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Abstract: This paper introduces the Weibull-generalized shifted geometric (WGSG) distribution, a
novel lifetime model integrating the Weibull and shifted geometric distributions to address complex
lifetime data patterns. Extending the Weibull-geometric framework, this distribution models system
reliability by focusing on the k-th smallest lifetime—when k components fail—rather than the
minimum. Key properties, including the probability density function, cumulative distribution function,
and moments, were derived. Parameters were estimated using maximum likelihood, expectation-
maximization, method of moments, and Bayesian approaches, with a simulation study comparing
their performance. Applications to two real-world lifetime and reliability datasets demonstrated
the distribution’s superiority over classical models in handling challenging survival and reliability
scenarios. This flexible model enhances the ability to capture diverse hazard behaviors, advancing
lifetime data analysis.
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1. Introduction

Lifetime distributions are integral to reliability theory and survival analysis, offering critical tools
for analyzing real-world data in fields such as finance, manufacturing, biological sciences, physics,
and engineering [1, 2]. Traditional distributions like the exponential and Weibull are valued for their
simplicity and interpretability. The exponential distribution, with its assumption of a constant failure
rate, is often used to describe system reliability at the component level [3–5]. However, real-world
systems frequently exhibit non-constant hazard rates, requiring more flexible distributions to capture
increasing or decreasing failure behaviors. Although the Weibull distribution can accommodate both

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2025448


9774

increasing and decreasing failure rates, it often proves inadequate for complex datasets involving
multiple failure causes or censored data, necessitating more advanced techniques to accurately
represent intricate phenomena [6].

To address the limitations of classical lifetime distributions in capturing the diverse behaviors
observed in real-world reliability and survival data, recent research has increasingly focused
on constructing new families of distributions through the compounding of continuous lifetime
distributions with truncated discrete distributions [7–9]. This innovative approach enhances the
flexibility and applicability of standard techniques by introducing additional parameters that allow
for better representation of skewness, kurtosis, and hazard rate shapes. Specifically, continuous
distributions such as the exponential, Weibull, Rayleigh, and gamma have been compounded with
discrete distributions like the Poisson, geometric, binomial, negative-binomial, logarithmic, and more
generally, power series distributions. The foundational work by Adamidis & Loukas [10], which
introduced the exponential-geometric distribution, laid the groundwork for a wide class of compound
distributions. This approach was later expanded by Adamidis et al. [11] and Kuş [12], who explored
further generalizations and alternative mixing distributions, leading to a surge in the development
of new techniques. These compound distributions exhibit greater flexibility, enabling better fitting
of datasets with complex features such as increasing, decreasing, bathtub-shaped, or upside-down
bathtub hazard functions. Notable contributions in this domain include extended versions of well-
known lifetime distributions that have demonstrated improved performance in applications spanning
reliability engineering, biostatistics, and actuarial science [13–17]. These distributions not only offer
improved statistical properties—such as the ability to accommodate over-dispersion and unobserved
heterogeneity—but also maintain mathematical tractability, allowing for explicit expressions of the
probability density, cumulative distribution, moments, and hazard functions. For a comprehensive
overview and classification of these compounding models and their theoretical properties, interested
readers may refer to the reviews by Goyal et al. [7], Maurya & Nadarajah [8], Rahmouni &
Orabi [18, 19], and Tahir & Cordeiro [9].

Building on these advancements, we focus on the need to analyze intermediate failure events, as
prior studies often concentrated on the minimum lifetime, X(1) = min{Yi}

N
i=1, or the maximum lifetime,

X(N) = max{Yi}
N
i=1, of a system’s components. Many real-world applications, however, demand the

analysis of the k-th failure. Order statistics, arranged in ascending order as X(1) ≤ X(2) ≤ · · · ≤

X(N), are essential in reliability analysis [20–23] and also apply to economics, where they provide
distributional criteria for evaluating welfare and inequalities in income and wealth [24,25]. To address
this need, we propose the Weibull-generalized shifted geometric (WGSG) distribution, a new family
of compound distributions that generalizes the Weibull-geometric (WG) distribution introduced by
Barreto-Souza et al. [26]. The WG distribution describes the time to the first failure in a system with a
random number of components, N, where each component’s lifetime, Yi, follows a Weibull distribution,
and N follows a geometric distribution. Our approach extends this model to capture the k-th order
statistic, X(k), enabling the analysis of any failure order, such as the second, third, or k-th lifetime. To
illustrate this approach, consider a machine producing N units (e.g., light bulbs or wire fuses), each
with an independent Weibull-distributed lifetime Yi (i = 1, 2, . . . ,N). If N follows a shifted geometric
distribution—adjusting the starting point of the geometric progression to n ≥ k while preserving its
properties—the k-th order statistic X(k) provides a versatile method for analyzing system reliability.
This shifted geometric distribution is particularly valuable in scenarios where counting begins at a
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specific point k, such as in quality control, queueing theory, inventory management, and reliability
systems with latent defects [27].

The WGSG distribution introduces additional shape parameters to capture a broad spectrum of
failure behaviors, making it well-suited for analyzing the k-th lifetime in systems where failure occurs
after k units fail. This model aligns with the analysis of k-out-of-n systems, where a system fails when
n − k + 1 or more components fail [28–31]. Unlike traditional approaches that assume binary states
(fully functional or failed), the WGSG distribution can accommodate degraded states in multi-state
systems, which are prevalent in practical applications [32–35].

This paper investigates the properties of the WGSG distribution, explores parameter estimation
techniques, and demonstrates its practical applications using real datasets. Building on the
compounding methodology of Adamidis & Loukas [10] and Kuş [12], we aim to provide a versatile
tool for reliability and survival analysis that addresses the limitations of traditional approaches in
capturing complex failure dynamics. The paper is structured as follows: Section 2 introduces the
WGSG distribution and its probability density function (PDF). Section 3 discusses its properties,
including reliability, the failure rate function, the moment generating function, r-th moments, and
Shannon entropy. Section 4 presents parameter estimation approaches, such as maximum likelihood
estimation (MLE), the expectation-maximization (EM) algorithm, and method of moments. Section 5
presents the simulation study and Section 6 illustrates the WGSG distribution’s practicality with real
datasets. Finally, Section 7 concludes the paper and suggests directions for future research.

2. The WGSG distribution

Let X be a random variable following the WGSG distribution, parameterized by φ = (α, θ, p), where
α > 0, θ = 1

β
> 0, and p ∈ (0, 1). Then, the PDF of the WGSG distribution is:

fX(k)(x;α, θ, p) =
k(1 − p)αθαxα−1e−(θx)α

(
1 − e−(θx)α

)k−1(
1 − pe−(θx)α)k+1 , x ≥ 0. (2.1)

The cumulative distribution function (CDF) is given by:

FX(k)(x;α, θ, p) =
(

1 − e−(θx)α

1 − pe−(θx)α

)k

, x ≥ 0. (2.2)

This formulation characterizes the mixture between the shifted geometric distribution and the kth-
order statistic of Weibull-distributed random variables. A notable special case occurs when k = 1,
where the WGSG density simplifies to the Weibull-geometric (WG) distribution, which models the
time to the first failure, X(1) = min{Yi}

N
i=1, as introduced in Barreto-Souza et al. [26]. Figures 1 and 2

display the PDF and CDF of the WGSG distribution for parameter values α ∈ {0.3, 0.5, 1, 1.5, 2, 2.5},
θ = 1, p = 0.3, and k ∈ {1, 2, 3, 4, 5}. These plots illustrate the distribution’s flexibility in modeling a
wide range of reliability scenarios. When α < 1 (e.g., 0.3, 0.5), the PDF exhibits a sharp decline and
a singularity at x = 0, capturing early failure behavior. In contrast, for α > 1 (e.g., 1.5, 2, 2.5), the
PDF becomes unimodal, with its peak shifting leftward and becoming sharper as α increases. Higher
values of k yield flatter peaks and more rapid tail decay in the PDF, reflecting the compounding effect
of higher-order statistics. Similarly, the CDF becomes steeper as α and k increase, indicating lighter
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tails and a greater concentration of probability mass near the origin. These characteristics underline the
WGSG distribution’s utility in reliability engineering as well as in survival analysis involving extreme
event times and in risk assessment for rare failures. The parameters k and p offer fine control over the
distribution’s shape, hazard rate, and tail behavior, enhancing its applicability across various practical
contexts.
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Figure 1. The PDF of the WGSG distribution.
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Figure 2. The CDF of the WGSG distribution.

The Weibull-like term αθαxα−1e−(θx)α governs the overall shape of the PDF, typically exhibiting
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unimodal behavior—initially increasing, reaching a peak, and then decreasing. The geometric
component, involving the parameters p and k, adjusts the probability structure and influences the tail
behavior potentially making it heavier or lighter depending on p and k. For small values of x, the
Weibull-like term dominates, causing the PDF to increase as x grows, with the exponential term e−(θx)α

having minimal effect. As x continues to increase, the exponential term starts to decay and the PDF
reaches a maximum at some intermediate value, where the Weibull-like component and the geometric
factors balance. For large x, the exponential term takes over, causing the PDF to decline. The geometric
component further ensures that the distribution tail decays smoothly without forming multiple modes.

To establish that the WGSG distribution is unimodal, we examine the first derivative of the PDF
with respect to x. The critical points of the PDF, where the derivative equals zero, indicate the mode.
The first derivative is positive for small x, showing an increasing density, and negative for larger x,
indicating a decreasing density. The presence of a single critical point where the first derivative changes
sign from positive to negative suggests unimodality. Further verification via the second derivative or
concavity analysis strengthens this conclusion. Therefore, the WGSG distribution is unimodal when
α > 1, characterized by a single peak followed by a steady decline, with no secondary modes present.

As p → 1, the WGSG distribution becomes a Weibull distribution with shape parameter α and
scale parameter θ because the shifted geometric component effectively becomes deterministic, i.e.,
P(N = k) → 1. The mixture model collapses to a single Weibull component, and the number of
components (determined by N) becomes one. The limiting behavior is given by:

lim
p→1

fX(x) = αθαxα−1e−(θx)α .

Proof of the PDF and CDF expressions in Eqs (2.1) and (2.2): Let Y1,Y2, . . . ,Yn be a random
sample of size n from a Weibull distribution. The k-th order statistic, X(k), is the k-th smallest value in
the sample. The PDF of X(k) is:

fX(k)(x;α, θ, n) =
n!

(k − 1)!(n − k)!
[F(x;α, θ)]k−1 [1 − F(x;α, θ)]n−k f (x;α, θ),

where f (x;α, θ) = αθαxα−1e−(θx)α is the PDF of a Weibull random variable and F(x) = 1 − e−(θx)α is the
CDF with scale parameter θ > 0 and shape parameter α > 0. Thus, the PDF of the k-th order Weibull
distribution is:

fX(k)(x;α, θ, n) =
n!

(k − 1)!(n − k)!

(
1 − e−(θx)α

)k−1
e−(n−k+1)(θx)ααθαxα−1, x ≥ 0.

The probability mass function (PMF) of the distribution of N that begins counting from k is:

P(N = n) = (1 − p)pn−k, n = k, k + 1, k + 2, . . . ,

where p is the probability of success on each trial. The marginal PDF is obtained by summing over all
possible values of N:

fX(k)(x;α, θ, p) =
∞∑

n=k

fX(k)(x;α, θ, n)P(N = n).

Substituting fX(k)(x;α, θ, n) and P(N = n):

AIMS Mathematics Volume 10, Issue 4, 9773–9804.



9778

fX(k)(x;α, θ, p) = αθαxα−1
(
1 − e−(θx)α

)k−1
e−(θx)α(1 − p)

∞∑
n=k

n!
(k − 1)!(n − k)!

pn−ke−(n−k)(θx)α .

Let n = m + k, where m = n − k. The summation becomes:

∞∑
m=0

(m + k)!
(k − 1)! m!

pme−m(θx)α .

Using the rising factorial (Pochhammer symbol) (k + 1)m =
Γ(m+k+1)
Γ(k+1) , the summation can be

expressed as:

k
∞∑

m=0

(k + 1)m

m!

(
pe−(θx)α

)m
.

This series is the generalized hypergeometric function 1F0(−; k; z), where z = pe−(θx)α . Thus:

∞∑
m=0

(k + 1)m

m!

(
pe−(θx)α

)m
=

(
1 − pe−(θx)α

)−(k+1)
.

Substituting back:

fX(k)(x;α, θ, p) = αθαxα−1
(
1 − e−(θx)α

)k−1 (1 − p)ke−(θx)α(
1 − pe−(θx)α)k+1 .

Then,

FX(k)(x;α, θ, p) =
∫ x

0
fX(t) dt,

where:

fX(t) = αθαtα−1
(
1 − e−(θt)α

)k−1 (1 − p)ke−(θt)α(
1 − pe−(θt)α)k+1 .

Let u = 1 − e−(θt)α . Then, du = αθαtα−1e−(θt)α dt.
The PDF in terms of u is:

fX(u) =
k(1 − p)uk−1

(1 − p(1 − u))k+1 .

Thus, the CDF becomes:

FX(x) =
∫ 1−e−(θx)α

0

k(1 − p)uk−1

(1 − p + pu)k+1 du =
(

1 − e−(θx)α

1 − pe−(θx)α

)k

.
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3. Proprieties

This section characterizes the WGSG distribution by examining its survival and hazard
functions (including asymptotic tails), moment generating function, r-th moments, limiting behavior,
relationships with standard distributions in reliability and survival analysis (e.g., Weibull, geometric,
and exponential), and entropy.

3.1. Survival and hazard functions

The survival function S X(x) of the WGSG distribution represents the probability that a random
variable X exceeds a given value x:

S X(x) = 1 − FX(x) = 1 −
(

1 − e−(θx)α

1 − pe−(θx)α

)k

. (3.1)

The corresponding hazard function hX(x), which quantifies the instantaneous failure rate, is
given by:

hX(x) =
fX(x)

S X(x)
=

k(1 − p)αθαxα−1e−(θx)α
(
1 − e−(θx)α

)k−1(
1 − pe−(θx)α)k+1

−
(
1 − e−(θx)α)k (1 − pe−(θx)α) . (3.2)

The tail behavior of the WGSG distribution governs the likelihood of extreme values, critical for
risk assessment. As x → ∞, e−(θx)α → 0. Letting z = e−(θx)α , FX(x) =

(
1−z

1−pz

)k
, so FX(x) → 1 and

S X(x)→ 0, indicating a light-tailed distribution.
For large x, 1 − e−(θx)α → 1 and 1 − pe−(θx)α → 1, yielding fX(x) ∼ k(1 − p)αθαxα−1e−(θx)α . The

exponential term drives rapid decay, modulated by xα−1, with the tail exhibiting exponential decay for
α = 1, subexponential decay for α > 1, or stretched exponential decay for α < 1, accommodating
diverse extreme event scenarios. To characterize the tail and hazard behavior, we derive asymptotic
expansions for S X(x) and hX(x).

Theorem 1 (Right-tail and hazard asymptotics). For X ∼ WGSG(α, θ, p, k), the following hold:

(1) As x→ ∞, the survival function satisfies:

S X(x) ∼ k(1 − p)e−(θx)α
[
1 −

(
k − 1

2
+

p
1 − p

)
e−(θx)α + O(e−2(θx)α)

]
.

(2) The hazard function behaves as:

hX(x) ∼


kαθαk

(1 − p)k xαk−1, as x→ 0+,

αθαxα−1, as x→ ∞.

Proof. (Right-tail asymptotics) Let z = e−(θx)α , so z→ 0+ as x→ ∞. The survival function is:

S X(x) = 1 −
(

1 − z
1 − pz

)k

.
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Expand:
1 − z

1 − pz
= (1 − z)(1 − pz)−1.

Using (1 − pz)−1 = 1 + pz + p2z2 + O(z3):

1 − z
1 − pz

= (1 − z)(1 + pz + p2z2 + O(z3)) = 1 − (1 − p)z + p(p − 1)z2 + O(z3).

Compute:(
1 − (1 − p)z + p(p − 1)z2 + O(z3)

)k
= 1 − k(1 − p)z +

[
kp(p − 1) +

k(k − 1)
2

(1 − p)2
]

z2 + O(z3).

Thus:

S X(x) = k(1 − p)z −
[
kp(p − 1) +

k(k − 1)
2

(1 − p)2
]

z2 + O(z3).

Factorize:

S X(x) = k(1 − p)z

1 − kp(p − 1) + k(k−1)
2 (1 − p)2

k(1 − p)
z + O(z2)

 .
Simplify the coefficient:

kp(p − 1) + k(k−1)
2 (1 − p)2

k(1 − p)
=

p(p − 1)
1 − p

+
(k − 1)(1 − p)

2
=

k − 1
2
+

p
1 − p

.

With z = e−(θx)α:

S X(x) = k(1 − p)e−(θx)α
[
1 −

(
k − 1

2
+

p
1 − p

)
e−(θx)α + O(e−2(θx)α)

]
.

□

Proof. (Hazard rate asymptotics) As x → ∞, using fX(x) ∼ k(1 − p)αθαxα−1e−(θx)α and S X(x) ∼ k(1 −
p)e−(θx)α:

hX(x) ∼
k(1 − p)αθαxα−1e−(θx)α

k(1 − p)e−(θx)α = αθαxα−1.

As x→ 0+, approximate e−(θx)α ≈ 1 − (θx)α. Then:

FX(x) ≈
(

(θx)α

1 − p

)k

=
θαkxαk

(1 − p)k .

For the PDF:

fX(x) ≈
k(1 − p)αθαxα−1 ((θx)α)k−1

(1 − p)k+1 =
kαθαkxαk−1

(1 − p)k .

Since S X(x) ≈ 1:

hX(x) ≈ fX(x) ∼
kαθαk

(1 − p)k xαk−1.

□
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Figure 3. Hazard function for the WGSG distribution.
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Figure 4. Log-survival function for the WGSG distribution.
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The hazard rate, illustrated in Figure 3, transitions from kαθαk

(1−p)k xαk−1 near the origin to αθαxα−1 for
large x. For α < 1, it decreases, capturing early failures; for α > 1, it increases, reflecting wear-out
phases; and for α = 1, it remains constant.

The log-survival function, depicted in Figure 4, confirms the WGSG’s light-tailed nature, with
log(S X(x)) ≈ log(k(1 − p)) − (θx)α for large x. Smaller α values yield slower decay, suitable for
prolonged survival, while larger α values produce steeper declines, indicating rapid failure onset.

The WGSG distribution’s hazard rate supports complex patterns, such as bathtub-shaped hazard
functions, common in reliability studies. The parameter p enhances adaptability to varied tail
behaviors, and expansions like (1 − (1 − p)z)k may arise in series representations, making the WGSG
distribution a robust tool for precise tail and hazard estimates in reliability engineering and survival
analysis.

3.1.1. Limiting properties

The limiting behavior of the WGSG distribution reveals its flexibility and parameter sensitivity, with
the survival function defined in Equation (3.1). As the shape parameter α → 0+, the approximation
e−(θx)α → e−1 yields:

S X(x)→ 1 −
(

e − 1
e − p

)k

. (3.3)

Such a constant survival function implies a degenerate, uniform-like distribution over x, rather than a
point mass at x = 0. Conversely, as α→ ∞:

S X(x)→


1, x < 1/θ,

1 −
(

1−e−1

1−pe−1

)k
, x = 1/θ,

0, x > 1/θ.

(3.4)

The resulting step-function concentrates probability mass around x = 1/θ. For the scale parameter, as
θ → 0+:

e−(θx)α → 1 ⇒ S X(x)→ 1. (3.5)

The distribution becomes improper, with probability mass dispersed toward infinity. As θ → ∞:

e−(θx)α → 0 for x > 0 ⇒ S X(x)→ 0. (3.6)

The distribution collapses to a point mass at x = 0. As the mixing parameter p→ 0+:

S X(x)→ 1 −
(
1 − e−(θx)α

)k
. (3.7)

The result is the exponentiated Weibull distribution, commonly applied in reliability modeling for
independent failure modes. As p→ 1−:

1 − e−(θx)α

1 − pe−(θx)α → 1 for x > 0 ⇒ S X(x)→ 0. (3.8)

All mass concentrates at x = 0. For large k:(
1 − e−(θx)α

1 − pe−(θx)α

)k

→ 0 for x > 0 ⇒ S X(x)→ 0. (3.9)
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The distribution approaches a point mass at x = 0. As k → 0+:(
1 − e−(θx)α

1 − pe−(θx)α

)k

→ 1 ⇒ S X(x)→ 1. (3.10)

Probability mass shifts toward infinity, producing an improper distribution. These limits often lead to
degenerate distributions (e.g., point masses at x = 0 or x = 1/θ, or improper distributions), highlighting
parameter roles but offering limited practical utility. The exponentiated Weibull, obtained as p→ 0+, is
particularly valuable for reliability engineering. For practical applications, moderate parameter values,
such as α ∈ {0.3, 0.5, 1, 1.5, 2, 2.5}, k ∈ {1, 2, 3, 4, 5}, and p = 0.3, ensure flexible modeling without
degeneracy, allowing precise control over tail behavior, as illustrated in Figures 3 and 4.

3.1.2. Associations with other distributions

The WGSG distribution, parameterized by shape α > 0, scale θ > 0, weight 0 ≤ p < 1, and
order k ∈ Z+, reduces to classical distributions used in reliability and survival analysis under specific
parameter limits.

Exponentiated Weibull distribution: As p → 0+, the WGSG becomes the exponentiated Weibull
distribution:

S X(x) = 1 −
(
1 − e−(θx)α

)k
, x ≥ 0.

For k = 1, this is the standard Weibull distribution with shape α and scale θ−1:

S X(x) = e−(θx)α , x ≥ 0,

fX(x) = αθαxα−1e−(θx)α , x ≥ 0.

For k > 1, the exponentiated Weibull models transformed failure times, extending the Weibull’s
flexibility. The parameter p enriches hazard and tail behaviors.

Exponential distribution: Setting α = 1, p→ 0, and k = 1, the WGSG simplifies to the exponential
distribution:

S X(x) = e−θx, x ≥ 0,

fX(x) = θe−θx, x ≥ 0.

This describes memoryless processes, such as inter-event times in a Poisson process, with constant
hazard rate θ. For k > 1, the survival function 1−

(
1 − e−θx

)k
is non-standard, lacking memorylessness.

Rayleigh distribution: When α = 2, p → 0, and k = 1, the WGSG reduces to the Rayleigh
distribution:

S X(x) = e−(θx)2
, x ≥ 0,

fX(x) = 2θ2xe−(θx)2
, x ≥ 0.

This models life data under accumulated stress, such as wear-related failures, aligning with the Weibull
for α = 2.
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3.2. Moment-generating function (MGF)

The moment-generating function (MGF) of a random variable X is defined as:

MX(t) = E[etX] =
∫ ∞

0
etx fX(x) dx.

Substituting this into the definition of MX(t) gives:

MX(t) = k(1 − p)αθα
∫ ∞

0
etxxα−1e−(θx)α

(
1 − e−(θx)α

)k−1(
1 − pe−(θx)α)k+1 dx.

Using the binomial series expansion,

1
(1 − pe−(θx)α)k+1 =

∞∑
i=0

(
k + i

i

)
pie−i(θx)α .

(1 − e−(θx)α)k−1 =

k−1∑
j=0

(
k − 1

j

)
(−1) je− j(θx)α .

Substituting into MX(t):

MX(t) = k(1 − p)
∞∑

i=0

k−1∑
j=0

(
k + i

i

)(
k − 1

j

)
(−1) j pi

∫ ∞

0
etxxα−1e−(i+ j+1)(θx)α dx.

Using the known integral formula:

∫ ∞

0
etxxα−1e−c(θx)α dx =

E1/α,1

(
t
θc1/α

)
c

,

where E1/α,1(z) is the Mittag-Leffler function defined as:

E1/α,1(z) =
∞∑

k=0

zk

Γ
(

k
α
+ 1

) .
We set c = i + j + 1 and obtain:

MX(t) = k(1 − p)
∞∑

i=0

k−1∑
j=0

(
k + i

i

)(
k − 1

j

)
(−1) j pn ·

E1/α,1

(
t

θ(i+ j+1)1/α

)
(i + j + 1)

.

3.3. r-th Moment

The r-th moment is given by:

E(Xr) =
∫ ∞

0
xr fX(x) dx.

Substituting the PDF:
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E(Xr) = k(1 − p)αθα
∫ ∞

0
xr+α−1

e−(θx)α
(
1 − e−(θx)α

)k−1[
1 − pe−(θx)α]k+1 dx.

Expanding the numerator and the denominator using the binomial series:

1
(1 − pe−(θx)α)k+1 =

∞∑
j=0

(
k + j

j

)
p je− j(θx)α .

(1 − e−(θx)α)k−1 =

k−1∑
i=0

(
k − 1

i

)
(−1)ie−i(θx)α .

Thus,

E(Xr) = k(1 − p)αθα
∞∑
j=0

(
k + j

j

)
p j

k−1∑
i=0

(
k − 1

i

)
(−1)i

∫ ∞

0
xr+α−1e−[(i+ j+1)(θx)α] dx.

Using the substitution y = (i + j + 1)
1
α θx and the gamma function identity:∫ ∞

0
yr+α−1e−yα dy =

1
α
Γ

( r
α
+ 1

)
,

we obtain:

µr = E(Xr) =
k(1 − p)
θr

Γ

( r
α
+ 1

) ∞∑
i=0

k−1∑
j=0

(
i + k

i

)(
k − 1

j

)
(−1) j(i + j + 1)−(

r
α+1).

Mean:

The first moment, or mean, is given by E(X) = µ1:

E(X) =
k(1 − p)
θ
Γ

(
1
α
+ 1

) ∞∑
i=0

k−1∑
j=0

(
i + k

i

)(
k − 1

j

)
(−1) j(i + j + 1)−(

1
α+1).

For k = 1, the formula simplifies:

E(X) =
1 − p
θ
Γ

(
1
α
+ 1

) ∞∑
i=0

(i + 1)−(
1
α+1).

This sum involves a generalized Hurwitz zeta function:

E(X) =
1 − p
θ
Γ

(
1
α
+ 1

)
ζ

(
1
α
+ 1

)
.
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Variance:

The variance is given by:

Var(X) = E(X2) − (E(X))2 .

Setting r = 2, we get:

E(X2) = µ2 =
k(1 − p)
θ2

Γ

(
2
α
+ 1

) ∞∑
i=0

k−1∑
j=0

(
i + k

i

)(
k − 1

j

)
(−1) j(i + j + 1)−(

2
α+1).

For k = 1, this simplifies to:

E(X2) =
1 − p
θ2
Γ

(
2
α
+ 1

) ∞∑
i=0

(i + 1)−(
2
α+1).

This sum involves a generalized Hurwitz zeta function:

E(X2) =
1 − p
θ2
Γ

(
2
α
+ 1

)
ζ

(
2
α
+ 1

)
.

Thus, the variance Var(X) is:

Var(X) =
1 − p
θ2
Γ

(
2
α
+ 1

)
ζ

(
2
α
+ 1

)
−

(
1 − p
θ
Γ

(
1
α
+ 1

)
ζ

(
1
α
+ 1

))2

.

3.4. Entropy

Entropy is a fundamental concept in information and communication theory, introduced by [36]. It
quantifies the average missing information or uncertainty associated with a random source. Shannon
defined the entropy of a continuous random variable X as:

H(θ, α, p, k) = E
[
log

(
1

fX(x)

)]
= −

∫ ∞

0
fX(x) log fX(x) dx,

where log
(

1
fX(x)

)
is referred to as the uncertainty associated with the outcome x. The probability

distribution fX(x) fully describes the probabilistic characteristics of a random variable. However, when
comparing two or more probability distributions, entropy provides a quantitative measure to compare
the randomness of different distributions.

For the new family of distributions, the entropy is given by:

H(θ, α, p, k) = −
∫ ∞

0

k(1 − p)αθαxα−1e−(θx)α
(
1 − e−(θx)α

)k−1(
1 − pe−(θx)α)k+1

× log

k(1 − p)αθαxα−1e−(θx)α
(
1 − e−(θx)α

)k−1(
1 − pe−(θx)α)k+1

 dx.
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Expanding the logarithm term using its properties:

log fX(x) = log k + log(1 − p) + logα + α log θ + (α − 1) log x − (θx)α

+ (k − 1) log
(
1 − e−(θx)α) − (k + 1) log

(
1 − pe−(θx)α).

Taking expectations, the entropy simplifies to:

H(α, θ, p, k) = − log k − log(1 − p) − logα − α log θ − (α − 1)E[log X] + E[(θX)α]

− (k − 1)E[log(1 − e−(θX)α)] + (k + 1)E[log(1 − pe−(θX)α)],

where E[log X] captures the spread of the distribution and E[(θX)α] relates to the moment of X. The
last two expectation terms capture the influence of the geometric component and tail behavior.

The partial derivative with respect to the parameters are given by:

∂H(α, θ, p, k)
∂θ

= −
α

θ
+ αθα−1E[Xα]

− (k − 1)αθα−1E

[
Xαe−(θX)α

1 − e−(θX)α

]
+ (k + 1)pαθα−1E

[
Xαe−(θX)α

1 − pe−(θX)α

]
,

∂H(α, θ, p, k)
∂α

= −
1
α
− log θ − E[log X] + θαE[Xα log(θX)]

− (k − 1)θαE
[
Xα log(θX)e−(θX)α

1 − e−(θX)α

]
+ (k + 1)pθαE

[
Xα log(θX)e−(θX)α

1 − pe−(θX)α

]
,

∂H(α, θ, p, k)
∂k

= −
1
k
− E

[
log

(
1 − e−(θX)α

1 − pe−(θX)α

)]
,

∂H(α, θ, p, k)
∂p

= −
1

1 − p
− (k + 1)E

[
e−(θX)α

1 − pe−(θX)α

]
.

The residual entropy, also known as conditional entropy in this context, quantifies the uncertainty
in a random variable X(k) given that it exceeds a threshold t ≥ 0. For the WGSG distribution, this
corresponds to the differential entropy of the residual lifetime distribution X(k) − t | X(k) > t. The
residual entropy is defined as:

H(X(k) | X(k) > t) = −
∫ ∞

t

fX(k)(x)
S X(k)(t)

log
(

fX(k)(x)
S X(k)(t)

)
dx, (3.11)
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where

fX(k)(x;α, θ, p) =
k(1 − p)αθαxα−1e−(θx)α

(
1 − e−(θx)α

)k−1(
1 − pe−(θx)α)k+1 , x ≥ 0, (3.12)

S X(k)(x) = 1 −
(

1 − e−(θx)α

1 − pe−(θx)α

)k

. (3.13)

Applying the logarithmic property log
(

a
b

)
= log a − log b, the expression simplifies as follows:

H(X(k) | X(k) > t) = −
∫ ∞

t

fX(k)(x)
S X(k)(t)

log fX(k)(x) dx

+ log S X(k)(t)
∫ ∞

t

fX(k)(x)
S X(k)(t)

dx.
(3.14)

Since log S X(k)(t) is constant with respect to x, the second integral becomes:∫ ∞

t

fX(k)(x)
S X(k)(t)

log S X(k)(t) dx = log S X(k)(t)
∫ ∞

t

fX(k)(x)
S X(k)(t)

dx. (3.15)

Noting that
∫ ∞

t
fX(k)(x) dx = S X(k)(t), we have:∫ ∞

t

fX(k)(x)
S X(k)(t)

dx = 1, (3.16)

∫ ∞

t

fX(k)(x)
S X(k)(t)

log S X(k)(t) dx = log S X(k)(t).

Thus:

H(X(k) | X(k) > t) =
1

S X(k)(t)

(
−

∫ ∞

t
fX(k)(x) log fX(k)(x) dx

)
+ log S X(k)(t), (3.17)

H(X(k) | X(k) > t) =
1

S X(k)(t)

(
−

∫ ∞

t
fX(k)(x) log fX(k)(x) dx + S X(k)(t) log S X(k)(t)

)
. (3.18)

This form highlights two components: the entropy integral over the tail of the distribution (from t to
∞) and a correction term involving the survival probability at time t.

For t = 0, the survival function is:

S X(k)(0) = 1 −
(

1 − e0

1 − pe0

)k

= 1,

S X(k)(0) log S X(k)(0) = 0.

Thus:

H(X(k) | X(k) > 0) =
1
1

(
−

∫ ∞

0
fX(k)(x) log fX(k)(x) dx + 0

)
= −

∫ ∞

0
fX(k)(x) log fX(k)(x) dx,
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which is the differential entropy of X(k), often referred to as the Shannon entropy in this context:

H(X(k)) = −
∫ ∞

0
fX(k)(x) log fX(k)(x) dx. (3.19)

This measure is valuable in reliability engineering and information theory, as it quantifies the
uncertainty in a system’s remaining lifetime after surviving up to time t, aiding in reliability analysis
and decision-making under uncertainty.

4. Parameter estimation

4.1. Maximum likelihood estimation

Let x = (x1, x2, . . . , xn) be a random sample drawn from the WGSG distribution with the unknown
parameter vector φ = (α, θ, p). Using the PDF of the WGSG distribution, the log-likelihood function
is given by:

log L(φ; x) =
n∑

i=1

log fX(xi;φ).

Substituting fX(xi;φ) into the log-likelihood function, we obtain:

log L(φ; x) =
m∑

i=1

log
k(1 − p)αθαxα−1

i e−(θxi)α(
1 − pe−(θxi)α

)k+1 ·
(
1 − e−(θxi)α

)k−1
 .

Thus,

log L(φ; x) =
n∑

i=1

[
log(k) + log(1 − p) + log(α) + α log(θ) + (α − 1) log(xi) − (θxi)α

− (k + 1) log
(
1 − pe−(θxi)α

)
+ (k − 1) log

(
1 − e−(θxi)α

) ]
.

The partial derivatives with respect to α, θ, and p are:

∂ log L
∂α

=

n∑
i=1

[
1
α
+ log(θ) + log(xi) − (θxi)α log(θxi)

]
,

∂ log L
∂θ

=

n∑
i=1

[
α

θ
− α(θxi)α−1xi

]
,

∂ log L
∂p

=

n∑
i=1

[
−

1
1 − p

+ (k + 1)
e−(θxi)α

1 − pe−(θxi)α

]
.

These nonlinear equations are typically solved numerically using iterative methods such as
the Newton-Raphson method, the expectation-maximization (EM) algorithm, and gradient-based
optimization (e.g., BFGS).
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4.2. EM algorithm

Let the observed data be {xi}
n
i=1 and the latent variable N, which follows a truncated geometric

distribution. The joint PDF is:

fX,N(x, n;α, θ, p, k) = P(N = n) · f(k)(x;α, θ, n).

Thus, the complete data log-likelihood function is:

ℓc(α, θ, p, k) =
n∑

i=1

log

 ∞∑
n=k

P(N = n) f(k)(xi;α, θ, n)

 .
E-step (Expectation step): In the E-step, we calculate the expected value of the latent variable N
given the observed data xi. The posterior distribution of N given xi is:

P(N = n | xi) =
P(N = n) f(k)(xi;α, θ, n)∑∞

n=k P(N = n) f(k)(xi;α, θ, n)
.

Thus, the expected value of N given xi is:

E(N | xi) =
∞∑

n=k

nP(N = n | xi).

Substituting for the posterior:

E(N | xi) =
∞∑

n=k

n
P(N = n) f(k)(xi;α, θ, n)∑∞

n=k P(N = n) f(k)(xi;α, θ, n)
.

Simplifying, we get the following expression:

E(N | xi) = k +
(k + 1)pe−(θxi)α

1 − pe−(θxi)α
.

M-step (Maximization step): In the M-step, we maximize the expected complete-data log-
likelihood with respect to the parameters α, θ, and p. We calculate the updates for each parameter.

p(r+1) =

∑
O(r)

i

n +
∑

O(r)
i

,

θ(r+1) =

1
n

n∑
i=1

xα
(r+1)

i

O(r)
i + 1 −

(k − 1)a(r+1)
i

1 − a(r+1)
i

−
1

α(r+1)

,

α(r+1) = n

 n∑
i=1

ln b(r+1)
i

(O(r)
i + 1)(b(r+1)

i )α
(r+1)
−

(k − 1)(b(r+1)
i )α

(r+1)
a(r+1)

i

1 − a(r+1)
i

− 1

−1

,

where
a(r+1)

i = e−(θ(r+1) xi)α
(r+1)

,
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b(r+1)
i = θ(r+1)xi,

and

O(r)
i =

p(r)e−(θ(r) xi)α
(r)

1 − p(r)e−(θ(r) xi)α
(r) .

4.3. Method of moments estimation

The method of moments (MM) provides consistent estimators for the parameters α > 0, θ > 0, and
0 ≤ p < 1 of the WGSG distribution by equating sample moments to their theoretical counterparts.
For a fixed-order k ∈ Z+, the estimation leverages the first three moments to solve a nonlinear system.

The r-th raw moment of the WGSG distribution is:

µr =
k(1 − p)
θr

Γ

( r
α
+ 1

)
S r(α, p, k), (4.1)

where:

S r(α, p, k) =
∞∑

i=0

k−1∑
j=0

(
i + k

i

)(
k − 1

j

)
(−1) j(i + j + 1)−(

r
α+1),

which equals E
[
(I + J + 1)−(

r
α+1)

]
, with I ∼ NB(k, 1 − p) (negative binomial, failures before k

successes, success probability 1 − p) and J ∼ Bin(k − 1, 1/2) independent. The series converges
absolutely due to the rapid decay of (i + j + 1)−(

r
α+1).

For a sample of size n, the r-th sample moment is µ̂r = n−1 ∑n
i=1 xr

i . Matching moments for r = 1, 2, 3
yields:

µ̂1 =
k(1 − p)
θ

M1(α, p, k), (4.2)

µ̂2 =
k(1 − p)
θ2

M2(α, p, k), (4.3)

µ̂3 =
k(1 − p)
θ3

M3(α, p, k), (4.4)

where Mr(α, p, k) = Γ
(

r
α
+ 1

)
S r(α, p, k). We solve for θ:

θ =
µ̂1M2(α, p, k)
µ̂2M1(α, p, k)

. (4.5)

Substituting into Eq (4.2):

p = 1 −
µ̂2

1M2(α, p, k)
kµ̂2M1(α, p, k)2 . (4.6)

From Eqs (4.4) and (4.3):
µ̂3

µ̂2
=

M3(α, p, k)
θM2(α, p, k)

, (4.7)
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and equating with (4.5):
µ̂1M2(α, p, k)
µ̂2M1(α, p, k)

=
µ̂2M3(α, p, k)
µ̂3M2(α, p, k)

, (4.8)

M2(α, p, k)2

M1(α, p, k)M3(α, p, k)
=
µ̂2

2

µ̂1µ̂3
. (4.9)

This nonlinear equation can be solved numerically using a root-finding algorithm, such as the
Newton-Raphson method or a bracketing method (e.g., bisection), implemented in software like R
or Python. For instance, in R, the nleqslv package can be used by defining the following system of
equations:

h1(α, p) = p − 1 +
µ̂2

1M2(α, p, k)
kµ̂2M1(α, p, k)2 , (4.10)

h2(α, p) =
M2(α, p, k)2

M1(α, p, k)M3(α, p, k)
−
µ̂2

2

µ̂1µ̂3
, (4.11)

and iteratively adjusting α and p to minimize the functions h1 and h2. Appropriate initial guesses (e.g.,
α = 1, p = 0.5) and parameter bounds (α > 0, 0 ≤ p < 1) help ensure convergence. The function
S r(α, p, k) is approximated by truncating the infinite series at a sufficiently large upper index imax ≈

1000, where additional terms become negligible. Once α is estimated, the remaining parameters θ and
p are computed from Eqs (4.5) and (4.6), respectively.

4.3.1. Bayesian estimation

Bayesian estimation provides a robust framework for estimating the parameters α > 0, θ > 0, and
0 ≤ p < 1 of the WGSG distribution, leveraging prior knowledge to yield full posterior distributions,
while treating the fixed parameter k ∈ N as a known value that defines a distinct distribution for each
integer. For a random sample x = (x1, x2, . . . , xn) from the WGSG distribution with the PDF given in
Eq (2.1), the likelihood function is:

L(α, θ, p | x) =
n∏

i=1

fX(k)(xi | α, θ, p).

Independent priors are assigned to reflect prior beliefs: α ∼ Gamma(aα, bα), θ ∼ Gamma(aθ, bθ),
and p ∼ Beta(ap, bp), chosen for their domain compatibility and computational tractability, with
hyperparameters (aα, bα), (aθ, bθ), and (ap, bp) set to weakly informative values (e.g., aα = bα = 0.001)
to approximate noninformative priors when prior knowledge is limited. The posterior distribution is
defined as:

π(α, θ, p | x) =
L(α, θ, p | x)π(α, θ, p)∫ ∞

0

∫ ∞
0

∫ 1

0
L(α, θ, p | x)π(α, θ, p) dα dθ dp

.

The posterior expected loss is: ∫
L((α, θ, p), a)π(α, θ, p | x) dα dθ dp.
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The joint posterior density, proportional to the likelihood times the priors, is:

π(α, θ, p | x) ∝ L(α, θ, p | x) · π(α) · π(θ) · π(p),

but its complexity, driven by the WGSG’s nested exponential and polynomial terms, prevents a
closed-form solution, necessitating Markov Chain Monte Carlo (MCMC) methods like the Metropolis-
Hastings algorithm or Hamiltonian Monte Carlo, implemented via tools such as Stan or JAGS, to
approximate posterior summaries. Under mean square error (MSE) loss, the Bayes estimator for a
parameter φ ∈ {α, θ, p}, denoted φ̂Bayes, is the posterior mean:

φ̂Bayes = E[φ | x] =
∫ ∞

0

∫ ∞

0

∫ 1

0
φπ(α, θ, p | x) dα dθ dp,

which minimizes the expected posterior loss and is approximated using MCMC samples, with
analogous expressions for α̂Bayes, θ̂Bayes, and p̂Bayes.

5. Simulation study

To evaluate the performance of the maximum likelihood (ML), method of moments (MM), and
Bayesian estimation methods for the WGSG distribution, we conducted a simulation study. We
generated 1000 random samples of sizes n = 20, 50, and 100 from the WGSG distribution, considering
three parameter settings for φ = (α, θ, p): (0.5, 1, 0.5), (1, 1, 0.5), and (2, 1, 0.5), combined with
k ∈ {1, 2, 3}. The simulations were implemented using the R programming language.

For each sample, we estimated the parameters φ̂ = (α̂, θ̂, p̂) and computed the bias and mean squared
error (MSE) of the estimators. The bias and MSE are defined as:

Bias(φ̂) = E(φ̂) − φ,

MSE(φ̂) = E[(φ̂ − φ)2] = [Bias(φ̂)]2 + Var(φ̂),

where Var(φ̂) is the variance of the estimator. An estimator φ̂1 is considered more efficient than φ̂2 if
MSE(φ̂1) < MSE(φ̂2).

The results are summarized in Table 1, which reports the bias and mean squared error (MSE) of the
parameter estimates for the ML, MM, and Bayesian methods across all scenarios. The findings reveal
that for each order statistic k ∈ {1, 2, 3}, the MSEs decrease as the sample size n increases, indicating
improved estimation precision with larger samples. Moreover, the Bayesian method consistently
exhibits lower MSEs compared to the ML and MM approaches, suggesting greater efficiency under
these simulation settings. As the sample size increases to n = 100, the bias of the ML estimators tends
to decrease, aligning with their known property of asymptotic unbiasedness. However, the MSE results
suggest that ML estimation may struggle in small samples when applied to the WGSG distribution,
primarily due to the sensitivity of numerical optimization routines to initial values and the complexity
of the likelihood surface. In contrast, the Bayesian approach employs Metropolis-Hastings MCMC
sampling to generate posterior samples, with parameters estimated using posterior summaries such
as the mean or median. While the Bayesian estimators may be influenced by the choice of prior
and exhibit some bias, they often achieve lower MSE by effectively regularizing parameter estimates,
especially in small-sample scenarios where likelihood-based estimates may be unstable. The Bayesian
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MSE for p̂ is notably low (e.g., 0.004 at n = 20, k = 2, α = 2) compared to ML (0.142) and MM
(0.038), underlining its superior efficiency. Similarly, for α̂, the Bayesian bias is substantially lower
(e.g., −0.592 at n = 20, k = 3, α = 2) than the corresponding ML bias (1.957), demonstrating the
stabilizing effect of the prior. Furthermore, Bayesian estimation shows greater robustness to changes
in k and α: for example, the MSE for α̂ increases only modestly from 0.021 at k = 1, α = 0.5 to 0.414
at k = 3, α = 2, whereas ML and MM estimators exhibit more pronounced increases.

The MM approach estimates parameters by equating the theoretical moments of the WGSG
distribution to their sample counterparts and solving for α, θ, and p. This method is computationally
simpler than ML and Bayesian approaches, as it avoids complex likelihood evaluations and MCMC
sampling. However, it tends to be less reliable for distributions with intricate moment structures
such as the WGSG, which are sensitive to sample variability and outliers. The simulation results
reflect this limitation: the MM approach consistently yields the highest bias and MSE across all
parameters. For example, at n = 20, k = 3, α = 0.5, the MM bias for α̂ is 1.490, and the MSE is
2.863—substantially worse than ML (bias: 0.487, MSE: 0.323) and Bayesian (bias: −0.067, MSE:
0.014) results in the same setting. Even at larger sample sizes (n = 100), the MM estimator remains
biased (e.g., 1.264 at k = 3, α = 0.5), suggesting limited improvement with increased data. This
underperformance likely stems from the difficulty of accurately estimating higher-order moments in
the WGSG distribution. Although ML estimation offers favorable large-sample properties, its finite-
sample performance can be inferior to the Bayesian approach. The Bayesian method provides more
stable and accurate estimates across various parameter settings and sample sizes. The MM approach,
while computationally attractive, proves to be the least reliable among the three, particularly in small-
sample contexts and in the presence of complex moment behavior.
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6. Applications

In this section, we compare the adequacy of the WGSG distribution for 5 special cases
(k = 1, 2, 3, 4, 5) compared with the Weibull, Weibull-geometric (WG), and Weibull-Poisson (WP)
distributions using two real datasets. The first data, sourced from [26], represent the fatigue
life (rounded to the nearest thousand cycles) for 67 specimens of Alloy T7987 that failed before
accumulating 300 thousand cycles. The dataset is as follows:

(94, 118, 139, 159, 171, 189, 227, 96, 121, 140, 159, 172, 190, 256, 99, 121, 141, 159, 173,
196, 257, 99, 123, 141, 159, 176, 197, 269, 104, 129, 143, 162, 177, 203, 271, 108, 131,
144, 168, 180, 205, 274, 112, 133, 149, 168, 180, 211, 291, 114, 135, 149, 169, 184, 213,
117, 136, 152, 170, 187, 224, 117, 139, 153, 170, 188, 226).

The second dataset represents the time intervals (in hours) between successive failures of the air
conditioning systems in a fleet of seven Boeing 720 airplanes, specifically aircraft numbers 7910,
7911, 7912, 7913, 7914, 7915, and 7916. This subset, consisting of 125 observations, was analyzed
by [37]. It is part of a larger dataset of 213 observations, originally studied by [38] and further explored
by [10, 12, 39, 40]. The 125 observations for the specified aircraft are as follows:

(74, 57, 48, 29, 502, 12, 70, 21, 29, 386, 59, 27, 153, 26, 326, 55, 320, 56, 104, 220, 239,
47, 246, 176, 182, 33, 15, 104, 35, 23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20,
5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95, 97, 51, 11, 4, 141, 18, 142, 68, 77,
80, 1, 16, 106, 206, 82, 54, 31, 216, 46, 111, 39, 63, 18, 191, 18, 163, 24, 50, 44, 102, 72,
22, 39, 3, 15, 197, 188, 79, 88, 46, 5, 5, 36, 22, 139, 210, 97, 30, 23, 13, 14, 359, 9, 12, 270,
603, 3, 104, 2, 438, 50, 254, 5, 283, 35, 12).

Weibull distribution:
fW(x;α, θ) = αθαxα−1e−(θx)α , x ≥ 0.

FW(x;α, θ) = 1 − e−(θx)α , x ≥ 0.

Weibull-geometric (WG) distribution:

fWG(x;α, θ, p) = (1 − p)αθαxα−1e−(θx)α
(
1 − pe−(θx)α

)−2
, x ≥ 0.

FWG(x;α, θ, p) =
1 − e−(θx)α

1 − pe−(θx)α , x ≥ 0.

Weibull-Poisson (WP) distribution:

fWP(x;α, θ, λ) =
αθαλxα−1

1 − e−λ
e−(θx)αe−λ

(
1−e−(θx)α

)
, x ≥ 0.

FWP(x;α, θ, λ) =
e(λ exp(−(xθ)α) − eλ

1 − eλ
, x ≥ 0.
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Table 2. Estimated parameters for fatigue life data and air conditioning system failures.

Model Fatigue Life Data Air Conditioning System Failures

Weibull (α = 3.726, θ = 0.005) (α = 0.863, θ = 0.012)
WG (α = 6.036, θ = 0.004, p = 0.952) (α = 1.990, θ = 0.006, p = 0.714)
WP (α = 4.552, θ = 0.004, λ = 3.067) (α = 0.977, θ = 0.007, λ = 1.547)
WGSG (k = 1) (α = 6.036, θ = 0.004, p = 0.952) (α = 1.990, θ = 0.006, p = 0.714)
WGSG (k = 2) (α = 4.737, θ = 0.004, p = 0.940) (α = 0.752, θ = 0.012, p = 0.607)
WGSG (k = 3) (α = 2.740, θ = 0.006, p = 0.478) (α = 0.607, θ = 0.022, p = 0.528)
WGSG (k = 4) (α = 3.955, θ = 0.005, p = 0.944) (α = 0.539, θ = 0.032, p = 0.527)
WGSG (k = 5) (α = 2.285, θ = 0.007, p = 0.488) (α = 0.502, θ = 0.041, p = 0.555)

Table 3. Model comparison results for fatigue life data and air conditioning system failures.

Model Log-Lik. AIC BIC Entropy KS Stat. KS p-value

Fatigue Life Data
Weibull -353.292 710.584 714.993 5.273 0.097 0.519
WG -348.552 703.104 709.718 5.202 0.053 0.988
WP -350.631 707.262 713.876 5.233 0.059 0.961
WGSG (k = 1) -348.552 703.104 709.718 5.202 0.053 0.988
WGSG (k = 2) -347.671 701.341 707.955 5.189 0.061 0.952
WGSG (k = 3) -349.124 704.248 710.862 5.211 0.066 0.916
WGSG (k = 4) -347.367 700.735 707.349 5.185 0.063 0.941
WGSG (k = 5) -348.550 703.100 709.714 5.202 0.057 0.974

Air Conditioning System Failures
Weibull -687.632 1379.265 1384.921 5.501 0.036 0.846
WG -686.117 1378.233 1386.718 5.489 0.046 0.946
WP -686.693 1379.387 1387.872 5.494 0.046 0.946
WGSG (k = 1) -686.117 1378.233 1386.718 5.489 0.046 0.946
WGSG (k = 2) -685.279 1376.557 1385.042 5.482 0.044 0.956
WGSG (k = 3) -686.261 1378.522 1387.007 5.490 0.046 0.956
WGSG (k = 4) -686.565 1379.131 1387.615 5.493 0.042 0.976
WGSG (k = 5) -686.839 1379.678 1388.163 5.495 0.045 0.947

Table 2 presents the estimated parameters for various lifetime models fitted to the fatigue life
data and air conditioning system failure data. The WGSG distribution, evaluated across different
order statistics k, demonstrates flexibility in capturing varying data characteristics through changes
in its parameters. For the numerical computation of maximum likelihood estimation, we use the
L-BFGS-B method, as proposed by [41]. This method is a limited-memory variation of the BFGS
quasi-Newton approach, applied when solving a system of simultaneous equations. The maximum
likelihood estimates (MLEs) of the parameters, along with the p-values of the K-S statistics for these
models, are summarized in Table 3. The results also include the AIC, BIC, and Shannon’s entropy

AIMS Mathematics Volume 10, Issue 4, 9773–9804.



9798

as model selection criteria. It is important to note that the Kolmogorov-Smirnov (K-S) test compares
an empirical distribution with a known (non-estimated) distribution. This test helps determine if a
sample originates from a population that follows a specific distribution (H0: the data follow a specified
distribution).

The analysis of the fatigue life data reveals that the WGSG distribution with k = 4 provides the best
fit among all tested models, outperforming the Weibull, Weibull-geometric (WG), and Weibull-Poisson
(WP) distributions across all key metrics. Specifically, the WGSG (k = 4) model achieves the highest
log-likelihood (−347.367), indicating the best overall fit to the data. It also records the lowest Akaike
Information Criterion (AIC = 700.735) and Bayesian Information Criterion (BIC = 707.349), which
balance goodness-of-fit with model complexity, reinforcing its superiority. Furthermore, it exhibits the
lowest entropy (5.185), suggesting it offers the most precise representation of the data’s underlying
distribution. The Kolmogorov-Smirnov (K-S) test supports the adequacy of all models, with p-values
exceeding 0.05 (WGSG k = 4: 0.941), indicating that none can be rejected based on fit to the empirical
distribution.

Notably, the WG and WGSG (k = 1) models, which are mathematically equivalent, achieve the
highest K-S p-value (0.988) and perform exceptionally well, with a log-likelihood of −348.552, AIC of
703.104, and BIC of 709.718. This excellent fit reflects the WGSG’s reduction to the WG distribution
when k = 1. However, the WGSG (k = 4) edges out these models by further optimizing the AIC, BIC,
and entropy, suggesting it captures additional nuances in the data. In contrast, the standard Weibull
model performs the worst, with the lowest log-likelihood (−353.292), highest AIC (710.584), highest
BIC (714.993), and highest entropy (5.273). This indicates that the Weibull distribution is too simplistic
to fully model the complexity of fatigue life data.

For the air conditioning system failures dataset, the WGSG distribution with k = 2 emerges as the
best-fitting model, surpassing the Weibull, WG, and WP distributions across most metrics. It achieves
the highest log-likelihood (−685.279), lowest AIC (1376.557), and lowest BIC (1385.042), indicating
an optimal balance of fit and complexity. Additionally, it has the lowest entropy (5.482), suggesting a
precise representation of the failure data. The K-S test yields a high p-value (0.956), confirming the
model’s adequacy and inability to be rejected.

The WG and WGSG (k = 1) models, again identical, perform strongly with a log-likelihood of
−686.117, AIC of 1378.233, BIC of 1386.718, and a K-S p-value of 0.946, closely trailing the WGSG
(k = 2). Meanwhile, the WGSG (k = 4) achieves the highest K-S p-value (0.976), indicating an
excellent fit to the empirical distribution, though its AIC (1379.131) and BIC (1387.615) are slightly
higher than those of WGSG (k = 2). The standard Weibull model again performs the worst, with a
log-likelihood of −687.632, AIC of 1379.265, BIC of 1384.921, and entropy of 5.501, underscoring
its inadequacy for capturing the complexity of air conditioning failure times. These results suggest that
the WGSG model is particularly well-suited for modeling air conditioning system failures, offering
practical value for maintenance scheduling and system reliability predictions. As with the fatigue
life data, the increased complexity of the WGSG distribution requires careful validation to ensure
generalizability.

To explore the empirical behaviors that the failure rate function may exhibit, we use the graphical
method based on the total time on test (TTT) plot, introduced by [42]. In its empirical form, the TTT

AIMS Mathematics Volume 10, Issue 4, 9773–9804.



9799

plot is constructed using the values r|n and G(r|n), where:

G(r|n) =
∑r

i=1 X(i:n) + (n − r)X(r:n)∑n
i=1 X(i:n)

.

Here, r = 1, . . . , n, and X(i:n) denotes the order statistics of the sample. The TTT plot can take
different forms, resembling the Gini index, and serves as a rough indicator of the shape of the failure
rate function. Specifically, when the curve approaches a straight diagonal, a constant failure rate is
appropriate, suggesting the data follow an exponential distribution. A convex curve indicates the data
are likely from a decreasing failure rate (DFR) distribution.

The empirical and theoretical distribution fits are visually evaluated using Figures 5 and 6. Figure 5
compares the empirical PDFs and CDFs with their theoretical counterparts for both the fatigue life
and air conditioning system failures datasets. For the fatigue life data, the WGSG distribution with
k = 4 closely matches the empirical PDF and CDF, reinforcing the numerical evidence of its superior
performance. Similarly, for the air conditioning system failures data, the WGSG (k = 2) provides
a precise fit to the empirical distributions, particularly in the PDF, where it captures the failure time
distribution’s shape more accurately than the Weibull, WG, or WP distributions.
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Figure 5. Comparison of empirical and theoretical distributions.
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Figure 6. Probability-probability (PP) and TTT plots for all distributions.

Figure 6 presents probability-probability (PP) and TTT plots for all distributions. The PP plots
for both datasets show that the WGSG distribution lies closest to the diagonal line, indicating strong
agreement between the theoretical and empirical distributions. The TTT plots offer additional insight
into the failure rate behavior, which is explored further in the next section. For the fatigue life data,
the TTT plot exhibits a convex shape, suggesting a decreasing failure rate (DFR), which the WGSG
(k = 4) effectively captures, as evidenced by its superior numerical and visual fit. Likewise, the TTT
plot for the air conditioning system failures data displays a convex shape, indicating a DFR, which the
WGSG (k = 2) accurately reflects through its strong fit metrics and close alignment in the PP plot.
These findings underscore the WGSG distribution’s suitability for both datasets, particularly its ability
to accommodate decreasing failure rate behaviors.

Across both datasets, the WGSG distribution consistently outperforms simpler alternatives like the
Weibull, WG, and WP distributions, with the optimal k value varying by dataset (k = 4 for fatigue
life data and k = 2 for air conditioning system failures). This adaptability highlights the WGSG’s
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capacity to balance fit and complexity, making it more effective than traditional distributions for
diverse data structures. While the Weibull distribution remains statistically adequate (K-S p-values
> 0.05), it consistently underperforms, suggesting it may be too rigid for reliability and survival data
with heterogeneous failure patterns. The WGSG’s superior performance, supported by both numerical
metrics and graphical analysis, has significant implications for lifetime and reliability engineering,
where precise failure time analysis can enhance design, maintenance, and safety practices.

7. Conclusions

The WGSG distribution offers a versatile framework for lifetime data analysis, integrating Weibull
and shifted geometric properties to model diverse failure patterns with precision. Its unique focus
on the k-th order statistic enhances flexibility beyond models like the Weibull-geometric, capturing
varying hazard rates and tail behaviors, as detailed in theoretical analyses of entropy and asymptotic
properties. Simulations validate robust parameter estimation via maximum likelihood estimation,
Expectation-Maximization, Bayesian methods, and the method of moments, while applications to
real datasets demonstrate superior fit compared to Weibull, Weibull-Poisson, and Weibull-geometric
distributions. This adaptability positions the WGSG as a valuable tool for reliability and risk
assessment. Future work will extend it to censored data, multivariate structures, and alternative
methods like minimum distance estimation and generalized method of moments, broadening its
statistical impact.
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25. E. M. Parrado-Gallardo, E. Bárcena-Martı́n, L. J. Imedio-Olmedo, Inequality, welfare and order
statistics, In: J. A. Bishop, J. G. Rodrı́guez, Economic well-being and inequality: papers from the
fifth ECINEQ meeting, Emerald Group Publishing Limited, 22 (2014), 383–399.

26. W. Barreto-Souza, A. L. de Morais, G. M. Cordeiro, The weibull-geometric distribution, J. Stat.
Comput. Simul., 81 (2011), 645–657. https://doi.org/10.1080/00949650903436554

27. A. P. Basu, J. P. Klein, Some recent results in competing risks theory, In: J. Crowley, R. A. Johnson,
Survival analysis, IMS Lecture Notes–Monograph Series 2, Hayward, CA: IMS, 1982, 216–229.

28. L. Xie, Z. Wang, Reliability degradation of mechanical components and systems. In: K. B. Misra,
Handbook of performability engineering, Springer, 2008, 413–429. https://doi.org/10.1007/978-1-
84800-131-2 27

29. L. Y. Xie, J. Zhou, Y. Wang, X. Wang, Load-strength order statistics interference models for system
reliability evaluation, Int. J. Performabil. Eng., 1 (2005), 23–36.

30. F. Proschan, J. Sethuraman, Stochastic comparisons of order statistics from heterogeneous
populations, with applications in reliability, J. Multivariate Anal., 6 (1976), 608–616.
https://doi.org/10.1016/0047-259X(76)90008-7

31. J. S. Kim, F. Proschan, J. Sethuraman, Stochastic comparisons of order statistics,
with applications in relibility, Commun. Stat.-Theory Methods, 17 (1988), 2151–2172.
https://doi.org/10.1080/03610928808829739

32. J. E. Ramirez-Marquez, D. W. Coit, Composite importance measures for multi-state
systems with multi-state components, IEEE Trans. Reliabil., 54 (2005), 517–529.
https://doi.org/10.1109/TR.2005.853444

33. S. Eryilmaz, Lifetime of multistate k-out-of-n systems, Qual. Reliab. Eng. Int., 30 (2014), 1015–
1022. https://doi.org/10.1002/qre.1529

AIMS Mathematics Volume 10, Issue 4, 9773–9804.

https://dx.doi.org/https://doi.org/10.5539/ijsp.v7n1p1
https://dx.doi.org/https://doi.org/10.1007/s41872-018-0049-5
https://dx.doi.org/https://doi.org/10.1016/B978-0-12-604550-5.50011-0
https://dx.doi.org/https://doi.org/10.1201/9780203738733
https://dx.doi.org/https://doi.org/10.1016/0165-4896(81)90018-4
https://dx.doi.org/https://doi.org/10.1080/00949650903436554
https://dx.doi.org/https://doi.org/10.1007/978-1-84800-131-2_27
https://dx.doi.org/https://doi.org/10.1007/978-1-84800-131-2_27
https://dx.doi.org/https://doi.org/10.1016/0047-259X(76)90008-7
https://dx.doi.org/https://doi.org/10.1080/03610928808829739
https://dx.doi.org/https://doi.org/10.1109/TR.2005.853444
https://dx.doi.org/https://doi.org/10.1002/qre.1529


9804

34. M. J. Anzanello, A simplified approach for reliability evaluation and component allocation in three-
state series and parallel systems composed of non-identical components, Gest. Prod., 16 (2009),
54–62. https://doi.org/10.1590/S0104-530X2009000100006

35. G. Yingkui, L. Jing, Multi-state system reliability: a new and systematic review, Procedia Eng., 29
(2012), 531–536. https://doi.org/10.1016/j.proeng.2011.12.756

36. C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., 27 (1948), 379–423.
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

37. R. C. Gupta, M. Waleed, Analysis of survival data by a Weibull-Bessel distribution, Commun. Stat.-
Theory Methods, 47 (2018), 980–995. https://doi.org/10.1080/03610926.2017.1316402

38. F. Proschan, Theoretical explanation of observed decreasing failurerate, Technometrics, 5 (1963),
375–383. https://doi.org/10.1080/00401706.1963.10490105

39. R. Tahmasbi, S. Rezaei, A two-parameter lifetime distribution with decreasing failure rate, Comput.
Stat. Data Anal., 52 (2008), 3889–3901. https://doi.org/10.1016/j.csda.2007.12.002

40. M. Chahkandi, M. Ganjali, On some lifetime distributions with decreasing failure rate, Comput.
Stat. Data Anal., 53 (2009), 4433–4440. https://doi.org/10.1016/j.csda.2009.06.016

41. R. H. Byrd, P. Lu, J. Nocedal, C. Zhu, A limited memory algorithm for bound constrained
optimization, SIAM J. Sci. Comput., 16 (1995), 1190–1208. https://doi.org/10.1137/0916069

42. M. V. Aarset, How to identify a bathtub hazard rate, IEEE Trans. Reliabil., R-36 (1987), 106–108.
https://doi.org/10.1109/tr.1987.5222310

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 4, 9773–9804.

https://dx.doi.org/https://doi.org/10.1590/S0104-530X2009000100006
https://dx.doi.org/https://doi.org/10.1016/j.proeng.2011.12.756
https://dx.doi.org/https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://dx.doi.org/https://doi.org/10.1080/03610926.2017.1316402
https://dx.doi.org/https://doi.org/10.1080/00401706.1963.10490105
https://dx.doi.org/https://doi.org/10.1016/j.csda.2007.12.002
https://dx.doi.org/https://doi.org/10.1016/j.csda.2009.06.016
https://dx.doi.org/https://doi.org/10.1137/0916069
https://dx.doi.org/https://doi.org/10.1109/tr.1987.5222310
https://creativecommons.org/licenses/by/4.0

	Introduction
	The WGSG distribution
	Proprieties
	Survival and hazard functions
	Limiting properties
	Associations with other distributions

	Moment-generating function (MGF)
	r-th Moment
	Entropy

	Parameter estimation
	Maximum likelihood estimation
	EM algorithm
	Method of moments estimation
	Bayesian estimation


	Simulation study
	Applications
	Conclusions

