Research article

Assessment of correlated measurement errors in presence of missing data using ranked set sampling

  • Published: 27 April 2025
  • MSC : 62D05, 62D10

  • A miniscule amount of work was done for the assessment of measurement errors in the existence of missing data using a few sampling techniques, while no work was available for the assessment of correlated measurement errors in the existence of missing data. This study aimed to propose some general imputation methods and the corresponding resultant estimators in the existence of missing data under ranked set sampling, provided the data was contaminated with the correlated measurement errors. The mean square error of the developed resultant estimators was established to the first order approximation. The potency of the developed imputation methods and corresponding resultant estimators was assessed by a comprehensive simulation experiment relying on a hypothetically created population. The findings indicated that the proposed imputation methods and the resultant estimators surpassed the traditional imputation methods and the resultant estimators. In addition, a real data application of the proposed imputation methods was also provided.

    Citation: Anoop Kumar, Shashi Bhushan, Abdullah Mohammed Alomair. Assessment of correlated measurement errors in presence of missing data using ranked set sampling[J]. AIMS Mathematics, 2025, 10(4): 9805-9831. doi: 10.3934/math.2025449

    Related Papers:

  • A miniscule amount of work was done for the assessment of measurement errors in the existence of missing data using a few sampling techniques, while no work was available for the assessment of correlated measurement errors in the existence of missing data. This study aimed to propose some general imputation methods and the corresponding resultant estimators in the existence of missing data under ranked set sampling, provided the data was contaminated with the correlated measurement errors. The mean square error of the developed resultant estimators was established to the first order approximation. The potency of the developed imputation methods and corresponding resultant estimators was assessed by a comprehensive simulation experiment relying on a hypothetically created population. The findings indicated that the proposed imputation methods and the resultant estimators surpassed the traditional imputation methods and the resultant estimators. In addition, a real data application of the proposed imputation methods was also provided.



    加载中


    [1] W. G. Cochran, Errors of measurement in statistics, Technometrics, 10 (1968), 637–666
    [2] P. K. Chandhok, C. P. Han, On the efficiency of ratio estimator under midzuno scheme with measurement errors, J. Ind. Stat. Assoc., 28 (1990), 31–39.
    [3] S. Shalabh, Ratio method of estimation in the presence of measurement errors, J. Ind. Soc. Agri. Stat., 50 (1997), 150–155.
    [4] L. N. Sahoo, R. K. Sahoo, S. C. Senapati, An empirical study on the accuracy of ratio and regression estimators in the presence of measurement errors, Monte Carlo Meth. Appl., 12 (2006), 495–501. https://doi.org/10.1515/156939606779329026 doi: 10.1515/156939606779329026
    [5] H. P. Singh, N. Karpe, On the estimation of ratio and product of two population means using supplementary information in presence of measurement errors, Statistica, 69 (2009), 27–47.
    [6] G. Diana, M. Giordan, Finite population variance estimation in presence of measurement errors, Commun. Stat. Theory Meth., 41 (2012), 4302–4314. https://doi.org/10.1080/03610926.2011.573165 doi: 10.1080/03610926.2011.573165
    [7] S. Khalil, M. Noor-ul-Amin, M. Hanif, Generalized estimator of population mean by using conventional and non-conventional measures in the presence of measurement errors, Commun. Stat. Theory Meth., 48 (2019), 516–529. https://doi.org/10.1080/03610918.2017.1387662 doi: 10.1080/03610918.2017.1387662
    [8] M. U. Tariq, M. N. Qureshi, M. Hanif, Variance estimators in the presence of measurement errors using auxiliary information, Thail. Stat., 19 (2021), 606–616.
    [9] M. U. Tariq, M. N. Qureshi, M. Hanif, Generalized variance estimator using auxiliary information in the presence and absence of measurement error, Sci. Iran., 29 (2022), 1868–1879. https://doi.org/10.24200/sci.2022.57298.5164 doi: 10.24200/sci.2022.57298.5164
    [10] S. Bhushan, A. Kumar, S. Shukla, Novel logarithmic type estimators in presence of measurement errors, J. Stat. Theory Pract. 17 (2023a), 35. https://doi.org/10.1007/s42519-023-00333-8
    [11] Shalabh, J. R. Tsai, Ratio and product methods of estimation of population mean in the presence of correlated measurement errors, Commun. Stat. Simul. Comput., 46 (2017), 5566–5593. https://doi.org/10.1080/03610918.2016.1165845 doi: 10.1080/03610918.2016.1165845
    [12] S. Bhushan, A. Kumar, S. Shukla, Performance evaluation of novel logarithmic estimators under correlated measurement errors, Commun. Stat. Theory Meth., 53 (2023b), 5353–5363. https://doi.org/10.1080/03610926.2023.2219793 doi: 10.1080/03610926.2023.2219793
    [13] S. Bhushan, A. Kumar, S. Shukla, On classes of robust estimators in presence of correlated measurement errors, Measurement, 220 (2023c), 113383. https://doi.org/10.1016/j.measurement.2023.113383 doi: 10.1016/j.measurement.2023.113383
    [14] G. A. McIntyre, A method for unbiased selective sampling using ranked set sampling, Aust. J. Agric. Res., 3 (1952), 385–390. https://doi.org/10.1071/AR9520385 doi: 10.1071/AR9520385
    [15] H. Chen, E. A. Stasny, D. A. Wolfe, Improved procedures for estimation of disease prevalence using ranked set sampling, Biom. J., 49 (2007), 530–538. https://doi.org/10.1002/bimj.200610302 doi: 10.1002/bimj.200610302
    [16] R. Das, V. Verma, D. C. Nath, Bayesian estimation of measles vaccination coverage under ranked set sampling, Stat. Trans., 18 (2018), 589–608.
    [17] L. K. Halls, T. R. Dell, Trial of ranked-set sampling for forage yields, For. Sci., 12 (1966), 22–26. https://doi.org/10.1093/forestscience/12.1.22 doi: 10.1093/forestscience/12.1.22
    [18] P. H. Kvam, Ranked set sampling based on binary water quality data with covariates, JABES, 8 (2003), 271–279. https://doi.org/10.1198/1085711032156 doi: 10.1198/1085711032156
    [19] M. Mahdizadeh, E. Zamanzade, A new reliability measure in ranked set sampling, Stat. Papers, 59 (2018), 861–891. https://doi.org/10.1007/s00362-016-0794-3 doi: 10.1007/s00362-016-0794-3
    [20] H. Wang, W. X. Chen, B. J. Li, Large sample properties of maximum likelihood estimator using moving extremes ranked set sampling, J. Korean Stat. Soc., 53 (2024), 398–415. https://doi.org/10.1007/s42952-023-00251-2 doi: 10.1007/s42952-023-00251-2
    [21] A. I. Al-Omari, C. Bouza, Ratio estimators of the population mean with missing values using ranked set sampling, Environmetrics, 26 (2014), 67–76. https://doi.org/10.1002/env.2286 doi: 10.1002/env.2286
    [22] M. U. Sohail, J. Shabbir, S. Ahmed, A class of ratio type estimators for imputing the missing values under rank set sampling, J. Stat. Theory Pract., 12 (2018), 704–717. https://doi.org/10.1080/15598608.2018.1460886 doi: 10.1080/15598608.2018.1460886
    [23] S. Bhushan, A. Kumar, T. Zaman, A. Al Mutairi, Efficient difference and ratio-type imputation methods under ranked set sampling, Axioms, 12 (2023), 558. https://doi.org/10.3390/axioms12060558 doi: 10.3390/axioms12060558
    [24] S. Bhushan, A. Kumar, Predictive estimation approach using difference and ratio type estimators in ranked set sampling, J. Comput. Appl. Math., 410 (2022), 114214. https://doi.org/10.1016/j.cam.2022.114214 doi: 10.1016/j.cam.2022.114214
    [25] S. Bhushan, A. Kumar, Novel log type class of estimators under ranked set sampling, Sankhya B, 84 (2022), 421–447. https://doi.org/10.1007/s13571-021-00265-y doi: 10.1007/s13571-021-00265-y
    [26] S. Bhushan, A. Kumar, On optimal classes of estimators under ranked set sampling, Commun. Stat. Theory Meth., 51 (2022), 2610–2639. https://doi.org/10.1080/03610926.2020.1777431 doi: 10.1080/03610926.2020.1777431
    [27] S. Bhushan, A. Kumar, Novel predictive estimators using ranked set sampling, Concurr. Comput., 35 (2022), e7435. https://doi.org/10.1002/cpe.7435 doi: 10.1002/cpe.7435
    [28] S. Bhushan, A. Kumar, New efficient logarithmic estimators using multi-auxiliary information under ranked set sampling, Concurr. Comput., 34 (2022), e7337. https://doi.org/10.1002/cpe.7337 doi: 10.1002/cpe.7337
    [29] R. Alam, M. Hanif, S. H. Shahbaz, M. Q. Shahbaz, Estimation of population variance under ranked set sampling method by using the ratio of supplementary information with study variable, Sci. Rep., 12 (2022), 21203. https://doi.org/10.1038/s41598-022-24296-1 doi: 10.1038/s41598-022-24296-1
    [30] J. F. Terpstra, P. Wang, Confidence intervals for a population proportion based on a ranked set sample, J. Stat. Comput. Simul., 78 (2008), 351–366. https://doi.org/10.1080/00949650601107994 doi: 10.1080/00949650601107994
    [31] L. Duembgen, E. Zamanzade, Inference on a distribution function from ranked set samples, Ann. Inst. Stat. Math. 72 (2020), 157–185. https://doi.org/10.1007/s10463-018-0680-y
    [32] R. B. Rubin, Inference and missing data, Biometrika, 63 (1976), 581–592. https://doi.org/10.1093/biomet/63.3.581
    [33] H. Lee, E. Rancourt, C. E. Sarndal, Experiments with variance estimation from survey data with imputed values, J. Off. Stat., 10 (1994), 231–243.
    [34] D. F. Heitjan, S. Basu, Distinguishing missing at random and missing completely at random, Am Stat., 50 (1996), 207–213.
    [35] S. Singh, B. Deo, Imputation by power transformation, Stat. Papers, 44 (2003), 555–579. https://doi.org/10.1007/BF02926010 doi: 10.1007/BF02926010
    [36] H. Toutenburg, V. K. Srivastava, Shalabh, Amputation versus imputation of missing values through ratio method in sample surveys, Stat. Papers, 49 (2008), 237–247. https://doi.org/10.1007/s00362-006-0009-4 doi: 10.1007/s00362-006-0009-4
    [37] S. Bhushan, A. P. Pandey, Optimality of ratio type estimation methods for population mean in presence of missing data, Commun. Stat. Theory Meth., 47 (2018), 2576–2589. https://doi.org/10.1080/03610926.2016.1167906 doi: 10.1080/03610926.2016.1167906
    [38] S. Bhushan, A. Kumar, A. P. Pandey, S. Singh, Estimation of population mean in presence of missing data under simple random sampling, Commun. Stat. Simul. Comput., 52 (2022), 6048–6069. https://doi.org/10.1080/03610918.2021.2006713 doi: 10.1080/03610918.2021.2006713
    [39] D. T. Searls, The utilization of a known coefficient of variation in the estimation procedure, J. Amer. Stat. Assoc., 59 (1964), 1225–1226.
    [40] C. E. Sarndal, B. Swensson, J. Wretman, Model assisted survey sampling, New York: Springer, 2003.
    [41] M. A. Alomair, U. Shahzad, Compromised-imputation and EWMA-based memory-type mean estimators using quantile regression, Symmetry, 15 (2023), 1888. https://doi.org/10.3390/sym15101888 doi: 10.3390/sym15101888
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(866) PDF downloads(32) Cited by(0)

Article outline

Figures and Tables

Figures(16)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog