This paper introduces the Weibull-generalized shifted geometric (WGSG) distribution, a novel lifetime model integrating the Weibull and shifted geometric distributions to address complex lifetime data patterns. Extending the Weibull-geometric framework, this distribution models system reliability by focusing on the $ k $-th smallest lifetime—when $ k $ components fail—rather than the minimum. Key properties, including the probability density function, cumulative distribution function, and moments, were derived. Parameters were estimated using maximum likelihood, expectation-maximization, method of moments, and Bayesian approaches, with a simulation study comparing their performance. Applications to two real-world lifetime and reliability datasets demonstrated the distribution's superiority over classical models in handling challenging survival and reliability scenarios. This flexible model enhances the ability to capture diverse hazard behaviors, advancing lifetime data analysis.
Citation: Mohieddine Rahmouni, Dalia Ziedan. The Weibull-generalized shifted geometric distribution: properties, estimation, and applications[J]. AIMS Mathematics, 2025, 10(4): 9773-9804. doi: 10.3934/math.2025448
This paper introduces the Weibull-generalized shifted geometric (WGSG) distribution, a novel lifetime model integrating the Weibull and shifted geometric distributions to address complex lifetime data patterns. Extending the Weibull-geometric framework, this distribution models system reliability by focusing on the $ k $-th smallest lifetime—when $ k $ components fail—rather than the minimum. Key properties, including the probability density function, cumulative distribution function, and moments, were derived. Parameters were estimated using maximum likelihood, expectation-maximization, method of moments, and Bayesian approaches, with a simulation study comparing their performance. Applications to two real-world lifetime and reliability datasets demonstrated the distribution's superiority over classical models in handling challenging survival and reliability scenarios. This flexible model enhances the ability to capture diverse hazard behaviors, advancing lifetime data analysis.
| [1] | G. M. Cordeiro, R. B. Silva, A. D. C. Nascimento, Recent advances in lifetime and reliability models, Bentham Science Publishers, 2020. https://doi.org/10.2174/97816810834521200101 |
| [2] |
M. Imran, N. Alsadat, M. H. Tahir, F. Jamal, M. Elgarhy, H. Ahmad, et al., The development of an extended Weibull model with applications to medicine, industry and actuarial sciences, Sci. Rep., 14 (2024), 1–24. https://doi.org/10.1038/s41598-024-61308-8 doi: 10.1038/s41598-024-61308-8
|
| [3] | K. Balakrishnan, The exponential distribution: theory, methods and applications, 1 Ed., Routledge, 1995. https://doi.org/10.1201/9780203756348 |
| [4] | R. E. Barlow, F. Proschan, Statistical theory of reliability and life testing: probability models, Holt, Rinehart and Winston, New York, 1975. |
| [5] | S. K. Sinha, B. K. Kale, Life testing and reliability estimation, New Delhi: Wiley Eastern ltd., 1980. |
| [6] |
M. Goldoust, S. Rezaei, Y. Si, S. Nadarajah, Lifetime distributions motivated by series and parallel structures, Commun. Stat.-Simul. Comput., 48 (2019), 556–579. https://doi.org/10.1080/03610918.2017.1390122 doi: 10.1080/03610918.2017.1390122
|
| [7] |
T. Goyal, S. K. Maurya, S. Nadarajah, Geometric generated family of distributions: a review, Braz. J. Probab. Stat., 35 (2021), 442–465. https://doi.org/10.1214/20-bjps485 doi: 10.1214/20-bjps485
|
| [8] |
S. K. Maurya, S. Nadarajah, Poisson generated family of distributions: a review, Sankhya B, 83 (2021), 484–540. https://doi.org/10.1007/s13571-020-00237-8 doi: 10.1007/s13571-020-00237-8
|
| [9] |
M. H. Tahir, G. M. Cordeiro, Compounding of distributions: a survey and new generalized classes, J. Stat. Distrib. Appl., 3 (2016), 13. https://doi.org/10.1186/s40488-016-0052-1 doi: 10.1186/s40488-016-0052-1
|
| [10] |
K. Adamidis, S. Loukas, A lifetime distribution with decreasing failure rate, Stat. Probabil. Lett., 39 (1998), 35–42. https://doi.org/10.1016/s0167-7152(98)00012-1 doi: 10.1016/s0167-7152(98)00012-1
|
| [11] |
K. Adamidis, T. Dimitrakopoulou, S. Loukas, On an extension of the exponential-geometric distribution, Stat. Probabil. Lett., 73 (2005), 259–269. https://doi.org/10.1016/j.spl.2005.03.013 doi: 10.1016/j.spl.2005.03.013
|
| [12] |
C. Kuş, A new lifetime distribution, Comput. Stat. Data Anal., 51 (2007), 4497–4509. https://doi.org/10.1016/j.csda.2006.07.017 doi: 10.1016/j.csda.2006.07.017
|
| [13] |
M. Bourguignon, R. B. Silva, G. M. Cordeiro, A new class of fatigue life distributions, J. Stat. Comput. Simul., 84 (2014), 2619–2635. https://doi.org/10.1080/00949655.2013.799164 doi: 10.1080/00949655.2013.799164
|
| [14] |
V. G. Cancho, F. Louzada-Neto, G. D. C. Barriga, The poisson-exponential lifetime distribution, Comput. Stat. Data Anal., 55 (2011), 677–686. https://doi.org/10.1016/j.csda.2010.05.033 doi: 10.1016/j.csda.2010.05.033
|
| [15] |
V. Pappas, K. Adamidis, S. Loukas, A generalization of the exponential-logarithmic distribution, J. Stat. Theory Pract., 9 (2015), 122–133. https://doi.org/10.1080/15598608.2014.898604 doi: 10.1080/15598608.2014.898604
|
| [16] |
G. C. Rodrigues, F. Louzada, P. L. Ramos, Poisson-exponential distribution: different methods of estimation, J. Appl. Stat., 45 (2018), 128–144. https://doi.org/10.1080/02664763.2016.1268571 doi: 10.1080/02664763.2016.1268571
|
| [17] |
L. Tafakori, A. Pourkhanali, S. Nadarajah, A new lifetime model with different types of failure rate, Commun. Stat.-Theory Methods, 47 (2018), 4006–4020. https://doi.org/10.1080/03610926.2017.1367811 doi: 10.1080/03610926.2017.1367811
|
| [18] |
M. Rahmouni, A. Orabi, The exponential-generalized truncated geometric (EGTG) distribution: a new lifetime distribution, Int. J. Stat. Probabil., 7 (2018), 1–20. https://doi.org/10.5539/ijsp.v7n1p1 doi: 10.5539/ijsp.v7n1p1
|
| [19] |
M. Rahmouni, A. Orabi, A generalization of the exponential-logarithmic distribution for reliability and life data analysis, Life Cycle Reliab. Saf. Eng., 7 (2018), 159–171. https://doi.org/10.1007/s41872-018-0049-5 doi: 10.1007/s41872-018-0049-5
|
| [20] | A. E. Sarhan, B. G. Greenberg, Contributions to order statistics, Wiley New York, 1962. |
| [21] | P. Pledger, F. Proschan, Comparisons of order statistics and of spacings from heterogeneous distributions, In: J. S. Rustagi, Optimizing methods in statistics, New York: Academic Press, 1971, 89–113. https://doi.org/10.1016/B978-0-12-604550-5.50011-0 |
| [22] | H. A. David, Order statistics, Wiley Online Library, 1981. |
| [23] | L. Bain, Statistical analysis of reliability and life-testing models: theory and methods, 2 Eds., New York: Routledge, 1991. https://doi.org/10.1201/9780203738733 |
| [24] |
J. A. Weymark, Generalized gini inequality indices, Math. Soc. Sci., 1 (1981), 409–430. https://doi.org/10.1016/0165-4896(81)90018-4 doi: 10.1016/0165-4896(81)90018-4
|
| [25] | E. M. Parrado-Gallardo, E. Bárcena-Martín, L. J. Imedio-Olmedo, Inequality, welfare and order statistics, In: J. A. Bishop, J. G. Rodríguez, Economic well-being and inequality: papers from the fifth ECINEQ meeting, Emerald Group Publishing Limited, 22 (2014), 383–399. |
| [26] |
W. Barreto-Souza, A. L. de Morais, G. M. Cordeiro, The weibull-geometric distribution, J. Stat. Comput. Simul., 81 (2011), 645–657. https://doi.org/10.1080/00949650903436554 doi: 10.1080/00949650903436554
|
| [27] | A. P. Basu, J. P. Klein, Some recent results in competing risks theory, In: J. Crowley, R. A. Johnson, Survival analysis, IMS Lecture Notes–Monograph Series 2, Hayward, CA: IMS, 1982,216–229. |
| [28] | L. Xie, Z. Wang, Reliability degradation of mechanical components and systems. In: K. B. Misra, Handbook of performability engineering, Springer, 2008,413–429. https://doi.org/10.1007/978-1-84800-131-2_27 |
| [29] | L. Y. Xie, J. Zhou, Y. Wang, X. Wang, Load-strength order statistics interference models for system reliability evaluation, Int. J. Performabil. Eng., 1 (2005), 23–36. |
| [30] |
F. Proschan, J. Sethuraman, Stochastic comparisons of order statistics from heterogeneous populations, with applications in reliability, J. Multivariate Anal., 6 (1976), 608–616. https://doi.org/10.1016/0047-259X(76)90008-7 doi: 10.1016/0047-259X(76)90008-7
|
| [31] |
J. S. Kim, F. Proschan, J. Sethuraman, Stochastic comparisons of order statistics, with applications in relibility, Commun. Stat.-Theory Methods, 17 (1988), 2151–2172. https://doi.org/10.1080/03610928808829739 doi: 10.1080/03610928808829739
|
| [32] |
J. E. Ramirez-Marquez, D. W. Coit, Composite importance measures for multi-state systems with multi-state components, IEEE Trans. Reliabil., 54 (2005), 517–529. https://doi.org/10.1109/TR.2005.853444 doi: 10.1109/TR.2005.853444
|
| [33] |
S. Eryilmaz, Lifetime of multistate k-out-of-n systems, Qual. Reliab. Eng. Int., 30 (2014), 1015–1022. https://doi.org/10.1002/qre.1529 doi: 10.1002/qre.1529
|
| [34] |
M. J. Anzanello, A simplified approach for reliability evaluation and component allocation in three-state series and parallel systems composed of non-identical components, Gest. Prod., 16 (2009), 54–62. https://doi.org/10.1590/S0104-530X2009000100006 doi: 10.1590/S0104-530X2009000100006
|
| [35] |
G. Yingkui, L. Jing, Multi-state system reliability: a new and systematic review, Procedia Eng., 29 (2012), 531–536. https://doi.org/10.1016/j.proeng.2011.12.756 doi: 10.1016/j.proeng.2011.12.756
|
| [36] |
C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., 27 (1948), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x doi: 10.1002/j.1538-7305.1948.tb01338.x
|
| [37] |
R. C. Gupta, M. Waleed, Analysis of survival data by a Weibull-Bessel distribution, Commun. Stat.- Theory Methods, 47 (2018), 980–995. https://doi.org/10.1080/03610926.2017.1316402 doi: 10.1080/03610926.2017.1316402
|
| [38] |
F. Proschan, Theoretical explanation of observed decreasing failurerate, Technometrics, 5 (1963), 375–383. https://doi.org/10.1080/00401706.1963.10490105 doi: 10.1080/00401706.1963.10490105
|
| [39] |
R. Tahmasbi, S. Rezaei, A two-parameter lifetime distribution with decreasing failure rate, Comput. Stat. Data Anal., 52 (2008), 3889–3901. https://doi.org/10.1016/j.csda.2007.12.002 doi: 10.1016/j.csda.2007.12.002
|
| [40] |
M. Chahkandi, M. Ganjali, On some lifetime distributions with decreasing failure rate, Comput. Stat. Data Anal., 53 (2009), 4433–4440. https://doi.org/10.1016/j.csda.2009.06.016 doi: 10.1016/j.csda.2009.06.016
|
| [41] |
R. H. Byrd, P. Lu, J. Nocedal, C. Zhu, A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Comput., 16 (1995), 1190–1208. https://doi.org/10.1137/0916069 doi: 10.1137/0916069
|
| [42] |
M. V. Aarset, How to identify a bathtub hazard rate, IEEE Trans. Reliabil., R-36 (1987), 106–108. https://doi.org/10.1109/tr.1987.5222310 doi: 10.1109/tr.1987.5222310
|