Research article

Inhomogeneous NLS with partial harmonic confinement

  • Published: 27 April 2025
  • MSC : 35Q55

  • We investigate the inhomogeneous nonlinear Schrödinger equation with partial harmonic confinement. First, we present a global well-posedness result for small data in the intercritical regime. Second, we obtain a threshold of global existence versus finite-time blow-up in the mass-critical regime. Finally, we prove the $ L^2 $ concentration of the mass-critical non-global solution with minimal mass. The challenge is to address the fact that the standard scale invariance is broken by the partial confinement. We use the associated ground state without potential in order to describe the threshold of global versus non-global existence of solutions.

    Citation: Saleh Almuthaybiri, Tarek Saanouni. Inhomogeneous NLS with partial harmonic confinement[J]. AIMS Mathematics, 2025, 10(4): 9832-9851. doi: 10.3934/math.2025450

    Related Papers:

  • We investigate the inhomogeneous nonlinear Schrödinger equation with partial harmonic confinement. First, we present a global well-posedness result for small data in the intercritical regime. Second, we obtain a threshold of global existence versus finite-time blow-up in the mass-critical regime. Finally, we prove the $ L^2 $ concentration of the mass-critical non-global solution with minimal mass. The challenge is to address the fact that the standard scale invariance is broken by the partial confinement. We use the associated ground state without potential in order to describe the threshold of global versus non-global existence of solutions.



    加载中


    [1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, Bose-Einstein condensation in a dilute atomic vapor. Science, 14 (1995), 269. https://doi.org/10.1126/science.269.5221.198 doi: 10.1126/science.269.5221.198
    [2] H. A. Alkhidhr, Closed-form solutions to the perturbed NLSE with Kerr law non-linearity in optical fibers, Results Phys., 22 (2021), 103875. https://doi.org/10.1016/j.rinp.2021.103875 doi: 10.1016/j.rinp.2021.103875
    [3] P. Antonelli, R. Carles, J. D. Silva, Scattering for nonlinear Schrödinger equation under partial harmonic confinement, Commun. Math. Phys., 334 (2015), 367–396. https://doi.org/10.1007/s00220-014-2166-y doi: 10.1007/s00220-014-2166-y
    [4] J. Bellazzini, N. Boussaïd, L. Jeanjean, N. Visciglia, Existence and stability of standing waves for super-critical NLS with a Partial Confinement, Commun. Math. Phys., 353 (2017), 229–251. https://doi.org/10.1007/s00220-017-2866-1 doi: 10.1007/s00220-017-2866-1
    [5] C. Josserand, Y. Pomeau, Nonlinear aspects of the theory of Bose-Einstein condensates, Nonlinearity, 14 (2001), R25. https://doi.org/10.1088/0951-7715/14/5/201 doi: 10.1088/0951-7715/14/5/201
    [6] M. Ohta, Strong instability of standing waves for non-linear Schrödinger equations with partial confinement, Comm. Pur. Appl. Anal., 17 (2018), 1671–1680. https://doi.org/10.3934/cpaa.2018080 doi: 10.3934/cpaa.2018080
    [7] C. Ji, N. Su, Existence and stability of standing waves for the mixed dispersion nonlinear Schrödinger equation with a partial confinement in $ \mathbb{R}^N$, J. Geom. Anal., 33 (2023), 171. https://doi.org/10.1007/s12220-023-01207-y doi: 10.1007/s12220-023-01207-y
    [8] H. Ardila, R. Carles, Global dynamics below the ground states for NLS under partial harmonic confinement, Commun. Math. Sci., 19 (2021), 993–1032. https://doi.org/10.48550/arXiv.2006.06205 doi: 10.48550/arXiv.2006.06205
    [9] R. Carles, C. Gallo, Scattering for the nonlinear Schrödinger equation with a general one-dimensional confinement, J. Math. Phys., 56 (2015), 101503. https://doi.org/10.1063/1.4932604 doi: 10.1063/1.4932604
    [10] N. Tzvetkov, N. Visciglia, Well-posedness and scattering for nonlinear Schrödinger equations on $ \mathbb{R}^d\times T$ in the energy space, Rev. Mat. Iberoam., 32 (2016), 1163–1188. https://doi.org/10.4171/rmi/911 doi: 10.4171/rmi/911
    [11] J. Pan, J. Zhang, Mass concentration for nonlinear Schödinger equation with partial confinement, J. Math. Anal. Appl., 481 (2020), 123484. https://doi.org/10.1016/j.jmaa.2019.123484 doi: 10.1016/j.jmaa.2019.123484
    [12] J. Zhang, Sharp threshold of global existence for nonlinear Schrödinger equation with partial confinement, Nonlinear Anal. 196 (2020), 111832. https://doi.org/10.1016/j.na.2020.111832
    [13] C. L. Wang, J. Zhang, Sharp condition for global existence of supercritical nonlinear Schrödinger equation with a partial confinement, Acta. Math. Appl. Sin. Engl. Ser., 39 (2023), 202–210. https://doi.org/10.1007/s10255-023-1035-x doi: 10.1007/s10255-023-1035-x
    [14] C. L. Wang, J. Zhang, Cross-constrained variational method and nonlinear Schrödinger equation with partial confinement, Math. Contr. Rel. Field, 12 (2022), 611–619. https://doi.org/10.3934/mcrf.2021036 doi: 10.3934/mcrf.2021036
    [15] P. Bégout, A. Vargas, Mass concentration phenomena for the $L^2$-critical nonlinear Schrödinger equation, Trans. Amer. Math. Soc., 359 (2007), 5257–5282. https://doi.org/10.1090/S0002-9947-07-04250-X doi: 10.1090/S0002-9947-07-04250-X
    [16] B. Dodson, Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, Adv. Math., 285 (2015), 1589–1618. https://doi.org/10.1016/j.aim.2015.04.030 doi: 10.1016/j.aim.2015.04.030
    [17] J. Liu, Z. He, B. Feng, Existence and stability of standing waves for the inhomogeneous Gross-Pitaevskii equation with a partial confinement, J. Math. Anal. Appl., 506 (2022), 125604. https://doi.org/10.1016/j.jmaa.2021.125604 doi: 10.1016/j.jmaa.2021.125604
    [18] T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, American Mathematical Society, New York, Providence, RI, 2003.
    [19] C. M. Guzmán, On well posedness for the inhomogeneous non-linear Schrödinger equation, Nonlinear Anal., 37 (2017), 249–286. https://doi.org/10.1016/j.nonrwa.2017.02.018 doi: 10.1016/j.nonrwa.2017.02.018
    [20] F. Genoud, Théorie de bifurcation et de stabilité pour une équation de Schrödinger avec une non-linéarité compacte, PhD thesis, École Polytechnique Fédérale de Lausanne, 2008.
    [21] F. Genoud, C. A. Stuart, Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves, Discrete Cont. Dyn.-S., 21 (2008), 137–186. https://doi.org/10.3934/dcds.2008.21.137 doi: 10.3934/dcds.2008.21.137
    [22] F. Genoud, Bifurcation and stability of travelling waves in self-focusing planar waveguides, Adv. Nonlinear Stud., 10 (2010), 357–400. 10.1515/ans-2010-0207 doi: 10.1515/ans-2010-0207
    [23] E. Yanagida, Uniqueness of positive radial solutions of $\Delta u + g(r)u + h(r)u^p = 0$ in $ \mathbb{R}^n$, Arch. Rational Mech. Anal., 115 (1991), 257–274. https://doi.org/10.1007/BF00275874 doi: 10.1007/BF00275874
    [24] J. F. Toland, Uniqueness of positive solutions of some semilinear Sturm-Liouville problems on the half line, Proc. Roy. Soc. Edinburgh Sect. A, 97 (1984), 259–263. https://doi.org/10.1017/S0308210500032042 doi: 10.1017/S0308210500032042
    [25] G. Chen, J. Zhang, Remarks on global existence for the super-critical nonlinear Schrödinger equation with a harmonic potential, J. Math. Anal. Appl., 320 (2006), 591–598. https://doi.org/10.1016/j.jmaa.2005.07.008 doi: 10.1016/j.jmaa.2005.07.008
    [26] L. Campos, M. Cardoso, On the critical norm concentration for the inhomogeneous nonlinear Schrödinger equation, J. Dyn. Differ. Equ., 34 (2022), 2347–2369. https://doi.org/10.1007/s10884-022-10151-4 doi: 10.1007/s10884-022-10151-4
    [27] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982), 567–576.
    [28] L. G. Farah, Global well-posedness an blow-up on the energy space for the inhomogeneous non-linear Schrödinger equation, J. Evol. Equ., 16 (2016), 193–208. https://doi.org/10.1007/s00028-015-0298-y doi: 10.1007/s00028-015-0298-y
    [29] P. Bégout, Necessary conditions and sufficient conditions for global existence in the nonlinear Schrödinger equation, Adv. Math. Sci. Appl., 12 (2002), 817–829.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(728) PDF downloads(38) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog