρkIρk(2−γk);ψkt+kz(t+k)−ρk−1Iρk−1(2−γk−1);ψk−1t+k−1z(t−k)−ϕk(z(tk))|≤δ,|RLρkDρk(γk−1);ψkt+kz(t+k)−RLρk−1Dρk−1(γk−1−1);ψk−1t+k−1z(t−k)−ϕ∗k(z(tk))|≤δ, | (4.2) |
{|HρkDαk,βk;ψkt+kz(t)−f(t,z(t),ρkIσk;ψktkz(t),ρkIνk;ψktkz(t))|≤ϵχ(t),[0.25cm]|ρkIρk(2−γk);ψkt+kz(t+k)−ρk−1Iρk−1(2−γk−1);ψk−1t+k−1z(t−k)−ϕk(z(tk))|≤ϵδ,|RLρkDρk(γk−1);ψkt+kz(t+k)−RLρk−1Dρk−1(γk−1−1);ψk−1t+k−1z(t−k)−ϕ∗k(z(tk))|≤ϵδ. | (4.3) |
Definition 4.1. The considered problem (1.4) is said to be Ulam–Hyers (UH) stable, if there exists a real constant CF>0 so that for every ϵ>0 and for any z∈E of (4.1) there exists u∈E of (1.4) that satisfies
|z(t)−u(t)|≤CFϵ,t∈J. | (4.4) |
Definition 4.2. The considered problem (1.4) is said to be generalized Ulam-Hyers (GUH) stable, if there exists χ∈C(R+,R+) via χ(0)=0 so that for every ϵ>0 and for any z∈E of (4.2) there exists u∈E of (1.4) that satisfies
|z(t)−u(t)|≤χ(ϵ),t∈J. | (4.5) |
Definition 4.3. The considered problem (1.4) is said to be Ulam-Hyers-Rassias (UHR) stable with respect to (δ,χ), if there exists a real constant CF,χF>0 so that for every ϵ>0 and for any z∈E of (4.3) there exists u∈E of (1.4) that satisfies
|z(t)−u(t)|≤CF,χFϵ(δ+χ(t)),t∈J. | (4.6) |
Definition 4.4. The considered problem (1.4) is said to be generalized Ulam-Hyers-Rassias (GUHR) stable with respect to (δ,χ), if there exists a real constant CF,χF>0 so that for any z∈E of (4.2) there exists u∈E of (1.4) that satisfies
|z(t)−u(t)|≤CF,χF(δ+χ(t)),t∈J. | (4.7) |
Remark 4.1. By Definitions 4.1–4.4, we will find out that: (R1) Definition 4.1 ⇒ Definition 4.2; (R2) Definition 4.3 ⇒ Definition 4.4; and (R3) Definition 4.3 ⇒ Definition 4.1.
Remark 4.2. Assume that z∈E is the solution of (4.1). If there exists g∈E with a sequence gk for k=1,2,…,m, depending on a function z, such that (A1) |g(t)|≤ϵ, |gk|≤ϵ, t∈J; (A2) HρkDαk,βk;ψkt+kz(t)=f(t,z(t),ρkIσk;ψktkz(t),ρkIνk;ψktkz(t))+g(t), t∈J; (A3) ρkIρk(2−γk);ψkt+kz(t+k)−ρk−1Iρk−1(2−γk−1);ψk−1t+k−1z(t−k)=ϕk(z(tk))+gk, t∈J; and (A4) RLρkDρk(γk−1);ψkt+kz(t+k)−RLρk−1Dρk−1(γk−1−1);ψk−1t+k−1z(t−k)=ϕ∗k(z(tk))+gk, t∈J.
Remark 4.3. Assume that z∈E is the solution of (4.2). If there exists g∈E and gk for k=1,2,…,m, depending on a function z, such that (B1) |g(t)|≤χ(t), |gk|≤δ, t∈J; (B2) HρkDαk,βk;ψkt+kz(t)=f(t,z(t),ρkIσk;ψktkz(t),ρkIνk;ψktkz(t))+g(t), t∈J; (B3) ρkIρk(2−γk);ψkt+kz(t+k)−ρk−1Iρk−1(2−γk−1);ψk−1t+k−1z(t−k)=ϕk(z(tk))+gk; and (B4) RLρkDρk(γk−1);ψkt+kz(t+k)−RLρk−1Dρk−1(γk−1−1);ψk−1t+k−1z(t−k)=ϕ∗k(z(tk))+gk, t∈J.
Remark 4.4. Assume that z∈E is the solution of (4.3). If there exists g∈E and gk for k=1,2,…,m, depending on a function z, such that (C1) |g(t)|≤ϵχ(t), |gk|≤ϵδ, t∈J; (C2) HρkDαk,βk;ψkt+kz(t)=f(t,z(t),ρkIσk;ψktkz(t),ρkIνk;ψktkz(t))+g(t), t∈J; (C3) ρkIρk(2−γk);ψkt+kz(t+k)−ρk−1Iρk−1(2−γk−1);ψk−1t+k−1z(t−k)=ϕk(z(tk))+gk; and (C4) RLρkDρk(γk−1);ψkt+kz(t+k)−RLρk−1Dρk−1(γk−1−1);ψk−1t+k−1z(t−k)=ϕ∗k(z(tk))+gk, t∈J.
Theorem 4.1. Assume that αk∈(1,2], βk∈[0,1], ρk∈R+, γk=(βk(2ρk−αk)+αk)/ρk, ψk∈C(J,R) where ψ′k>0, k=1,2,…,m and f∈C(J×R3,R). If the assumptions (H1) and (H2) and the inequality (3.8) hold, then the considered problem (1.4) is UH stable on J.
Proof. Assume that z∈PC is the solution of the problem (4.1). Under the conditions (A2) and (A3) of Remark 4.2 and Lemma 2.4, we have
{HρkDαk,βk;ψkt+kz(t)=Fz(t)+g(t),t≠tk,k=0,1,…,m,[0.25cm]RLρkDρk(γk−1);ψkt+kz(t+k)−RLρk−1Dρk−1(γk−1−1);ψk−1t+k−1z(t−k)=ϕk(z(tk))+gk,k=1,2,…,m,[0.25cm]ρkIρk(2−γk);ψkt+kz(t+k)−ρk−1Iρk−1(2−γk−1);ψk−1t+k−1z(t−k)=ϕ∗k(z(tk))+gk,k=1,2,…,m,[0.15cm]z(0)=0,m+1∑i=0μiz(ηi)+n∑l=0λlρlIθl;ψltlz(ξl)=A,ηi,∈(ti,ti+1],ξl∈(tl,tl+1]. | (4.8) |
Then, the solution of (4.8) is given by
\begin{eqnarray} && z(t)\\ & = & \Bigg\{ \frac{\Psi_{\psi_{k}}^{\gamma_{k} - 1}(t, t_{k})}{\Lambda \Gamma_{\rho_{k}}(\rho_{k}\gamma_{k})} + \frac{\Psi_{\psi_{k}}^{\gamma_{k} - 2}(t, t_{k})}{\Lambda \Gamma_{\rho_{k}}(\rho_{k}(\gamma_{k}-1))} \sum\limits_{j = 0}^{k-1} \frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}}\Bigg\} \Bigg\{ {A} - \Bigg( \sum\limits_{i = 0}^{m+1}\frac{\mu_{i} \Psi_{\psi_{i}}^{\gamma_{i} - 1}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}\gamma_{i})}\\ && \times \sum\limits_{j = 0}^{i-1}\left( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} {F}_{z}(t_{j+1}) + \phi_{j+1}(z(t_{j+1})) \right) + \sum\limits_{i = 0}^{m+1}\frac{\mu_{i} \Psi_{\psi_{i}}^{\gamma_{i} - 2}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}(\gamma_{i}-1))}\Bigg[ \sum\limits_{j = 0}^{i-1}({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} {F}_{z}(t_{j+1}) \\ && + \phi_{j+1}^{*}(z(t_{j+1})) ) + \sum\limits_{j = 1}^{i-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\left({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} {F}_{z}(t_{r+1}) + \phi_{r+1}(z(t_{r+1})) \right) \Bigg]\\ && + \sum\limits_{l = 0}^{n}\frac{\lambda_{l}\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 1)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}\gamma_{l} + \theta_{l})} \sum\limits_{j = 0}^{l-1}\left( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} {F}_{z}(t_{j+1}) + \phi_{j+1}(z(t_{j+1})) \right)\\ && + \sum\limits_{l = 0}^{n}\frac{\lambda_{l}\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 2)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}(\gamma_{l} - 1) + \theta_{l})} \Bigg[ \sum\limits_{j = 0}^{l-1}\left({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} {F}_{z}(t_{j+1}) + \phi_{j+1}^{*}(z(t_{j+1})) \right)\\ && + \sum\limits_{j = 1}^{l-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\left({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} {F}_{z}(t_{r+1}) + \phi_{r+1}(z(t_{r+1})) \right) \Bigg] + \sum\limits_{i = 0}^{m+1}\mu_{i} {_{\rho_{i}}^{}}{I}_{t_{i}}^{\alpha_{i}; \psi_{i}} {F}_{z}(\eta_{i}) \\ && + \sum\limits_{l = 0}^{n}\lambda_{l}{_{\rho_{l}}^{}}{I}_{t_{l}}^{\alpha_{l}+\theta_{l}; \psi_{l}} {F}_{z}(\xi_{l})\Bigg) \Bigg\} + {_{\rho_{k}}^{}}{I}_{t_{k}}^{\alpha_{k}; \psi_{k}} {F}_{z}(t) + \frac{\Psi_{\psi_{k}}^{\gamma_{k} - 1}(t, t_{k})}{\Gamma_{\rho_{k}}(\rho_{k}\gamma_{k})} \sum\limits_{j = 0}^{k-1}\left( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} {F}_{z}(t_{j+1}) + \phi_{j+1}(z(t_{j+1})) \right)\\ && + \frac{\Psi_{\psi_{k}}^{\gamma_{k} - 2}(t, t_{k})}{\Gamma_{\rho_{k}}(\rho_{k}(\gamma_{k}-1))}\Bigg[ \sum\limits_{j = 0}^{k-1}\left({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} {F}_{z}(t_{j+1}) + \phi_{j+1}^{*}(z(t_{j+1})) \right)\\ && + \sum\limits_{j = 1}^{k-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\left({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} {F}_{z}(t_{r+1}) + \phi_{r+1}(z(t_{r+1})) \right) \Bigg] - \Bigg\{ \frac{\Psi_{\psi_{k}}^{\gamma_{k} - 1}(t, t_{k})}{\Lambda \Gamma_{\rho_{k}}(\rho_{k}\gamma_{k})} \\ && + \frac{\Psi_{\psi_{k}}^{\gamma_{k} - 2}(t, t_{k})}{\Lambda \Gamma_{\rho_{k}}(\rho_{k}(\gamma_{k}-1))} \sum\limits_{j = 0}^{k-1} \frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}}\Bigg\} \Bigg\{ \sum\limits_{i = 0}^{m+1}\frac{\mu_{i} \Psi_{\psi_{i}}^{\gamma_{i} - 1}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}\gamma_{i})} \sum\limits_{j = 0}^{i-1}\left( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} g(t_{j+1}) + g_{j+1} \right)\\ && + \sum\limits_{i = 0}^{m+1}\frac{\mu_{i} \Psi_{\psi_{i}}^{\gamma_{i} - 2}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}(\gamma_{i}-1))}\Bigg[ \sum\limits_{j = 0}^{i-1}\left({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} g(t_{j+1}) + g_{j+1} \right)\\ && + \sum\limits_{j = 1}^{i-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\left({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} g(t_{r+1}) + g_{r+1} \right) \Bigg] + \sum\limits_{i = 0}^{m+1}\mu_{i} {_{\rho_{i}}^{}}{I}_{t_{i}}^{\alpha_{i}; \psi_{i}} g(\eta_{i})\\ && + \sum\limits_{l = 0}^{n}\lambda_{l}{_{\rho_{l}}^{}}{I}_{t_{l}}^{\alpha_{l}+\theta_{l}; \psi_{l}} g(\xi_{l}) + \sum\limits_{l = 0}^{n}\frac{\lambda_{l}\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 1)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}\gamma_{l} + \theta_{l})} \sum\limits_{j = 0}^{l-1}\left( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} g(t_{j+1}) + g_{j+1} \right)\\ && + \sum\limits_{l = 0}^{n}\frac{\lambda_{l}\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 2)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}(\gamma_{l} - 1) + \theta_{l})} \Bigg[ \sum\limits_{j = 0}^{l-1}\left({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} g(t_{j+1}) + g_{j+1} \right)\\ && + \sum\limits_{j = 1}^{l-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\left({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} g(t_{r+1}) + g_{r+1} \right) \Bigg] \Bigg\} + {_{\rho_{k}}^{}}{I}_{t_{k}}^{\alpha_{k}; \psi_{k}} g(t)\\ && + \frac{\Psi_{\psi_{k}}^{\gamma_{k} - 1}(t, t_{k})}{\Gamma_{\rho_{k}}(\rho_{k}\gamma_{k})} \sum\limits_{j = 0}^{k-1}\left( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} g(t_{j+1}) + g_{j+1} \right) + \frac{\Psi_{\psi_{k}}^{\gamma_{k} - 2}(t, t_{k})}{\Gamma_{\rho_{k}}(\rho_{k}(\gamma_{k}-1))}\Bigg[ \sum\limits_{j = 0}^{k-1}\left({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} g(t_{j+1}) + g_{j+1} \right)\\ && + \sum\limits_{j = 1}^{k-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\left({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} g(t_{r+1}) + g_{r+1} \right) \Bigg]. \end{eqnarray} | (4.9) |
By applying ({A}_{1}) of Remark 4.2 with ({H}_{1}) and ({H}_{2}) , we obtain
\begin{eqnarray*} && \left\vert \Psi_{\psi_{k}}^{2-\gamma_{k}}(t, t_{k}) \big( z(t) - u(t) \big) \right\vert\notag\\ &\leq& \Bigg\{ \frac{\Psi_{\psi_{m}}^{}(T, t_{m})}{\vert \Lambda \vert \Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})} + \sum\limits_{j = 0}^{m-1} \frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}\vert \Lambda \vert \Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))}\Bigg\} \Bigg\{\sum\limits_{i = 0}^{m+1}\frac{\vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 1}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}\gamma_{i})} \notag\\ && \times \sum\limits_{j = 0}^{i-1}\Big( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} \vert {F}_{z}(t_{j+1}) - {F}_{u}(t_{j+1}) \vert + \vert \phi_{j+1}(z(t_{j+1})) - \phi_{j+1}(u(t_{j+1})) \vert \Big)\notag\\ && + \sum\limits_{i = 0}^{m+1}\frac{\vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 2}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}(\gamma_{i}-1))}\Bigg[ \sum\limits_{j = 0}^{i-1}\Big({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} \vert {F}_{z}(t_{j+1}) - {F}_{u}(t_{j+1}) \vert + \vert \phi_{j+1}^{*}(z(t_{j+1})) - \phi_{j+1}^{*}(u(t_{j+1})) \vert \Big)\notag\\ && + \sum\limits_{j = 1}^{i-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Big({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} \vert {F}_{z}(t_{r+1}) - {F}_{u}(t_{r+1}) \vert + \vert \phi_{r+1}(z(t_{r+1})) - \phi_{r+1}(u(t_{r+1})) \vert \Big) \Bigg]\notag\\ && + \sum\limits_{l = 0}^{n}\frac{\vert\lambda_{l}\vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 1)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}\gamma_{l} + \theta_{l})} \sum\limits_{j = 0}^{l-1}\Big( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} \vert {F}_{z}(t_{j+1}) - {F}_{u}(t_{j+1}) \vert + \vert \phi_{j+1}(z(t_{j+1})) - \phi_{j+1}(u(t_{j+1})) \vert \Big)\notag\\ && + \sum\limits_{l = 0}^{n}\frac{\vert\lambda_{l}\vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 2)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}(\gamma_{l} - 1) + \theta_{l})} \Bigg[ \sum\limits_{j = 0}^{l-1}\Big({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} \vert {F}_{z}(t_{j+1}) - {F}_{u}(t_{j+1}) \vert + \vert \phi_{j+1}^{*}(z(t_{j+1})) - \phi_{j+1}^{*}(u(t_{j+1})) \vert \Big) \notag\\ && + \sum\limits_{j = 1}^{l-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Big({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} \vert {F}_{z}(t_{r+1}) - {F}_{u}(t_{r+1}) \vert + \vert \phi_{r+1}(z(t_{r+1})) - \phi_{r+1}(u(t_{r+1})) \vert \Big) \Bigg] \notag\\ && + \sum\limits_{i = 0}^{m+1}\vert \mu_{i} \vert {_{\rho_{i}}^{}}{I}_{t_{i}}^{\alpha_{i}; \psi_{i}} \vert {F}_{z}(\eta_{i}) - {F}_{u}(\eta_{i}) \vert + \sum\limits_{l = 0}^{n}\vert \lambda_{l} \vert{_{\rho_{l}}^{}}{I}_{t_{l}}^{\alpha_{l}+\theta_{l}; \psi_{l}} \vert {F}_{z}(\xi_{l}) - {F}_{u}(\xi_{l}) \vert \Bigg\} + \Psi_{\psi_{m}}^{2-\gamma_{m}}(T, t_{m})\notag\\ && \times {_{\rho_{m}}^{}}{I}_{t_{m}}^{\alpha_{m}; \psi_{m}} \vert {F}_{z}(T) - {F}_{u}(T) \vert + \frac{\Psi_{\psi_{m}}^{}(T, t_{m})}{\Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})} \sum\limits_{j = 0}^{m-1}\Big( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} \vert {F}_{z}(t_{j+1}) - {F}_{u}(t_{j+1}) \vert \notag\\ && + \vert \phi_{j+1}(z(t_{j+1})) - \phi_{j+1}(u(t_{j+1})) \vert \Big) + \frac{1}{\Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))}\Bigg[ \sum\limits_{j = 0}^{m-1}\Big({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} \vert {F}_{z}(t_{j+1}) - {F}_{u}(t_{j+1}) \vert\notag\\ && + \vert \phi_{j+1}^{*}(z(t_{j+1})) - \phi_{j+1}^{*}(u(t_{j+1})) \vert \Big) + \sum\limits_{j = 1}^{m-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Big({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} \vert {F}_{z}(t_{r+1}) - {F}_{u}(t_{r+1}) \vert\notag\\ && + \vert \phi_{r+1}(z(t_{r+1})) - \phi_{r+1}(u(t_{r+1})) \vert \Big) \Bigg] + \Bigg\{ \frac{\Psi_{\psi_{m}}^{}(T, t_{m})}{\Lambda \Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})} + \sum\limits_{j = 0}^{m-1} \frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j} \vert \Lambda \vert \Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))}\Bigg\} \notag\\ && \times \Bigg\{ \sum\limits_{i = 0}^{m+1}\frac{\vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 1}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}\gamma_{i})} \sum\limits_{j = 0}^{i-1}\left( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} \vert g(t_{j+1}) \vert + \vert g_{j+1} \vert \right) + \sum\limits_{i = 0}^{m+1}\frac{\vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 2}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}(\gamma_{i}-1))}\notag\\ && \times \Bigg[ \sum\limits_{j = 0}^{i-1}\left({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} \vert g(t_{j+1}) \vert + \vert g_{j+1} \vert \right) + \sum\limits_{j = 1}^{i-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Big({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} \vert g(t_{r+1}) \vert + \vert g_{r+1} \vert \Big) \Bigg] \notag\\ && + \sum\limits_{l = 0}^{n}\frac{\vert \lambda_{l} \vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 1)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}\gamma_{l} + \theta_{l})} \sum\limits_{j = 0}^{l-1}\left( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} \vert g(t_{j+1}) \vert + \vert g_{j+1} \vert \right)\notag\\ && + \sum\limits_{l = 0}^{n}\frac{\vert \lambda_{l} \vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 2)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}(\gamma_{l} - 1) + \theta_{l})} \Bigg[ \sum\limits_{j = 0}^{l-1}\left({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} \vert g(t_{j+1}) \vert + \vert g_{j+1} \vert \right)\notag\\ && + \sum\limits_{j = 1}^{l-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\left({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} \vert g(t_{r+1}) \vert + \vert g_{r+1} \vert \right) \Bigg] + \sum\limits_{i = 0}^{m+1}\vert \mu_{i} \vert {_{\rho_{i}}^{}}{I}_{t_{i}}^{\alpha_{i}; \psi_{i}} \vert g(\eta_{i}) \vert + \sum\limits_{l = 0}^{n}\vert \lambda_{l} \vert{_{\rho_{l}}^{}}{I}_{t_{l}}^{\alpha_{l}+\theta_{l}; \psi_{l}} \vert g(\xi_{l}) \vert \Bigg\}\notag\\ && + \Psi_{\psi_{m}}^{2-\gamma_{m}}(T, t_{m}) {_{\rho_{m}}^{}}{I}_{t_{m}}^{\alpha_{m}; \psi_{m}} \vert g(T) \vert + \frac{\Psi_{\psi_{m}}^{}(T, t_{m})}{\Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})} \sum\limits_{j = 0}^{m-1}\left( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} \vert g(t_{j+1}) \vert + \vert g_{j+1} \vert \right)\notag\\ && + \frac{1}{\Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))} \Bigg[ \sum\limits_{j = 0}^{m-1}\left({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} \vert g(t_{j+1}) \vert + \vert g_{j+1} \vert \right)\notag\\ && + \sum\limits_{j = 1}^{m-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\left({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} \vert g(t_{r+1}) \vert + \vert g_{r+1} \vert \right) \Bigg]\\ &\leq& \Big[ (\Omega_{1} \Omega_{2} + \Omega_{3}) ({L}_{1} + \Psi_{*}^{\sigma_{m}} {L}_{2} + \Psi_{*}^{\nu_{m}} {L}_{3}) + (\Omega_{1} \Omega_{4} + \Omega_{5}) {I}_{1} + ( \Omega_{1} \Omega_{6} + m \Psi_{*}^{\gamma_{m}} ) {I}_{2} \Big] \Vert z-u \Vert_{{PC}}\notag\\ && + \epsilon \Bigg\{ \frac{\Psi_{\psi_{m}}^{}(T, t_{m})}{\Lambda \Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})} + \sum\limits_{j = 0}^{m-1} \frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j} \vert \Lambda \vert \Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))}\Bigg\} \Bigg\{ \sum\limits_{i = 0}^{m+1}\frac{\vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 1}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}\gamma_{i})} \notag\\ && \times \sum\limits_{j = 0}^{i-1}\Bigg( \frac{ \Psi_{\psi_{j}}^{\frac{\alpha_{j} - \rho_{j}(\gamma_{j}-1)}{\rho_{j}}}(t_{j+1}, t_{j})}{\Gamma_{\rho_{j}}(\rho_{j} + \alpha_{j} - \rho_{j}(\gamma_{j}-1))} + 1 \Bigg) + \sum\limits_{i = 0}^{m+1}\frac{\vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 2}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}(\gamma_{i}-1))} \Bigg[ \sum\limits_{j = 0}^{i-1}\Bigg( \frac{\Psi_{\psi_{j}}^{\frac{\alpha_{j} + \rho_{j}(2-\gamma_{j})}{\rho_{J}}}(t_{j+1}, t_{J})}{\Gamma_{\rho_{j}}(\rho_{J}+\alpha_{j} + \rho_{j}(2-\gamma_{j}))} + 1 \Bigg) \notag\\ && + \sum\limits_{j = 1}^{i-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Bigg(\frac{\Psi_{\psi_{r}}^{\frac{\alpha_{r} - \rho_{r}(\gamma_{r}-1)}{\rho_{r}}}(t_{r+1}, t_{r})}{\Gamma_{\rho_{r}}(\rho_{r}+\alpha_{r} - \rho_{r}(\gamma_{r}-1))} + 1 \Bigg) \Bigg] + \sum\limits_{l = 0}^{n}\frac{\vert \lambda_{l} \vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 1)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}\gamma_{l} + \theta_{l})}\notag\\ &&\times \sum\limits_{j = 0}^{l-1}\Bigg( \frac{ \Psi_{\psi_{j}}^{\frac{\alpha_{j} - \rho_{j}(\gamma_{j}-1)}{\rho_{j}}}(t_{j+1}, t_{j})}{\Gamma_{\rho_{j}}(\rho_{j} + \alpha_{j} - \rho_{j}(\gamma_{j}-1))} + 1 \Bigg) + \sum\limits_{l = 0}^{n}\frac{\vert \lambda_{l} \vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 2)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}(\gamma_{l} - 1) + \theta_{l})} \Bigg[\sum\limits_{j = 0}^{l-1}\Bigg(\frac{\Psi_{\psi_{j}}^{\frac{\alpha_{j} + \rho_{j}(2-\gamma_{j})}{\rho_{J}}}(t_{j+1}, t_{J})}{\Gamma_{\rho_{j}}(\rho_{J}+\alpha_{j} + \rho_{j}(2-\gamma_{j}))} + 1 \Bigg)\notag\\ && + \sum\limits_{j = 1}^{l-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Bigg(\frac{\Psi_{\psi_{r}}^{\frac{\alpha_{r} - \rho_{r}(\gamma_{r}-1)}{\rho_{r}}}(t_{r+1}, t_{r})}{\Gamma_{\rho_{r}}(\rho_{r}+\alpha_{r} - \rho_{r}(\gamma_{r}-1))} + 1 \Bigg) \Bigg] + \sum\limits_{i = 0}^{m+1} \frac{\vert \mu_{i} \vert \Psi_{\psi_{i}}^{\frac{\alpha_{i}}{\rho_{i}}}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}+\alpha_{i})} + \sum\limits_{l = 0}^{n} \frac{\vert \lambda_{l} \vert \Psi_{\psi_{l}}^{\frac{\alpha_{l}+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}+\alpha_{l}+\theta_{l})} \Bigg\}\notag\\ && + \Bigg\{ \frac{\Psi_{\psi_{m}}^{\frac{\alpha_{m}}{\rho_{m}}+2-\gamma_{m}}(T, t_{m})}{\Gamma_{\rho_{m}}(\rho_{m}+\alpha_{m})} + \frac{ \Psi_{\psi_{m}}^{}(T, t_{m})}{\Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})} \sum\limits_{j = 0}^{m-1}\Bigg( \frac{ \Psi_{\psi_{j}}^{\frac{\alpha_{j} - \rho_{j}(\gamma_{j}-1)}{\rho_{j}}}(t_{j+1}, t_{j})}{\Gamma_{\rho_{j}}(\rho_{j} + \alpha_{j} - \rho_{j}(\gamma_{j}-1))} + 1 \Bigg)\notag\\ && + \frac{1}{\Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))} \Bigg[ \sum\limits_{j = 0}^{m-1}\Bigg(\frac{\Psi_{\psi_{j}}^{\frac{\alpha_{j} + \rho_{j}(2-\gamma_{j})}{\rho_{J}}}(t_{j+1}, t_{j})}{\Gamma_{\rho_{j}}(\rho_{J}+\alpha_{j} + \rho_{j}(2-\gamma_{j}))} + 1 \Bigg)\notag\\ && + \sum\limits_{j = 1}^{m-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Bigg( \frac{\Psi_{\psi_{r}}^{\frac{\alpha_{r} - \rho_{r}(\gamma_{r}-1)}{\rho_{r}}}(t_{r+1}, t_{r})}{\Gamma_{\rho_{r}}(\rho_{r}+\alpha_{r} - \rho_{r}(\gamma_{r}-1))} + 1 \Bigg) \Bigg] \Bigg\} \epsilon\\ & = & \Big[ (\Omega_{1} \Omega_{2} + \Omega_{3}) ({L}_{1} + \Psi_{*}^{\sigma_{m}} {L}_{2} + \Psi_{*}^{\nu_{m}} {L}_{3}) + (\Omega_{1} \Omega_{4} + \Omega_{5}) {I}_{1} + ( \Omega_{1} \Omega_{6} + m \Psi_{*}^{\gamma_{m}} ) {I}_{2} \Big] \Vert z-u \Vert_{{PC}}\\ && + \epsilon \Big[ \Omega_{1} ( \Omega_{2} + \Omega_{4} + \Omega_{6} ) + \Omega_{3} + \Omega_{5} + m \Psi_{*}^{\gamma_{m}}\Big]\notag\\ & = & [ \Delta_{1} + \Delta_{2} ] \Vert z-u \Vert_{{PC}} + \epsilon [ \Omega_{1} ( \Omega_{2} + \Omega_{4} + \Omega_{6} ) + \Omega_{3} + \Omega_{5} + m \Psi_{*}^{\gamma_{m}}]. \end{eqnarray*} |
This yields that \Vert z-u \Vert_{{PC}} \leq \mathfrak{C}_{{F}} \epsilon , where \mathfrak{C}_{{F}} is given by
\begin{equation} \mathfrak{C}_{{F}} : = \frac{\Omega_{1} ( \Omega_{2} + \Omega_{4} + \Omega_{6} ) + \Omega_{3} + \Omega_{5} + m \Psi_{*}^{\gamma_{m}}}{1 - (\Delta_{1} + \Delta_{2})}. \end{equation} | (4.10) |
Hence, the considered problem (1.4) is UH stable in {E} .
Corollary 4.1. By taking \chi(\epsilon) = \mathfrak{C}_{{F}} \epsilon and \chi(0) = 0 in Theorem 4.1, we obtain the considered problem (1.4) is GUH stable.
To prove UHR and GUHR stability results, we will require the following assumption:
({U}_{1}) There exist a non-decreasing function \chi \in {C}({J}, {R}) and a positive real constant \mathfrak{C}_{\chi} > 0 such that
\begin{equation*} {_{\rho_{k}}^{}}{I}_{t_{k}}^{\alpha_{k}; \psi_{k}} \chi(t) \leq \mathfrak{C}_{\chi} \chi(t). \end{equation*} |
Here we give notation for the constants
\begin{eqnarray} \Omega_{7} &: = & \sum\limits_{i = 0}^{m+1}\vert \mu_{i} \vert + \sum\limits_{l = 0}^{n}\vert \lambda_{l} \vert, \end{eqnarray} | (4.11) |
\begin{eqnarray} \Omega_{8} &: = & \sum\limits_{i = 0}^{m+1}\frac{i \vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 1}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}\gamma_{i})} + \sum\limits_{l = 0}^{n}\frac{l \vert \lambda_{l} \vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 1)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}\gamma_{l} + \theta_{l})}, \end{eqnarray} | (4.12) |
\begin{eqnarray} \Omega_{9} &: = & \Psi_{\psi_{m}}^{2-\gamma_{m}}(T, t_{m}) + \frac{m \Psi_{\psi_{m}}^{}(T, t_{m})}{\Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})} + \sum\limits_{j = 1}^{m-1}\frac{j \Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}\Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))}. \end{eqnarray} | (4.13) |
Theorem 4.2. Assume that \alpha_{k} \in (1, 2] , \beta_{k} \in [0, 1] , \rho_{k} \in {R}^{+} , \gamma_{k} = (\beta_{k}(2\rho_{k}-\alpha_{k})+\alpha_{k})/\rho_{k} , \psi_{k} \in {C}({J}, {R}) where \psi_{k}^{\prime} > 0 , k = 1, 2, \ldots, m and f \in {C}({J}\times{R}^{3}, {R}) . If the assumptions ({H}_{1}) and ({H}_{2}) and the inequality (3.8) hold, then the considered problem (1.4) is UHR stable with respect to (\delta, \chi) on {J} .
Proof. Assume that z \in {E} is any solution of (4.3) and u \in {E} is a solution of the considered problem (1.4). By the same argument as in Theorem 4.1, it follows that
\begin{eqnarray*} && \left\vert \Psi_{\psi_{k}}^{2-\gamma_{k}}(t, t_{k}) \big( z(t) - u(t) \big) \right\vert\notag\\ &\leq& \Bigg\{ \frac{\Psi_{\psi_{m}}^{}(T, t_{m})}{\vert \Lambda \vert \Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})} + \sum\limits_{j = 0}^{m-1} \frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}\vert \Lambda \vert \Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))}\Bigg\} \Bigg\{\sum\limits_{i = 0}^{m+1}\frac{\vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 1}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}\gamma_{i})} \notag\\ && \times \sum\limits_{j = 0}^{i-1}\Big( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} \vert {F}_{z}(t_{j+1}) - {F}_{u}(t_{j+1}) \vert + \vert \phi_{j+1}(z(t_{j+1})) - \phi_{j+1}(u(t_{j+1})) \vert \Big)\notag\\ && + \sum\limits_{i = 0}^{m+1}\frac{\vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 2}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}(\gamma_{i}-1))}\Bigg[ \sum\limits_{j = 0}^{i-1}\Big({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} \vert {F}_{z}(t_{j+1}) - {F}_{u}(t_{j+1}) \vert + \vert \phi_{j+1}^{*}(z(t_{j+1})) - \phi_{j+1}^{*}(u(t_{j+1})) \vert \Big)\notag\\ && + \sum\limits_{j = 1}^{i-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Big({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} \vert {F}_{z}(t_{r+1}) - {F}_{u}(t_{r+1}) \vert + \vert \phi_{r+1}(z(t_{r+1})) - \phi_{r+1}(u(t_{r+1})) \vert \Big) \Bigg]\notag\\ && + \sum\limits_{l = 0}^{n}\frac{\vert\lambda_{l}\vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 1)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}\gamma_{l} + \theta_{l})} \sum\limits_{j = 0}^{l-1}\Big( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} \vert {F}_{z}(t_{j+1}) - {F}_{u}(t_{j+1}) \vert + \vert \phi_{j+1}(z(t_{j+1})) - \phi_{j+1}(u(t_{j+1})) \vert \Big)\notag\\ && + \sum\limits_{l = 0}^{n}\frac{\vert\lambda_{l}\vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 2)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}(\gamma_{l} - 1) + \theta_{l})} \Bigg[ \sum\limits_{j = 0}^{l-1}\Big({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} \vert {F}_{z}(t_{j+1}) - {F}_{u}(t_{j+1}) \vert + \vert \phi_{j+1}^{*}(z(t_{j+1})) - \phi_{j+1}^{*}(u(t_{j+1})) \vert \Big) \notag\\ && + \sum\limits_{j = 1}^{l-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Big({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} \vert {F}_{z}(t_{r+1}) - {F}_{u}(t_{r+1}) \vert + \vert \phi_{r+1}(z(t_{r+1})) - \phi_{r+1}(u(t_{r+1})) \vert \Big) \Bigg] \notag\\ && + \sum\limits_{i = 0}^{m+1}\vert \mu_{i} \vert {_{\rho_{i}}^{}}{I}_{t_{i}}^{\alpha_{i}; \psi_{i}} \vert {F}_{z}(\eta_{i}) - {F}_{u}(\eta_{i}) \vert + \sum\limits_{l = 0}^{n}\vert \lambda_{l} \vert{_{\rho_{l}}^{}}{I}_{t_{l}}^{\alpha_{l}+\theta_{l}; \psi_{l}} \vert {F}_{z}(\xi_{l}) - {F}_{u}(\xi_{l}) \vert \Bigg\} + \Psi_{\psi_{m}}^{2-\gamma_{m}}(T, t_{m})\notag\\ && \times {_{\rho_{m}}^{}}{I}_{t_{m}}^{\alpha_{m}; \psi_{m}} \vert {F}_{z}(T) - {F}_{u}(T) \vert + \frac{\Psi_{\psi_{m}}^{}(T, t_{m})}{\Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})} \sum\limits_{j = 0}^{m-1}\Big( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} \vert {F}_{z}(t_{j+1}) - {F}_{u}(t_{j+1}) \vert \notag\\ && + \vert \phi_{j+1}(z(t_{j+1})) - \phi_{j+1}(u(t_{j+1})) \vert \Big) + \frac{1}{\Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))}\Bigg[ \sum\limits_{j = 0}^{m-1}\Big({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} \vert {F}_{z}(t_{j+1}) - {F}_{u}(t_{j+1}) \vert\notag\\ && + \vert \phi_{j+1}^{*}(z(t_{j+1})) - \phi_{j+1}^{*}(u(t_{j+1})) \vert \Big) + \sum\limits_{j = 1}^{m-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Big({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} \vert {F}_{z}(t_{r+1}) - {F}_{u}(t_{r+1}) \vert\notag\\ && + \vert \phi_{r+1}(z(t_{r+1})) - \phi_{r+1}(u(t_{r+1})) \vert \Big) \Bigg] + \Bigg\{ \frac{\Psi_{\psi_{m}}^{}(T, t_{m})}{\Lambda \Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})} + \sum\limits_{j = 0}^{m-1} \frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j} \vert \Lambda \vert \Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))}\Bigg\} \notag\\ && \times \Bigg\{ \sum\limits_{i = 0}^{m+1}\frac{\vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 1}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}\gamma_{i})} \sum\limits_{j = 0}^{i-1}\left( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} \vert g(t_{j+1}) \vert + \vert g_{j+1} \vert \right) + \sum\limits_{i = 0}^{m+1}\frac{\vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 2}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}(\gamma_{i}-1))}\notag\\ && \times \Bigg[ \sum\limits_{j = 0}^{i-1}\left({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} \vert g(t_{j+1}) \vert + \vert g_{j+1} \vert \right) + \sum\limits_{j = 1}^{i-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Big({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} \vert g(t_{r+1}) \vert + \vert g_{r+1} \vert \Big) \Bigg] \notag\\ && + \sum\limits_{l = 0}^{n}\frac{\vert \lambda_{l} \vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 1)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}\gamma_{l} + \theta_{l})} \sum\limits_{j = 0}^{l-1}\left( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} \vert g(t_{j+1}) \vert + \vert g_{j+1} \vert \right)\notag\\ && + \sum\limits_{l = 0}^{n}\frac{\vert \lambda_{l} \vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 2)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}(\gamma_{l} - 1) + \theta_{l})} \Bigg[ \sum\limits_{j = 0}^{l-1}\left({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} \vert g(t_{j+1}) \vert + \vert g_{j+1} \vert \right)\notag\\ && + \sum\limits_{j = 1}^{l-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\left({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} \vert g(t_{r+1}) \vert + \vert g_{r+1} \vert \right) \Bigg] + \sum\limits_{i = 0}^{m+1}\vert \mu_{i} \vert {_{\rho_{i}}^{}}{I}_{t_{i}}^{\alpha_{i}; \psi_{i}} \vert g(\eta_{i}) \vert + \sum\limits_{l = 0}^{n}\vert \lambda_{l} \vert{_{\rho_{l}}^{}}{I}_{t_{l}}^{\alpha_{l}+\theta_{l}; \psi_{l}} \vert g(\xi_{l}) \vert \Bigg\}\notag\\ && + \Psi_{\psi_{m}}^{2-\gamma_{m}}(T, t_{m}) {_{\rho_{m}}^{}}{I}_{t_{m}}^{\alpha_{m}; \psi_{m}} \vert g(T) \vert + \frac{\Psi_{\psi_{m}}^{}(T, t_{m})}{\Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})} \sum\limits_{j = 0}^{m-1}\left( {_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} - \rho_{j}(\gamma_{j}-1); \psi_{j}} \vert g(t_{j+1}) \vert + \vert g_{j+1} \vert \right)\notag\\ && + \frac{1}{\Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))} \Bigg[ \sum\limits_{j = 0}^{m-1}\left({_{\rho_{j}}^{}}{I}_{t_{j}}^{\alpha_{j} + \rho_{j}(2-\gamma_{j}); \psi_{j}} \vert g(t_{j+1}) \vert + \vert g_{j+1} \vert \right)\notag\\ && + \sum\limits_{j = 1}^{m-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\left({_{\rho_{r}}^{}}{I}_{t_{r}}^{\alpha_{r} - \rho_{r}(\gamma_{r}-1); \psi_{r}} \vert g(t_{r+1}) \vert + \vert g_{r+1} \vert \right) \Bigg]. \end{eqnarray*} |
Under ({C}_{1}) of Remark 4.4 and ({H}_{1}) , ({H}_{2}) and ({U}_{1}) , we see that
\begin{eqnarray*} && \left\vert \Psi_{\psi_{k}}^{2-\gamma_{k}}(t, t_{k}) \big( z(t) - u(t) \big) \right\vert\notag\\ &\leq& \Big[ (\Omega_{1} \Omega_{2} + \Omega_{3}) ({L}_{1} + \Psi_{*}^{\sigma_{m}} {L}_{2} + \Psi_{*}^{\nu_{m}} {L}_{3}) + (\Omega_{1} \Omega_{4} + \Omega_{5}) {I}_{1} + ( \Omega_{1} \Omega_{6} + m \Psi_{*}^{\gamma_{m}} ) {I}_{2} \Big] \Vert z-u \Vert_{{PC}}\notag\\ && + \epsilon\Bigg\{ \frac{\Psi_{\psi_{m}}^{}(T, t_{m})}{\Lambda \Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})} + \sum\limits_{j = 0}^{m-1} \frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j} \vert \Lambda \vert \Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))}\Bigg\} \Bigg\{ \mathfrak{C}_{\chi} \chi(t) \Bigg( \sum\limits_{i = 0}^{m+1}\frac{i \vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 1}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}\gamma_{i})} \notag\\ && + \sum\limits_{l = 0}^{n}\frac{l \vert \lambda_{l} \vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 1)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}\gamma_{l} + \theta_{l})} + \sum\limits_{i = 0}^{m+1}\vert \mu_{i} \vert + \sum\limits_{l = 0}^{n}\vert \lambda_{l} \vert \Bigg) + \delta \Bigg( \sum\limits_{i = 0}^{m+1}\frac{i \vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 1}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}\gamma_{i})} + \sum\limits_{l = 0}^{n}\frac{l \vert \lambda_{l} \vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 1)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}\gamma_{l} + \theta_{l})} \Bigg)\notag\\ && + (\mathfrak{C}_{\chi} \chi(t) + \delta ) \Bigg(\sum\limits_{i = 0}^{m+1}\frac{\vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 2}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}(\gamma_{i}-1))} \sum\limits_{j = 1}^{i-1}\frac{j\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} + \sum\limits_{i = 0}^{m+1}\frac{i \vert \mu_{i} \vert \Psi_{\psi_{i}}^{\gamma_{i} - 2}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}(\gamma_{i}-1))} + \sum\limits_{l = 0}^{n}\frac{l \vert \lambda_{l} \vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 2)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}(\gamma_{l} - 1) + \theta_{l})}\notag\\ && + \sum\limits_{l = 0}^{n}\frac{\vert \lambda_{l} \vert\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 2)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}(\gamma_{l} - 1) + \theta_{l})}\sum\limits_{j = 1}^{l-1}\frac{j \Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \Bigg) \Bigg\} + \epsilon \Bigg\{ \mathfrak{C}_{\chi} \chi(t)\Bigg( \Psi_{\psi_{m}}^{2-\gamma_{m}}(T, t_{m}) + \frac{m \Psi_{\psi_{m}}^{}(T, t_{m})}{\Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})}\Bigg) \notag\\ && + \delta \frac{m \Psi_{\psi_{m}}^{}(T, t_{m})}{\Gamma_{\rho_{m}}(\rho_{m}\gamma_{m})} + (\mathfrak{C}_{\chi} \chi(t) + \delta) \Bigg( \frac{m}{\Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))} + \sum\limits_{j = 1}^{m-1}\frac{j \Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}\Gamma_{\rho_{m}}(\rho_{m}(\gamma_{m}-1))} \Bigg) \Bigg\}\notag\\ &\leq& [ \Delta_{1} + \Delta_{2} ] \Vert z-u \Vert_{{PC}} + \epsilon\Big\{ \Omega_{1} \Big[ (\mathfrak{C}_{\chi} \chi(t) + \delta ) \Omega_{4} + \mathfrak{C}_{\chi} \chi(t) ( \Omega_{7} + \Omega_{8} ) + \delta \Omega_{8} \Big]\notag\\ && + \mathfrak{C}_{\chi} \chi(t) ( m \Psi_{*}^{\gamma_{m}} + \Omega_{9} ) + \delta (m \Psi_{*}^{\gamma_{m}} + \Omega_{5}) \Big\}\notag\\ & = & [ \Delta_{1} + \Delta_{2} ] \Vert z-u \Vert_{{PC}} + \epsilon\Big\{ \Omega_{1} \Big[ ( \Omega_{4} + \Omega_{7} + \Omega_{8} ) \mathfrak{C}_{\chi} \chi(t) + (\Omega_{4} + \Omega_{8}) \delta \Big]\notag\\ && + ( m \Psi_{*}^{\gamma_{m}} + \Omega_{9} ) \mathfrak{C}_{\chi}\chi(t) + (m \Psi_{*}^{\gamma_{m}} + \Omega_{5}) \delta \Big\}\notag\\ &\leq& [ \Delta_{1} + \Delta_{2} ] \Vert z-u \Vert_{{PC}} + \Big\{ \Omega_{1} \Big[ ( \Omega_{4} + \Omega_{7} + \Omega_{8} ) \mathfrak{C}_{\chi} + \Omega_{4} + \Omega_{8} \Big]\notag\\ && + ( m \Psi_{*}^{\gamma_{m}} + \Omega_{9} ) \mathfrak{C}_{\chi} + m \Psi_{*}^{\gamma_{m}} + \Omega_{5} \Big\} \epsilon (\delta + \chi(t)). \end{eqnarray*} |
It follows that, \Vert z - u \Vert_{{PC}} \leq \mathfrak{C}_{{F}, \chi_{{F}}} \; \epsilon \; (\delta + \chi(t)) , where
\begin{equation} \mathfrak{C}_{{F}, \chi_{{F}}} : = \frac{\Omega_{1} [ ( \Omega_{4} + \Omega_{7} + \Omega_{8} ) \mathfrak{C}_{\chi} + \Omega_{4} + \Omega_{8} ] + ( m \Psi_{*}^{\gamma_{m}} + \Omega_{9} ) \mathfrak{C}_{\chi} + m \Psi_{*}^{\gamma_{m}} + \Omega_{5} }{1 - (\Delta_{1} + \Delta_{2})}. \end{equation} | (4.14) |
Therefore, the considered problem (1.4) is UHR stable with respect to (\delta, \chi) in {E} .
Corollary 4.2. By taking \epsilon = 1 and \chi(0) = 0 in Theorem 4.2, we obtain the considered problem (1.4) is GUHR stable.
Example 5.1. Consider the following impulsive problem of the form:
\begin{equation} \left\{ \begin{array}{l} {_{\frac{3k+46}{50}}^{H}}\mathfrak{D}_{t_{k}^+}^{\frac{2k+8}{7}, \frac{3-k}{4}; \psi_{k}} u(t) = f(t, u(t), {_{\frac{3k+46}{50}}^{}}{I}_{t_{k}}^{\frac{3k+2}{5-k}; \psi_{k}} u(t), {_{\frac{3k+46}{50}}^{}}{I}_{t_{k}}^{\frac{2k+3}{8}; \psi_{k}} u(t)), \, \, t \neq t_{k}, \, \, k = 0, 1, 2, \\ [0.25cm] {_{\frac{3k+46}{50}}^{}}{I}_{t_{k}^{+}}^{\frac{3k+46}{50}(2-\gamma_{k}); \psi_{k}} u(t_{k}^{+}) - {_{\frac{3k+43}{50}}^{}}{I}_{t_{k-1}^{+}}^{\frac{3k+43}{50}(2-\gamma_{k-1}); \psi_{k-1}} u(t_{k}^{-}) = \phi_{k}(u(t_{k})), \quad k = 1, 2, \\ [0.25cm] {_{\frac{3k+46}{50}}^{{RL}}}\mathfrak{D}_{t_{k}^{+}}^{\frac{3k+46}{50}(\gamma_{k}-1); \psi_{k}} u(t_{k}^{+}) - {_{\frac{3k+43}{50}}^{{RL}}}\mathfrak{D}_{t_{k-1}^{+}}^{\frac{3k+43}{50}(\gamma_{k-1}-1); \psi_{k-1}} u(t_{k}^{-}) = \phi_{k}^{*}(u(t_{k})), \quad k = 1, 2, \\ [0.25cm] u(0) = 0, \quad \sum\limits_{i = 0}^{2}\left(\frac{4i+3}{12-2i}\right) u\left(\frac{2i+2}{5}\right) + \sum\limits_{l = 0}^{2}\left(\frac{2l+2}{7-2l}\right){_{\frac{3l+46}{50}}^{}}{I}_{t_{l}}^{\frac{2l+3}{4}; \psi_{l}} u\left(\frac{3l+2}{6}\right) = e. \end{array} \right. \end{equation} | (5.1) |
From the considered problem (5.1), we set \alpha_k = (2k+8)/7 , \beta_k = (3-k)/4 , \rho_k = (3k+46)/50 , \psi_k(t) = 1/(k+2) + \sin((k+2)t/((k+3)t-k+5)) , \sigma_k = (3k+2)/(5-k) , \nu_k = (2k+3)/8 , t_k = k/2 , k = 0, 1, 2 , T = 3/2 , \mu_i = (4i+3)/(12-2i) , \eta_i = (2i+2)/5 , \lambda_l = (2l+2)/(7-2l) , \theta_l = (2l+3)/4 , \xi_l = (3l+2)/6 , i = 0, 1, 2 , l = 0, 1, 2 and {A} = e . Thanks to the given data, we can compute that \Lambda \approx 1.319519900 , \Omega_1 \approx 0.226529808 , \Omega_2 \approx 0.656891205 , \Omega_3 \approx 1.166135348 , \Omega_4 \approx 0.688903756 , \Omega_5 \approx 0.228769110 , \Omega_6 \approx 6.890783193 , \Omega_7 \approx 5.410714286 , \Omega_8 \approx 0.341866237 , and \Omega_9 \approx 0.707853736 . The following functions will be considered for theoretical confirmation:
\begin{eqnarray*} f(t, u, v, w) & = & \frac{\ln(2t+3)}{\cos(\pi t)+3} + \Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k}) \Bigg(\frac{3e^{-5t}}{(t+2)^2+1}\cdot\frac{|u|}{5|u|+2} + \frac{5-2\sin(t)}{5e^t}\cdot\frac{|v|}{4|u|+3}\\ && +\frac{3\cos(2t)}{7+\tan(t+\pi)}\cdot\frac{|w|}{2|w|+1}\Bigg), \\ \phi_{k}(u(t_{k})) & = & \frac{1}{8t_k}\Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k})u(t_{k}) + e^{t_{k}}, \quad \phi_{k}^{*}(u(t_{k})) = \frac{2t_k}{10t_k+30}\Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k})u(t_{k}) + \ln(t_k +1) . \end{eqnarray*} |
For any u_i , v_i , w_i \in {R} , i = 1, 2 , and t \in [0, 3/2] , it follows that
\begin{eqnarray*} &&\vert f(t, u_1, u_2, u_3)-f(t, v_1, v_2, v_3)\vert \leq \Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k}) \left( \frac{3}{10} \vert u_1-v_1\vert +\frac{2}{5} \vert u_2-v_2\vert + \frac{3}{7} \vert u_3-v_3 \vert \right), \\ &&\vert\phi_{k}(u)-\phi_{k}(v)\vert \leq \frac{1}{4} \Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k}) \vert u-v\vert , \quad \vert\phi_{k}^{*}(u)-\phi_{k}(v)\vert \leq \frac{2}{35} \Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k}) \vert u-v\vert. \end{eqnarray*} |
It is easy to see that the conditions ({H}_1) and ({H}_2) are fulfilled under {L}_1 = 3/10 , {L}_2 = 2/5 , {L}_3 = 3/7 , {I}_1 = 1/4 and, {I}_2 = 2/35 . Then we have \Delta_{1} \approx 0.449865758 and \Delta_{2} \approx 0.278219606 , which implies that \Delta_{1}+\Delta_{2} \approx 0.728085364 < 1 . Since all the conditions of Theorem 3.1 are satisfied, the considered problem (5.1) has a unique solution on [0, 3/2] . Furthermore, thanks of (4.10), we get
\begin{equation*} \mathfrak{C}_{{F}} : = \frac{\Omega_{1} ( \Omega_{2} + \Omega_{4} + \Omega_{6} ) + \Omega_{3} + \Omega_{5} + m \Psi_{*}^{\gamma_{m}}}{1 - (\Delta_{1} + \Delta_{2})} \approx 17.965178470 > 0. \end{equation*} |
Therefore, the considered problem (5.1) is UH stable on [0, T] . By setting \chi(\epsilon) = \mathfrak{C}_{{F}} \epsilon via \chi(0) = 0 , we obtain from Corollary 4.1 that the considered problem (5.1) is GUH stable on [0, 3/2] . Moreover, if we put \chi(t) = \Psi_{\psi_{k}}^{\frac{3}{\rho_{k}}}(t, t_{k}) into ({U}_{1}) , we have
\begin{equation*} {_{\rho_{k}}^{}}{I}_{t_{k}}^{\alpha_{k}; \psi_{k}} \chi(t) = \frac{\Gamma_{\rho_{k}}(3+\rho_{k})\Psi_{\psi_{k}}^{\frac{\alpha_{k}}{\rho_{k}}}(t, t_{k})}{\Gamma_{\rho_{k}}(3+\rho_{k}+\alpha_{k})} \Psi_{\psi_{k}}^{\frac{3}{\rho_{k}}}(t, t_{k}) \leq \frac{\Gamma_{\rho_{k}}(3+\rho_{k})\Psi_{\psi_{k}}^{\frac{\alpha_{k}}{\rho_{k}}}(t, t_{k})}{\Gamma_{\rho_{k}}(3+\rho_{k}+\alpha_{k})} \chi(t). \end{equation*} |
Then, we have
\begin{equation*} \mathfrak{C}_{\chi} = \max\limits_{k \in \{0, 1, 2 \}}\Bigg\{ \frac{\Gamma_{\rho_{k}}(3+\rho_{k})\Psi_{\psi_{k}}^{\frac{\alpha_{k}}{\rho_{k}}}(t, t_{k})}{\Gamma_{\rho_{k}}(3+\rho_{k}+\alpha_{k})} \Bigg\} \approx 0.017240540. \end{equation*} |
By applying (4.14), one has
\begin{equation*} \mathfrak{C}_{{F}, \chi_{{F}}} : = \frac{\Omega_{1} [ ( \Omega_{4} + \Omega_{7} + \Omega_{8} ) \mathfrak{C}_{\chi} + \Omega_{4} + \Omega_{8} ] + ( m \Psi_{*}^{\gamma_{m}} + \Omega_{9} ) \mathfrak{C}_{\chi} + m \Psi_{*}^{\gamma_{m}} + \Omega_{5} }{1 - (\Delta_{1} + \Delta_{2})} \approx 7.913856366. \end{equation*} |
Then, by Theorem 4.2, the considered problem (5.1) is UHR stable on [0, 3/2] . Finally, if we set \chi(\epsilon) = \mathfrak{C}_{{F}, \chi_{{F}}} \epsilon via \chi(0) = 0 and \epsilon = 1 in Corollary 4.2, we obtain that the considered problem (5.1) is GUHR stable with respect to (\delta, \chi) on [0, 3/2] . In addition, we will present the graphical relations between \Delta_{1} + \Delta_{2} , \alpha_{k} , and \beta_{k} \in [0, 1] for k = 0, 1, 2 in Figure 1, while Table 1 shows the relationship between \alpha_{k} , \beta_{k} , \Lambda , \Omega_{i} , i = 1, 2, \ldots, 6 , and \Delta_{1} + \Delta_{2} < 1 .
\alpha_{k} | \beta_{k} | \Lambda | \Omega_1 | \Omega_2 | \Omega_3 | \Omega_4 | \Omega_5 | \Omega_6 | \Delta_1 + \Delta_{2} < 1 |
1.10 | 0.00 | 2.89747 | 0.02794 | 0.64651 | 1.02427 | 3.17599 | 0.13384 | 6.36489 | 0.42946 |
1.17 | 0.10 | 3.12101 | 0.04342 | 0.69646 | 1.03920 | 2.46685 | 0.16217 | 12.51157 | 0.49162 |
1.24 | 0.20 | 2.73831 | 0.06766 | 0.65209 | 1.05567 | 1.83607 | 0.18540 | 12.78250 | 0.54965 |
1.31 | 0.30 | 2.23210 | 0.10206 | 0.56559 | 1.07170 | 1.35043 | 0.20338 | 11.13307 | 0.60005 |
1.38 | 0.40 | 1.77633 | 0.14772 | 0.46890 | 1.08537 | 0.99976 | 0.21660 | 9.16775 | 0.64098 |
1.45 | 0.50 | 1.41494 | 0.20455 | 0.37834 | 1.09517 | 0.75403 | 0.22583 | 7.43935 | 0.67190 |
1.52 | 0.60 | 1.14457 | 0.27068 | 0.30046 | 1.10018 | 0.58419 | 0.23191 | 6.07673 | 0.69323 |
1.59 | 0.70 | 0.94888 | 0.34221 | 0.23655 | 1.10018 | 0.46769 | 0.23567 | 5.05917 | 0.70601 |
1.66 | 0.80 | 0.81105 | 0.41335 | 0.18549 | 1.09556 | 0.38856 | 0.23781 | 4.32682 | 0.71166 |
1.73 | 0.90 | 0.71760 | 0.47711 | 0.14527 | 1.08715 | 0.33603 | 0.23891 | 3.82072 | 0.71175 |
1.80 | 1.00 | 0.65893 | 0.52647 | 0.11380 | 1.07611 | 0.30315 | 0.239388 | 3.49485 | 0.70783 |
Example 5.2. Consider the following impulsive problem of the form:
\begin{equation} \left\{ \begin{array}{l} {_{\frac{3k+46}{50}}^{H}}\mathfrak{D}_{t_{k}^+}^{\frac{e^{k-1}+2}{e^{k-1}+1}, \frac{3-k}{4}; \psi_{k}} u(t) = f(t, u(t), {_{\frac{3k+46}{50}}^{}}{I}_{t_{k}}^{\frac{3k+2}{5-k}; \psi_{k}} u(t), {_{\frac{3k+46}{50}}^{}}{I}_{t_{k}}^{\frac{2k+3}{8}; \psi_{k}} u(t)), \, \, t \neq t_{k}, \, \, k = 0, 1, 2, \\ [0.25cm] {_{\frac{3k+46}{50}}^{}}{I}_{t_{k}^{+}}^{\frac{3k+46}{50}(2-\gamma_{k}); \psi_{k}} u(t_{k}^{+}) - {_{\frac{3k+43}{50}}^{}}{I}_{t_{k-1}^{+}}^{\frac{3k+43}{50}(2-\gamma_{k-1}); \psi_{k-1}} u(t_{k}^{-}) = \phi_{k}(u(t_{k})), \quad k = 1, 2, \\ [0.25cm] {_{\frac{3k+46}{50}}^{{RL}}}\mathfrak{D}_{t_{k}^{+}}^{\frac{3k+46}{50}(\gamma_{k}-1); \psi_{k}} u(t_{k}^{+}) - {_{\frac{3k+43}{50}}^{{RL}}}\mathfrak{D}_{t_{k-1}^{+}}^{\frac{3k+43}{50}(\gamma_{k-1}-1); \psi_{k-1}} u(t_{k}^{-}) = \phi_{k}^{*}(u(t_{k})), \quad k = 1, 2, \\ [0.15cm] u(0) = 0, \quad \sum\limits_{i = 0}^{2}\left(\frac{4i+3}{12-2i}\right) u\left(\frac{2i+2}{5}\right) + \sum\limits_{l = 0}^{1}\left(\frac{2l+2}{7-2l}\right){_{\frac{3l+46}{50}}^{}}{I}_{t_{l}}^{\frac{2l+3}{4}; \psi_{l}} u\left(\frac{3l+2}{6}\right) = e. \end{array} \right. \end{equation} | (5.2) |
From the considered problem (5.1), we set \alpha_k = (e^{k-1}+2)/(e^{k-1}+1) , \beta_k = (3-k)/4 , \rho_k = (3k+46)/50 , \psi_k(t) = (t^{t^2-k+2})/(t+2k+10) , \sigma_k = (3k+2)/(5-k) , \nu_k = (2k+3)/8 , t_k = k/2 , k = 0, 1, 2 , T = 3/2 , \mu_i = (4i+3)/(12-2i) , \eta_i = (2i+2)/5 , \lambda_l = (2l+2)/(7-2l) , \theta_l = (2l+3)/4 , \xi_l = (3l+2)/6 , i = 0, 1, 2 , l = 0, 1 and {A} = e . Thanks to the given data, we can compute that \Lambda \approx 0.812170396 , \Omega_1 \approx 0.167309417 , \Omega_2 \approx 0.079568573 , \Omega_3 \approx 1.027705947 , \Omega_4 \approx 0.923594556 , \Omega_5 \approx 0.229753595 , \Omega_6 \approx 14.887728830 . The following functions will be considered for theoretical confirmation:
\begin{eqnarray*} f(t, u, v, w) & = & \frac{(3t+5)\Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k})}{t^2+5t+25} \left(\frac{2|u|^2+7|u|}{|u|+3}-1\right) \\ && + \Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k}) \left(\frac{\sin(t)}{2e^t}\cdot\frac{|v|}{|v|+2} +\frac{\ln(t+8)}{\cos^2(t)+3}\cdot\frac{|w|}{3|w|+1}\right), \\ \phi_{k}(u(t_{k})) & = & \frac{e^{t_{k}-1}}{2t_k}\Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k})\frac{|u(t_{k})|}{3|u(t_{k})|+5}, \qquad \phi_{k}^{*}(u(t_{k})) = \frac{\cos(\pi t_{k})}{4t_k+3}\Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k})\frac{|u(t_{k})|}{|u(t_{k})|+2}. \end{eqnarray*} |
For any u , v , w \in {R} , and t \in [0, 3/2] , it follows that
\begin{eqnarray*} \vert f(t, u, v, w)\vert &\leq& \frac{(3t+5)}{t^2+5t+25} \left(2\Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k})|u|+1\right) + \Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k}) \left(\frac{\sin(t)|v|}{4} +\frac{|w|\ln(t+8)}{3}\right), \\ \vert\phi_{k}(u)\vert &\leq& \frac{1}{3} \Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k}) \vert u\vert , \qquad\qquad \vert\phi_{k}^{*}(u)\vert \leq \frac{1}{5} \Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k}) \vert u\vert, \\ \vert\phi_{k}(u)-\phi_{k}(v)\vert &\leq& \frac{1}{5} \Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k}) \vert u-v\vert , \qquad\, \, \vert\phi_{k}^{*}(u)-\phi_{k}(v)\vert \leq \frac{1}{10} \Psi_{\psi_k}^{2-\gamma_{k}}(t, t_{k}) \vert u-v\vert. \end{eqnarray*} |
By applying ({H}_{3}) – ({H}_{5}) with \Theta(u) = 2|u|+1 , we obtain that {M}_1 = 0.296890807 , {M}_2 = 0.178134484 , g_{1}^{*} = 0.273381295 , g_{2}^{*} = 0.249373747 , g_{3}^{*} = 0.750430599 , \Xi_1 = 1/5 , \Xi_2 = 1/10 , and
\begin{equation*} [ ( \Omega_{5} + \Omega_{1} \Omega_{4} ) \Xi_{1} + ( m \Psi_{*}^{\gamma_{m}} + \Omega_{1} \Omega_{6} ) \Xi_{2} ] \approx 0.421759604 < 1. \end{equation*} |
By using (3.30) and ({H}_{6}) , we have that
\begin{equation*} \mathfrak{C}^{*} : = (\Omega_{5} + \Omega_{1} \Omega_{4}) {M}_{1} + (m \Psi_{*}^{\sigma_{m}} + \Omega_{1}\Omega_{6}) {M}_{2} + \Omega_{1} \vert {A} \vert \approx 1.081294628. \end{equation*} |
Then,
\begin{eqnarray*} \sup\limits_{\mathfrak{R}_{2}\in (0, \infty)}\frac{\mathfrak{R}_{2}}{g_{1}^{*}\Theta( \mathfrak{R}_{2} )(\Omega_{3} + \Omega_{1} \Omega_{2} ) + \mathfrak{C}^{*} } &\approx& 1.756882645, \notag\\ \frac{1}{1 - [ g_{2}^{*} \Psi_{*}^{\sigma_{m}} + g_{3}^{*} \Psi_{*}^{\nu_{m}} ] (\Omega_{3} + \Omega_{1} \Omega_{2} )} &\approx& 1.123309473, \end{eqnarray*} |
which yields \mathfrak{R}_{2} > 4.041270259 . Since all the conditions of Theorem 3.2 are satisfied, the considered problem (5.2) has a solution on [0, 3/2] .
Example 5.3. Consider the following the impulsive (\rho_{k}, \psi_{k}) - {HFP} - {IDE} - {MIBC} s of the form:
\begin{equation} \left\{ \begin{array}{l} {_{\frac{k+18}{20}}^{H}}\mathfrak{D}_{t_{k}^+}^{\alpha_{k}, \frac{4-k}{5}; \psi_{k}} u(t) = 2, \, \, t \neq t_{k}, \, \, k = 0, 1, 2, \\ [0.15cm] {_{\frac{k+18}{20}}^{}}{I}_{t_{k}^{+}}^{\frac{k+18}{20}(2-\gamma_{k}); \psi_{k}} u(t_{k}^{+}) - {_{\frac{k+17}{20}}^{}}{I}_{t_{k-1}^{+}}^{\frac{k+17}{20}(2-\gamma_{k-1}); \psi_{k-1}} u(t_{k}^{-}) = -\frac{k+1}{k+2}, \quad k = 1, 2, \\ [0.25cm] {_{\frac{k+18}{20}}^{{RL}}}\mathfrak{D}_{t_{k}^{+}}^{\frac{k+18}{20}(\gamma_{k}-1); \psi_{k}} u(t_{k}^{+}) - {_{\frac{k+17}{20}}^{{RL}}}\mathfrak{D}_{t_{k-1}^{+}}^{\frac{k+17}{20}(\gamma_{k-1}-1); \psi_{k-1}} u(t_{k}^{-}) = (-1)^{k}\frac{3}{2}, \quad k = 1, 2, \\ [0.15cm] u(0) = 0, \quad \sum\limits_{i = 0}^{3}\left(\frac{4i+3}{12-2i}\right) u\left(\frac{2i+2}{5}\right) + \sum\limits_{l = 0}^{3}\left(\frac{2l+2}{7-2l}\right) {_{\frac{l+18}{20}}^{}}{I}_{t_{l}}^{\frac{2l+3}{4}; \psi_{l}} u\left(\frac{3l+2}{6}\right) = e. \end{array} \right. \end{equation} | (5.3) |
Form the considered problem (5.3), we set \alpha_k \in \{(2\pi+k-2)/4, 1+\sqrt{(k+1)/(k+6)}, (e^{k-1}+2)/(e^{k-1}+1), \ln(k+4)\} , \beta_k = (4-k)/5 , \rho_k = (k+18)/20 , \psi_k(t) \in \{1/(k+2) + \sin((k+2)t/((k+3)t-k+5)) , (k+4)/2-\arccos((t^2+kt-2)/10), (t^{t^2-k+3})/(t+2k+8) , 2-(\ln[(k+2)t+3k+3])/(\ln\left[(k+1)t+2k+2\right])\} , t_k = k/2 , k = 0, 1, 2, 3 , T = 2 , \phi_{k}(u(t_{k})) = -(k+1)/(k+2) , \phi_{k}^{*}(u(t_{k})) = (-1)^k (3/2) , k = 1, 2, 3 , \mu_i = (4i+3)/(12-2i) , \eta_i = (2i+2)/5 , \lambda_l = (2l+2)/(7-2l) , \theta_l = (2l+3)/4 , \xi_l = (3l+2)/6 , i = 0, 1, 2, 3 , l = 0, 1, 2, 3 , and {A} = e . Thanks to the given data, we can compute that \Lambda \approx 1.3195199 . By using Lemma 2.6 with f(t, u(t), {_{\rho_{k}}^{}}{I}_{t_{k}}^{\sigma_{k}; \psi_{k}} u(t), {_{\rho_{k}}^{}}{I}_{t_{k}}^{\nu_{k}; \psi_{k}} u(t)) = 2 , the solution of the considered problem (5.3) can be written as
\begin{eqnarray} && u(t)\\ & = & \Bigg\{ \frac{\Psi_{\psi_{k}}^{\gamma_{k} - 1}(t, t_{k})}{\Lambda \Gamma_{\rho_{k}}(\rho_{k}\gamma_{k})} + \frac{\Psi_{\psi_{k}}^{\gamma_{k} - 2}(t, t_{k})}{\Lambda \Gamma_{\rho_{k}}(\rho_{k}(\gamma_{k}-1))} \sum\limits_{j = 0}^{k-1} \frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}}\Bigg\} \Bigg\{ e \\ && - \Bigg( \sum\limits_{i = 0}^{4}\left(\frac{4i+3}{12-2i}\right)\frac{ \Psi_{\psi_{i}}^{\gamma_{i} - 1}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}\gamma_{i})} \sum\limits_{j = 0}^{i-1}\Bigg( \frac{2\Psi_{\psi_{j}}^{\frac{\alpha_{j} - \rho_{j}(\gamma_{j}-1)}{\rho_{j}}}(t_{j+1}, t_{j})}{\Gamma_{\rho_{j}}(\alpha_{j} - \rho_{j}(\gamma_{j}-1)+\rho_{j})} - \frac{j+2}{j+3} \Bigg)\\ && + \sum\limits_{i = 0}^{4}\left(\frac{4i+3}{12-2i}\right)\frac{ \Psi_{\psi_{i}}^{\gamma_{i} - 2}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\rho_{i}(\gamma_{i}-1))}\Bigg[ \sum\limits_{j = 0}^{i-1}\Bigg(\frac{2\Psi_{\psi_{j}}^{\frac{\alpha_{j} + \rho_{j}(2-\gamma_{j})}{\rho_{j}}}(t_{j+1}, t_{j})}{\Gamma_{\rho_{j}}(\alpha_{j} + \rho_{j}(2-\gamma_{j})+\rho_{j})} + (-1)^{j+1} \frac{ 3}{2} \Bigg)\\ && + \sum\limits_{j = 1}^{i-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Bigg(\frac{2\Psi_{\psi_{r}}^{\frac{\alpha_{r} - \rho_{r}(\gamma_{r}-1)}{\rho_{r}}}(t_{r+1}, t_{r})}{\Gamma_{\rho_{r}}(\alpha_{r} - \rho_{r}(\gamma_{r}-1)+\rho_{r})} - \frac{r+2}{r+3} \Bigg) \Bigg] + \sum\limits_{i = 0}^{4}\left(\frac{4i+3}{6-i}\right) \frac{\Psi_{\psi_{i}}^{\frac{\alpha_{i}}{\rho_{i}}}(\eta_{i}, t_{i})}{\Gamma_{\rho_{i}}(\alpha_{i}+\rho_{i})} \\ && + \sum\limits_{l = 0}^{3}\left(\frac{4l+4}{7-2l}\right) \frac{\Psi_{\psi_{l}}^{\frac{\alpha_{l}+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\alpha_{l}+\theta_{l}+\rho_{l})} + \sum\limits_{l = 0}^{3}\left(\frac{2l+2}{7-2l}\right)\frac{\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 1)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}\gamma_{l} + \theta_{l})} \sum\limits_{j = 0}^{l-1}\Bigg(\frac{2\Psi_{\psi_{j}}^{\frac{\alpha_{j} - \rho_{j}(\gamma_{j}-1)}{\rho_{j}}}(t_{j+1}, t_{j})}{\Gamma_{\rho_{j}}(\alpha_{j} - \rho_{j}(\gamma_{j}-1)+\rho_{j})} - \frac{j+2}{j+3} \Bigg)\\ && + \sum\limits_{l = 0}^{3}\left(\frac{2l+2}{7-2l}\right)\frac{\Psi_{\psi_{l}}^{\frac{\rho_{l}(\gamma_{l} - 2)+\theta_{l}}{\rho_{l}}}(\xi_{l}, t_{l})}{\Gamma_{\rho_{l}}(\rho_{l}(\gamma_{l} - 1) + \theta_{l})} \Bigg[ \sum\limits_{j = 0}^{l-1}\Bigg(\frac{2\Psi_{\psi_{j}}^{\frac{\alpha_{j} + \rho_{j}(2-\gamma_{j})}{\rho_{j}}}(t_{j+1}, t_{j})}{\Gamma_{\rho_{j}}(\alpha_{j} + \rho_{j}(2-\gamma_{j})+\rho_{j})} + (-1)^{j+1} \frac{ 3}{2} \Bigg)\\ && + \sum\limits_{j = 1}^{l-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Bigg(\frac{2\Psi_{\psi_{r}}^{\frac{\alpha_{r} - \rho_{r}(\gamma_{r}-1)}{\rho_{r}}}(t_{r+1}, t_{r})}{\Gamma_{\rho_{r}}(\alpha_{r} - \rho_{r}(\gamma_{r}-1)+\rho_{r})} - \frac{r+2}{r+3} \Bigg) \Bigg] \Bigg) \Bigg\}\\ && + \frac{2\Psi_{\psi_{k}}^{\frac{\alpha_{k}}{\rho_{k}}}(t, t_{k})}{\Gamma_{\rho_{k}}(\alpha_{k}+\rho_{k})} + \frac{\Psi_{\psi_{k}}^{\gamma_{k} - 1}(t, t_{k})}{\Gamma_{\rho_{k}}(\rho_{k}\gamma_{k})} \sum\limits_{j = 0}^{k-1}\Bigg(\frac{2\Psi_{\psi_{j}}^{\frac{\alpha_{j} - \rho_{j}(\gamma_{j}-1)}{\rho_{j}}}(t_{j+1}, t_{j})}{\Gamma_{\rho_{j}}(\alpha_{j} - \rho_{j}(\gamma_{j}-1)+\rho_{j})} - \frac{j+2}{j+3} \Bigg)\\ && + \frac{\Psi_{\psi_{k}}^{\gamma_{k} - 2}(t, t_{k})}{\Gamma_{\rho_{k}}(\rho_{k}(\gamma_{k}-1))}\Bigg[ \sum\limits_{j = 0}^{k-1}\Bigg(\frac{2\Psi_{\psi_{j}}^{\frac{\alpha_{j} + \rho_{j}(2-\gamma_{j})}{\rho_{j}}}(t_{j+1}, t_{j})}{\Gamma_{\rho_{j}}(\alpha_{j} + \rho_{j}(2-\gamma_{j})+\rho_{j})} + (-1)^{j+1} \frac{ 3}{2} \Bigg)\\ && + \sum\limits_{j = 1}^{k-1}\frac{\Psi_{\psi_{j}}(t_{j+1}, t_{j})}{\rho_{j}} \sum\limits_{r = 0}^{j-1}\Bigg(\frac{2\Psi_{\psi_{r}}^{\frac{\alpha_{r} - \rho_{r}(\gamma_{r}-1)}{\rho_{r}}}(t_{r+1}, t_{r})}{\Gamma_{\rho_{r}}(\alpha_{r} - \rho_{r}(\gamma_{r}-1)+\rho_{r})} - \frac{r+2}{r+3} \Bigg) \Bigg]. \end{eqnarray} | (5.4) |
Hence, the solution of the considered problem (5.3) is divided into three cases.
Case Ⅰ. If we set \alpha_{k} \in \{ \pi/2 + (k-2)/4 , 1 + \sqrt{(k+1)/(k+6)} , (e^{k-1}+2)/(e^{k-1}+1) , \ln(k+4)\} and \psi_{k}(t) = 1/(k+2) + \sin(((k+2)t)/((k+3)t+(5-k))) for k = 0, 1, 2, 3 , then the solution of the considered problem (5.3) is displayed in Figure 2.
Case Ⅱ. If we set \alpha_{k} = \pi/2 + (k-2)/4 and \psi_{k}(t) \in \{ 1/(k+2) + \sin(((k+2)t)/((k+3)t-k+5)), (k+4)/(2) - \arccos((t^2+kt-2)/(10)), (t^{t^2-k+3})/(t+2k+8), 2 - (\ln[(k+2)t+3k+3])/(\ln[(k+1)t+2k+2]) \} for k = 0, 1, 2, 3 , then the solution of the considered problem (5.3) is displayed in Figure 3.
Case Ⅲ. If we set \alpha_{k} \in \{ \pi/2 + (k-2)/4 , 1 + \sqrt{(k+1)/(k+6)} , (e^{k-1}+2)/(e^{k-1}+1) , \ln(k+4)\} and \psi_{k}(t) \in \{ 1/(k+2) + \sin(((k+2)t)/((k+3)t-k+5)), (k+4)/(2) - \arccos((t^2+kt-2)/(10)), (t^{t^2-k+3})/(t+2k+8), 2 - (\ln[(k+2)t+3k+3])/(\ln[(k+1)t+2k+2]) \} for k = 0, 1, 2, 3 , then the solution of the considered problem (5.3) is displayed in Figure 4.
In this paper, we have investigated existence theory and stability results for a class of nonlinear impulsive boundary value problem of fractional integro-differential equations supplemented with mixed nonlocal multi-point and multi-term integral boundary conditions in the context of the (\rho_{k}, \psi_{k}) -Hilfer fractional derivatve. Firstly, the solution to the linear variant impulsive considered problem was introduced in terms of a Volterra integral equation. The uniqueness result was proved by using Banach's fixed point theorem, while the existence result was established by means of a fixed point theorem due to O'Regan. In addition, a variety of Ulam's stability such as UH, GUH, UHR and GUHR stability were studied by applying nonlinear functional analysis technique. Finally, three examples illustrating the results are also provided to confirm the correctness of the theoretical results. The novelty of our results is not only finding a distinctive qualitative theory for this problem within the given frame but also addressing some new, interesting exceptional cases for various values of the parameters related to the considered problem. For example,
(i) If we set \lambda_{l} = 0 for all l = 0, 1, \ldots, n , then the considered problem (1.4) reduces to {BVP} for nonlinear impulsive (\rho_{k}, \psi_{k}) -Hilfer-FIDEs under nonlocal multi-point boundary conditions: u(0) = 0 , \sum_{i = 0}^{m}\mu_{i} u(\eta_{i}) = {A} .
(ii) If we set \mu_{i} = 0 for all i = 0, 1, \ldots, m , then the considered problem (1.4) reduces to {BVP} for nonlinear impulsive (\rho_{k}, \psi_{k}) -Hilfer-FIDEs under nonlocal multi-term integral boundary conditions: u(0) = 0,\sum\nolimits_{l = 0}^n {{\lambda _l}{_{{\rho _l}}} I}_{{t_l}}^{{\theta _l};{\psi _l}}u({\xi _l}) = A.
This research would provide a significant contribution to the literature on the qualitative theory, which might involve the growth of the idea introduced in this field as well as the possibility for further generalizations in a wide range of exclusive outputs for applications and theories. One proposal is that future studies explore the existence and uniqueness of solutions for additional forms of nonlinear differential-integral equations in the setting of other fractional operators with varied boundary conditions.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
W. Sudsutad would like to thank you for supporting this paper through Ramkhamhaeng University. C. Thaiprayoon and J. Kongson would like to extend their appreciation to Burapha University.
The authors declare no conflict of interest.
[1] | G. M. Zaslavsky, Hamiltonian chaos and fractional dynamics, New York: Oxford University Press, 2005. |
[2] | R. L. Magin, Fractional calculus in bioengineering, 2006. |
[3] | F. Mainardi, Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models, Imperial College Press, 2010. |
[4] | T. M. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica, Fractional calculus with application in mechanics: Vibrations and diffusion processes, Wiley, 2014. |
[5] | R. Herrmann, Fractional calculus: An introduction for physicsts, World Scientific, 2014. |
[6] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000. |
[7] | H. A. Fallahgoul, S. M. Focardi, F. J. Fabozzi, Fractional calculus and fractional processes with applications to financial economics: Theory and application, Elsevier, 2017. |
[8] | S. G. Samko, A. Kilbas, O. Marichev, Fractional integrals and drivatives, Gordon and Breach Science Publishers, 1993. |
[9] | I. Podlubny, Fractional differential equations, Academic Press, 1999. |
[10] | V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, 2009. |
[11] | K. Diethelm, The analysis of fractional differential equations, In: Lecture notes in mathematics, Berlin: Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2 |
[12] | Y. Zhou, Basic theory of fractional differential equations, World Scientific, 2014. |
[13] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[14] |
G. A. Dorrego, An alternative definition for the k-Riemann-Liouville fractional derivative, Appl. Math. Sci., 9 (2015), 481–491. https://doi.org/10.12988/ams.2015.411893 doi: 10.12988/ams.2015.411893
![]() |
[15] |
J. V. C. Sousa, E. C. de Oliveira, On the \psi-Hilfer fractional derivative, Commun. Nonlinear Sci., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005
![]() |
[16] |
K. D. Kucche, A. D. Mali, On the nonlinear (k, \psi)-Hilfer fractional differential equations, Chaos Soliton. Fract., 152 (2021), 111335. https://doi.org/10.1016/j.chaos.2021.111335 doi: 10.1016/j.chaos.2021.111335
![]() |
[17] | A. Bitsadze, A. Samarskii, On some simple generalizations of linear elliptic boundary problems, Sov. Math. Dokl., 10 (1969), 398–400. |
[18] | M. Picone, Su un problema al contorno nelle equazioni differenziali lineari ordinarie del secondo ordine, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 1908. |
[19] | W. M. Whyburn, Differential equations with general boundary conditions, Bull. Amer. Math. Soc., 48 (1942), 692–704. |
[20] |
Y. Jalilian, M. Ghasmi, On the solutions of a nonlinear fractional integro-differential equation of Pantograph type, Mediterr. J. Math., 14 (2017), 194. https://doi.org/10.1007/s00009-017-0993-8 doi: 10.1007/s00009-017-0993-8
![]() |
[21] |
B. Khaminsou, C. Thaiprayoon, J. Alzabut, W. Sudsutad, Nonlocal boundary value problems for integro-differential Langevin equation via the generalized Caputo proportional fractional derivative, Bound. Value. Probl., 2020 (2020), 176. https://doi.org/10.1186/s13661-020-01473-7 doi: 10.1186/s13661-020-01473-7
![]() |
[22] |
W. Sudsutad, C. Thaiprayoon, S. K. Ntouyas, Existence and stability results for \psi-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions, AIMS Math., 6 (2021), 4119–4141. https://doi.org/10.3934/math.2021244 doi: 10.3934/math.2021244
![]() |
[23] |
C. Thaiprayoon, W. Sudsutad, S. K. Ntouyas, Mixed nonlocal boundary value problem for implicit fractional integro-differential equations via \psi-Hilfer fractional derivative, Adv. Differ. Equ., 2021 (2021), 50. https://doi.org/10.1186/s13662-021-03214-1 doi: 10.1186/s13662-021-03214-1
![]() |
[24] |
S. Sitho, S.K. Ntouyas, C. Sudprasert, J. Tariboon. Integro-differential boundary conditions to the sequential \psi_1-Hilfer and \psi_2-Caputo fractional differential equations, Mathematics, 11 (2023), 867. https://doi.org/10.3390/math11040867 doi: 10.3390/math11040867
![]() |
[25] |
D. Foukrach, S. Bouriah, S. Abbas, M. Benchohra, Periodic solutions of nonlinear fractional pantograph integro-differential equations with \psi-Caputo derivative, Ann. Univ. Ferrara., 69 (2023), 1–22. https://doi.org/10.1007/s11565-022-00396-8 doi: 10.1007/s11565-022-00396-8
![]() |
[26] |
H. Jafari, N. A. Tuan, R. M. Ganji, A new numerical scheme for solving pantograph type nonlinear fractional integro-differential equations, J. King Saud Univ. Sci., 33 (2021), 101185. https://doi.org/10.1016/j.jksus.2020.08.029 doi: 10.1016/j.jksus.2020.08.029
![]() |
[27] |
M. A. Almalahi, S. K. Panchal, Existence results of \psi-Hilfer integro-differential equations with fractional order in Banach space, Ann. U. Paedag. St. Math., 19 (2020), 171–192. https://doi.org/10.2478/aupcsm-2020-0013 doi: 10.2478/aupcsm-2020-0013
![]() |
[28] |
H. Vu, N. V. Hoa, Ulam-Hyers stability for a nonlinear Volterra integro-differential equation, Hacet. J. Math. Stat., 49 (2020), 1261–1269. https://doi.org/10.15672/hujms.483606 doi: 10.15672/hujms.483606
![]() |
[29] |
K. Liu, M. Fečkan, D. O'Regan, J. R. Wang, Hyers-Ulam stability and existence of solutions for differential equations with Caputo-Fabrizio fractional derivative, Mathematics, 7 (2019), 333. https://doi.org/10.3390/math7040333 doi: 10.3390/math7040333
![]() |
[30] | A. Zada, S. O. Shah. Hyers-Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses, Hacet. J. Math. Stat., 47 (2018), 1196–1205. |
[31] | D. Bainov, P. Simeonov, Impulsive differential equations: Periodic solutions and applications, CRC Press, 1993. |
[32] | A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, World Scientific, 1995. |
[33] | M. Benchohra, J. Henderson, S. K. Ntouyas, Impulsive differential equations and inclusions, New York: Hindawi Publishing Corporation, 2006. |
[34] |
K. D. Kucche, J. P. Kharade, J. V. C de Sousa, On the nonlinear impulsive \psi-Hilfer fractional differential equations, Math. Model. Anal., 25 (2020), 642–660. https://doi.org/10.3846/mma.2020.11445 doi: 10.3846/mma.2020.11445
![]() |
[35] |
A. Salim, M. Benchohra, J. E. Lazreg, J. Henderson, On k-generalized \psi-Hilfer boundary value problems with retardation and anticipation, Adv. Theor. Nonlinear Anal. Appl., 6 (2022), 173–190. https://doi.org/10.31197/atnaa.973992 doi: 10.31197/atnaa.973992
![]() |
[36] |
M. Kaewsuwan, R. Phuwapathanapun, W. Sudsutad, J. Alzabut, C. Thaiprayoon, J. Kongson, Nonlocal impulsive fractional integral boundary value problem for (\rho_k, \psi_k)-Hilfer fractional integro-differential equations, Mathematics, 10 (2022), 3874. https://doi.org/10.3390/math10203874 doi: 10.3390/math10203874
![]() |
[37] |
M. Feckan, Y. Zhou, J. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci., 17 (2012), 3050–3060. https://doi.org/10.1016/j.cnsns.2011.11.017 doi: 10.1016/j.cnsns.2011.11.017
![]() |
[38] |
T. L. Guo, W. Jiang, Impulsive functional differential equations, Comput. Math. Appl., 64 (2012), 3414–3424. https://doi.org/10.1016/j.camwa.2011.12.054 doi: 10.1016/j.camwa.2011.12.054
![]() |
[39] |
M. Zuo, X. Hao, L. Liu, Y. Cui, Existence results for impulsive fractional integro-differential equation of mixed type with constant coefficient and antiperiodic boundary conditions, Bound. Value Probl., 2017 (2017), 161. https://doi.org/10.1186/s13661-017-0892-8 doi: 10.1186/s13661-017-0892-8
![]() |
[40] |
Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, S. M. Kang, Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE Access, 6 (2018), 64946–64953. https://doi.org/10.1109/ACCESS.2018.2878266 doi: 10.1109/ACCESS.2018.2878266
![]() |
[41] | R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulgaciones Mat., 15 (2007), 179–192. |
[42] | A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. |
[43] | D. O'Regan, Fixed-point theory for the sum of two operators, Appl. Math. Lett., 9 (1966), 1–8. |
1. | F. M. Ismaael, On a New Class of Impulsive η-Hilfer Fractional Volterra-Fredholm Integro-Differential Equations, 2023, 17, 1823-8343, 691, 10.47836/mjms.17.4.10 |
\alpha_{k} | \beta_{k} | \Lambda | \Omega_1 | \Omega_2 | \Omega_3 | \Omega_4 | \Omega_5 | \Omega_6 | \Delta_1 + \Delta_{2} < 1 |
1.10 | 0.00 | 2.89747 | 0.02794 | 0.64651 | 1.02427 | 3.17599 | 0.13384 | 6.36489 | 0.42946 |
1.17 | 0.10 | 3.12101 | 0.04342 | 0.69646 | 1.03920 | 2.46685 | 0.16217 | 12.51157 | 0.49162 |
1.24 | 0.20 | 2.73831 | 0.06766 | 0.65209 | 1.05567 | 1.83607 | 0.18540 | 12.78250 | 0.54965 |
1.31 | 0.30 | 2.23210 | 0.10206 | 0.56559 | 1.07170 | 1.35043 | 0.20338 | 11.13307 | 0.60005 |
1.38 | 0.40 | 1.77633 | 0.14772 | 0.46890 | 1.08537 | 0.99976 | 0.21660 | 9.16775 | 0.64098 |
1.45 | 0.50 | 1.41494 | 0.20455 | 0.37834 | 1.09517 | 0.75403 | 0.22583 | 7.43935 | 0.67190 |
1.52 | 0.60 | 1.14457 | 0.27068 | 0.30046 | 1.10018 | 0.58419 | 0.23191 | 6.07673 | 0.69323 |
1.59 | 0.70 | 0.94888 | 0.34221 | 0.23655 | 1.10018 | 0.46769 | 0.23567 | 5.05917 | 0.70601 |
1.66 | 0.80 | 0.81105 | 0.41335 | 0.18549 | 1.09556 | 0.38856 | 0.23781 | 4.32682 | 0.71166 |
1.73 | 0.90 | 0.71760 | 0.47711 | 0.14527 | 1.08715 | 0.33603 | 0.23891 | 3.82072 | 0.71175 |
1.80 | 1.00 | 0.65893 | 0.52647 | 0.11380 | 1.07611 | 0.30315 | 0.239388 | 3.49485 | 0.70783 |
\alpha_{k} | \beta_{k} | \Lambda | \Omega_1 | \Omega_2 | \Omega_3 | \Omega_4 | \Omega_5 | \Omega_6 | \Delta_1 + \Delta_{2} < 1 |
1.10 | 0.00 | 2.89747 | 0.02794 | 0.64651 | 1.02427 | 3.17599 | 0.13384 | 6.36489 | 0.42946 |
1.17 | 0.10 | 3.12101 | 0.04342 | 0.69646 | 1.03920 | 2.46685 | 0.16217 | 12.51157 | 0.49162 |
1.24 | 0.20 | 2.73831 | 0.06766 | 0.65209 | 1.05567 | 1.83607 | 0.18540 | 12.78250 | 0.54965 |
1.31 | 0.30 | 2.23210 | 0.10206 | 0.56559 | 1.07170 | 1.35043 | 0.20338 | 11.13307 | 0.60005 |
1.38 | 0.40 | 1.77633 | 0.14772 | 0.46890 | 1.08537 | 0.99976 | 0.21660 | 9.16775 | 0.64098 |
1.45 | 0.50 | 1.41494 | 0.20455 | 0.37834 | 1.09517 | 0.75403 | 0.22583 | 7.43935 | 0.67190 |
1.52 | 0.60 | 1.14457 | 0.27068 | 0.30046 | 1.10018 | 0.58419 | 0.23191 | 6.07673 | 0.69323 |
1.59 | 0.70 | 0.94888 | 0.34221 | 0.23655 | 1.10018 | 0.46769 | 0.23567 | 5.05917 | 0.70601 |
1.66 | 0.80 | 0.81105 | 0.41335 | 0.18549 | 1.09556 | 0.38856 | 0.23781 | 4.32682 | 0.71166 |
1.73 | 0.90 | 0.71760 | 0.47711 | 0.14527 | 1.08715 | 0.33603 | 0.23891 | 3.82072 | 0.71175 |
1.80 | 1.00 | 0.65893 | 0.52647 | 0.11380 | 1.07611 | 0.30315 | 0.239388 | 3.49485 | 0.70783 |