Research article

Inference of stress-strength reliability based on adaptive progressive type-Ⅱ censing from Chen distribution with application to carbon fiber data

  • Received: 14 March 2024 Revised: 01 June 2024 Accepted: 12 June 2024 Published: 24 June 2024
  • MSC : 62F10, 62F15, 62N02

  • In this paper, we used the maximum likelihood estimation (MLE) and the Bayes methods to perform estimation procedures for the reliability of stress-strength R=P(Y<X) based on independent adaptive progressive censored samples that were taken from the Chen distribution. An approximate confidence interval of R was constructed using a variety of classical techniques, such as the normal approximation of the MLE, the normal approximation of the log-transformed MLE, and the percentile bootstrap (Boot-p) procedure. Additionally, the asymptotic distribution theory and delta approach were used to generate the approximate confidence interval. Further, the Bayesian estimation of R was obtained based on the balanced loss function, which came in two versions here, the symmetric balanced squared error (BSE) loss function and the asymmetric balanced linear exponential (BLINEX) loss function. When estimating R using the Bayesian approach, all the unknown parameters of the Chen distribution were assumed to be independently distributed and to have informative gamma priors. Additionally, a mixture of Gibbs sampling algorithm and Metropolis-Hastings algorithm was used to compute the Bayes estimate of R and the associated highest posterior density credible interval. In the end, simulation research was used to assess the general overall performance of the proposed estimators and a real dataset was provided to exemplify the theoretical results.

    Citation: Essam A. Ahmed, Laila A. Al-Essa. Inference of stress-strength reliability based on adaptive progressive type-Ⅱ censing from Chen distribution with application to carbon fiber data[J]. AIMS Mathematics, 2024, 9(8): 20482-20515. doi: 10.3934/math.2024996

    Related Papers:

    [1] Xiaogang Liu, Muhammad Ahsan, Zohaib Zahid, Shuili Ren . Fault-tolerant edge metric dimension of certain families of graphs. AIMS Mathematics, 2021, 6(2): 1140-1152. doi: 10.3934/math.2021069
    [2] Maryam Salem Alatawi, Ali Ahmad, Ali N. A. Koam, Sadia Husain, Muhammad Azeem . Computing vertex resolvability of benzenoid tripod structure. AIMS Mathematics, 2022, 7(4): 6971-6983. doi: 10.3934/math.2022387
    [3] Pradeep Singh, Sahil Sharma, Sunny Kumar Sharma, Vijay Kumar Bhat . Metric dimension and edge metric dimension of windmill graphs. AIMS Mathematics, 2021, 6(9): 9138-9153. doi: 10.3934/math.2021531
    [4] Chenggang Huo, Humera Bashir, Zohaib Zahid, Yu Ming Chu . On the 2-metric resolvability of graphs. AIMS Mathematics, 2020, 5(6): 6609-6619. doi: 10.3934/math.2020425
    [5] Meiqin Wei, Jun Yue, Xiaoyu zhu . On the edge metric dimension of graphs. AIMS Mathematics, 2020, 5(5): 4459-4465. doi: 10.3934/math.2020286
    [6] Lyimo Sygbert Mhagama, Muhammad Faisal Nadeem, Mohamad Nazri Husin . On the edge metric dimension of some classes of cacti. AIMS Mathematics, 2024, 9(6): 16422-16435. doi: 10.3934/math.2024795
    [7] Mohra Zayed, Ali Ahmad, Muhammad Faisal Nadeem, Muhammad Azeem . The comparative study of resolving parameters for a family of ladder networks. AIMS Mathematics, 2022, 7(9): 16569-16589. doi: 10.3934/math.2022908
    [8] Dalal Awadh Alrowaili, Uzma Ahmad, Saira Hameeed, Muhammad Javaid . Graphs with mixed metric dimension three and related algorithms. AIMS Mathematics, 2023, 8(7): 16708-16723. doi: 10.3934/math.2023854
    [9] Syed Ahtsham Ul Haq Bokhary, Zill-e-Shams, Abdul Ghaffar, Kottakkaran Sooppy Nisar . On the metric basis in wheels with consecutive missing spokes. AIMS Mathematics, 2020, 5(6): 6221-6232. doi: 10.3934/math.2020400
    [10] Ahmed Alamer, Hassan Zafar, Muhammad Javaid . Study of modified prism networks via fractional metric dimension. AIMS Mathematics, 2023, 8(5): 10864-10886. doi: 10.3934/math.2023551
  • In this paper, we used the maximum likelihood estimation (MLE) and the Bayes methods to perform estimation procedures for the reliability of stress-strength R=P(Y<X) based on independent adaptive progressive censored samples that were taken from the Chen distribution. An approximate confidence interval of R was constructed using a variety of classical techniques, such as the normal approximation of the MLE, the normal approximation of the log-transformed MLE, and the percentile bootstrap (Boot-p) procedure. Additionally, the asymptotic distribution theory and delta approach were used to generate the approximate confidence interval. Further, the Bayesian estimation of R was obtained based on the balanced loss function, which came in two versions here, the symmetric balanced squared error (BSE) loss function and the asymmetric balanced linear exponential (BLINEX) loss function. When estimating R using the Bayesian approach, all the unknown parameters of the Chen distribution were assumed to be independently distributed and to have informative gamma priors. Additionally, a mixture of Gibbs sampling algorithm and Metropolis-Hastings algorithm was used to compute the Bayes estimate of R and the associated highest posterior density credible interval. In the end, simulation research was used to assess the general overall performance of the proposed estimators and a real dataset was provided to exemplify the theoretical results.



    The fractional derivatives with constant or variable order [3,9] are excellent mathematical tools for the description of memory and the hereditary properties of various processes and materials[12,19]. In fractional calculus, these derivatives are defined through fractional integrals. There are several approaches to fractional derivatives including Riemann-Liouville [10,14,15], Caputo, Hadamard derivatives, [4,6,13,17].

    Efforts have been dedicated to generalizations concerning mappings of bounded variation, absolute continuity, various classes of convex functions, and their extension to fractional calculus, involving Riemann-Liouville integrals and their generalizattions as referenced in [1,2,12,15].

    In [8], the author proved some integral inequalities for functions whose kth (kN) derivatives are convex involving Caputo derivatives and obtain the following results for a,ΔI,a<Δ,α,βR, α,β1, and ψ:IR:

    ● If ψ(k)(kN) exists and is positive and convex, then

    Γ(kα+1)CDα1a+ψ(ξ)+(1)kΓ(kβ+1)CDβ1Δψ(ξ)(ξa)kα+1ψ(k)(a)+ψ(k)(ξ)2+(Δξ)kβ+1ψ(k)(Δ)+ψ(k)(ξ)2. (1.1)

    ● If ψ(k) exists and is positive, convex and symmetric about a+Δ2, then

    12(1kα+1+1kβ+1)ψ(k)(a+Δ2)Γ(kβ+1)CDβ1Δψ(α)2(Δa)kβ+1+(1)kΓ(kα+1)CDα1a+ψ(Δ)2(Δa)kα+1ψ(k)(Δ)+ψ(k)(a)2. (1.2)

    In [11], the authors gave a version of Hadamard's inequality using the Caputo derivative. In [7], the authors proved Hadamard inequalities for strongly α,m-convex functions via Caputo fractional derivatives. In this paper, we consider the Caputo derivatives of a real valued function ψ whose derivatives ψ(k)(kN) are genaralized modified h-convex. Some Caputo fractional versions of Hermite-Hadamard inequalities are obtained. From which particular cases are revealed, we have also established a new integral inequality between Caputo derivatives CDα.ψ and the Riemann-Liouville integrals Rkα.(ψ(k))2. By deriving new differential inequalities in this context, we aim to extend the applicability of fractional calculus to problems involving generalized convex functions. These results have significance in various fields, including mathematics, physics, and engineering, where fractional calculus plays a crucial role in modeling complex phenomena with memory and long-range dependence.sts Our results generalize those cited in [8] and unify several classes of functions, like convex and s-convex functions.

    This section deals with some definitions of convexity [2,5,8], generalized h-convexity [20], fractional integrals and derivatives [6,18].

    Let IR be an interval and h:[0,1](0,),ψ:I(0,) be two real valued functions, then

    ψ is said to be h-convex, if

    ψ(ρc+(1ρ)d)h(ρ)ψ(c)+h(1ρ)ψ(d) (2.1)

    holds for all c,dI and ρ(0,1]. If (2.1) is reversed, then ψ is said to be h-concave.

    ● The function ψ is said to be modified h-convex if

    ψ(ρc+(1ρ)d)h(ρ)ψ(c)+(1h(ρ))ψ(d). (2.2)

    ● The function ψ is said to be generalized modified h-convex if

    ψ(ρc+(1ρ)d)ψ(d)+h(ρ)θ(ψ(c),ψ(d)). (2.3)

    Definition 2.1 (Additivity). [20] A continuous bifunction θ is said to be additive, if

    θ(a1,b1)+θ(a2,b2)=θ(a1+a2,b1+b2),a1,a2,b1,b2R.

    Definition 2.2 (Nonnegative homogeneity). [20] A continuous bifunction θ is said to be nonnegatively homogeneous if, for all λ>0,

    θ(λa1,λa2)=λθ(a1,a2),a1,a2R.

    Remark 2.1. For different functions h,θ one can obtain various classes of generalized modified convex functions:

    By taking in (2.1) h(z)=zs(0<s1), we have the definition of modified generalized s-convex functions.

    If, we take θ(r,z)=rz, then we obtain the definition of a modified h-convex function.

    Let [a,Δ](<a<Δ<+) be a finite interval on the real axis R. For any function ψL1([a,Δ]), the Riemann-Liouville fractional integrals Rαa+ and RαΔ of order αR (α>0) of ψ are defined by

    Rαa+ψ(s)=1Γ(α)sa(st)α1ψ(t)dt,s>a(left) (2.4)

    and

    RαΔψ(s)=1Γ(α)Δs(ts)α1ψ(t)dt,s<Δ(right), (2.5)

    respectively. Here Γ(α)=0tα1etdt,α>0 is the gamma function. We set R0a+ψ=R0Δψ=ψ.

    Let [a,Δ] be a finite interval of the real line R. Let α>0,kN, k=[α]+1 and ψACk([a,Δ]) (ACk([a,Δ]) means the space of complex-valued functions ψ(x) which have continuous derivatives up to order k1 on [a,b] such that ψ(k1)(x)AC([a,Δ]): i.e., absolutely continuous) see Lemma 2.4 [18]. The left and right Caputo fractional derivatives of order α(α0) of ψ are given by the following formulas (see [1,4,10,13])

    CDαa+ψ(ξ)=1Γ(kα)ξaψ(k)(t)(ξt)kα1dt,ξ>a

    and

    CDαΔψ(ξ)=(1)kΓ(kα)Δξψ(k)(t)(tξ)kα1dt,ξ<Δ,

    respectively.

    If α=kN, then

    CDαa+ψ(ξ)=ψ(k)(ξ)andCDαΔψ(ξ)=(1)kψ(k)(ξ).

    In particular, if k=1, α=0, then

    CD0a+ψ(ξ)=CD0Δψ(ξ)=ψ(ξ).

    Lemma 2.1. [16] The following formulas for Caputo fractional derivatives of order α>0,k1<α<k(kN) of a power function at t=a and t=b hold

    CDαa+(ta)p=Γ(p+1)Γ(pα+1)(ta)pα,t>a (2.6)

    and

    CDαb(bt)p=Γ(p+1)Γ(pα+1)(bt)pα,t<b. (2.7)

    Our objective in this work, is to prove some fractional integral inequalities for functions whose kth (kN) derivatives are generalized modified h-convex functions involving the Caputo derivative operator.

    Theorem 3.1. Let I be an interval of R, a,ΔI,a<Δ and α,β>0, such that k1<α,β<k,kN. Let ψ:IR be differentiable function. If, ψ(k)(kN) exists and is a positive generalized modified h-convex function and θ is a continuous bifunction, then the following integral inequality

    Γ(kα+1)(CDα1a+ψ)(ξ)+(1)kΓ(kβ+1)(CDβ1Δψ)(ξ)(Δξ)kβ+1[ψ(k)(ξ)+θ(ψ(k)(Δ),ψ(k)(ξ))10h(z)dz]+(ξa)kα+1[ψ(k)(ξ)+θ(ψ(k)(a),ψ(k)(ξ))10h(z)dz] (3.1)

    holds.

    Proof. For all ξ[a,Δ] and for all t[a,ξ], we have

    (ξt)kα(ξa)kα, (3.2)

    and

    t=ξtξaa+taξaξ.

    Since ψ(k) is generalized modified h-convex, (2.3) implies that

    ψ(k)(t)ψ(k)(ξ)+h(ξtξa)θ(ψ(k)(a),ψ(k)(ξ)). (3.3)

    Multiplying inequalities (3.2) and (3.3) on both side and integrating, we obtain

    ξa(ξt)kαψ(k)(t)dtξa(ξa)kα×[ψ(k)(ξ)+h(ξtξa)θ(ψ(k)(a),ψ(k)(ξ))]dt. (3.4)

    That is

    Γ(kα+1)(CDα1a+ψ)(ξ)(ξa)kα+1×[ψ(k)(ξ)+θ(ψ(k)(a),ψ(k)(ξ))10h(z)dz]. (3.5)

    Let ξ[a,Δ],t[ξ,Δ], thus

    (tξ)kβ(Δξ)kβ. (3.6)

    We have

    t=tξΔξΔ+ΔtΔξξ.

    Since ψ(k) is generalized modified h-convex on [α,Δ], then

    ψ(k)(t)ψ(k)(ξ)+h(tξΔξ)θ(ψ(k)(Δ),ψ(k)(ξ)). (3.7)

    Similarly, we obtain

    (1)kΓ(kβ+1)(CDβ1Δψ)(ξ)(Δξ)kβ+1×[ψ(k)(ξ)+θ(ψ(k)(Δ),ψ(k)(ξ))10h(z)dz]. (3.8)

    Adding (3.5) and (3.8), the claim follows.

    Corollary 3.1. If, we set α=β in (3.1), then we obtain

    Γ(kα+1)[(CDα1a+ψ)(ξ)+(1)k(CDα1Δψ)(ξ)](Δξ)kα+1[ψ(k)(ξ)+θ(ψ(k)(Δ),ψ(k)(ξ))10h(z)dz]+(ξa)kα+1[ψ(k)(ξ)+θ(ψ(k)(a),ψ(k)(ξ))10h(z)dz].

    Corollary 3.2. By setting θ(r,z)=rz,h(t)=ts,s[0,1] in (3.1), we obtain

    Γ(kα+1)(CDα1a+ψ)(ξ)+(1)kΓ(kβ+1)(CDβ1Δψ)(ξ)(Δξ)kβ+1ψ(k)(Δ)+(ξa)kα+1ψ(k)(a)s+1+(ξa)kα+1+(Δξ)kβ+1s+1sψ(k)(ξ). (3.9)

    In particular, if h(z)=z, then we have

    Γ(kα+1)(CDα1α+ψ)(ξ)+(1)kΓ(kβ+1)(CDβ1Δψ)(ξ)(Δξ)kβ+1ψ(k)(Δ)+(ξa)kα+1ψ(k)(a)2+(ξa)kα+1+(Δξ)kβ+12ψ(k)(ξ). (3.10)

    Taking α=β in (3.10), we obtain

    Γ(kα+1)[(CDα1a+ψ)(ξ)+(1)k(CDα1Δψ)(ξ)](Δξ)kα+1ψ(k)(Δ)+(ξa)kα+1ψ(k)(a)2+(ξa)kα+1+(Δξ)kα+12ψ(k)(ξ). (3.11)

    Example 3.1. Let ψ:[a,Δ][0,), ψ(ξ)=2(k+2)!(ξa)k+2, a<ξΔ. Let h:[0,1](0,), h(t)t, θ(x,y)=2x+y. We verify easly that ψ(k)(ξ)=(ξa)2 is generalized modified h-convex on [a,Δ]. From Corollary 3.1 and Lemma 2.1, we obtain

    lhs:=Γ(kα+1)(CDα1a+ψ)(ξ)=2(ξa)kα+3(kα+1)(kα+2)(kα+3), (3.12)

    and

    rhs:=(ξa)kα+1[(ξa)2+(0+(ξa)2)10h(z)dz]=(ξa)kα+3(1+10h(z)dz). (3.13)

    For the right derivative (CDα1Δψ)(ξ), we consider the function ψ(ξ)=2(Δξ)k+2(k+2)!, aξ<Δ.

    (1)kΓ(kα+1)(CDα1Δψ)(ξ)=2(Δξ)kα+3(kα+1)(kα+2)(kα+3) (3.14)

    and

    rhs:=(Δξ)kα+3(1+10h(z)dz). (3.15)

    Now let I be an interval of R, a,ΔI,(a<Δ) and α,β>0, such that k1<α,β<k,(kN). Let ψ:IR. Assume that |ψ(k+1)| is generalized modified h- convex on [a,Δ].

    It is clear that for all ξ[a,Δ],t[a,ξ], we have

    (ξt)kα(ξa)kα,t[a,ξ]. (3.16)

    Since |ψ(k+1)| is generalized modified h-convex, we have for t[a,ξ],

    Lhs = [|ψ(k+1)(ξ)|+θ(|ψ(k+1)(a)|,|ψ(k+1)(ξ)|)h(taξa)]|ψ(k+1)(t)||ψ(k+1)(ξ)|+θ(|ψ(k+1)(a)|,|ψ(k+1)(ξ)|)h(taξa)=Rhs. (3.17)

    Multiplying (3.16) by the Rhs of inequality (3.17) and integrating the resulting inequality over [a,ξ], we obtain

    ξa(ξt)kαψ(k+1)(t)dt(ξa)kα(|ψ(k+1)(ξ)|+θ(|ψ(k+1)(a)|,|ψ(k+1)(ξ)|)10h(z)dz), (3.18)

    by integration by parts, we have

    ξa(ξt)kαψ(k+1)(t)dt=ψ(k)(t)(ξt)kα|ξa+(kα)ξa(ξt)kα1ψ(k)(t)dt=Γ(kα+1)(CDαa+ψ)(ξ)ψ(k)(a)(ξa)kα.

    Hence

    Γ(kα+1)(CDαa+ψ)(ξ)ψ(k)(a)(ξa)kα(ψ(k+1)(ξ)+θ(|ψ(k+1)(a)|,|ψ(k+1)(ξ)|)10h(z)dz)(ξa)kα. (3.19)

    In a similar way, if we proceed with the Lhs of (3.17) as we did for the Rhs, it follows that

    ψ(k)(a)(ξa)kαΓ(kα+1)(CDαa+ψ)(ξ)(|ψ(k+1)(ξ)|+θ(|ψ(k+1)(a)|,|ψ(k+1)(ξ)|)10h(z)dz)(ξa)kα. (3.20)

    From (3.19) and (3.20), we obtain

    |Γ(kα+1)(CDαa+ψ)(ξ)ψ(k)(a)(ξa)kα|(|ψ(k+1)(ξ)|+θ(|ψ(k+1)(a)|,|ψ(k+1)(ξ)|)10h(z)dz)(ξa)kα. (3.21)

    Doing the same for t[ξ,Δ] and β>0,k1<β<k, and taking into acount that |ψ(k+1)| is generalized modified h-convex, we have

    Lhs = [|ψ(k+1)(ξ)|+θ(|ψ(k+1)(Δ)|,|ψ(k+1)(ξ)|)h(tξΔξ)]                ψ(k+1)(t)ψ(k+1)(ξ)+θ(|ψ(k+1)(Δ)|,|ψ(k+1)(ξ)|)h(tξΔξ)=Rhs. (3.22)

    Hence

    |Γ(kβ+1)(CDβΔψ)(ξ)ψ(k)(Δ)(Δξ)kβ|(Δξ)kβ×[|ψ(k+1)(ξ)|+θ(|ψ(k+1)(Δ)|,|ψ(k+1)(ξ)|)10h(z)dz]. (3.23)

    Combine (3.21) and (3.23) via triangular inequality, and we obtain the double inequality

    |Γ(kα+1)(CDαa+ψ)(ξ)+Γ(kβ+1)(CDβΔψ)(ξ)(ψ(k)(a)(ξa)kα+ψ(k)(Δ)(Δξ)kβ)|(Δξ)kβ[|ψ(k+1)(ξ)|+θ(|ψ(k+1)(Δ)|,|ψ(k+1)(ξ)|)10h(z)dz]+(ξa)kα[|ψ(k+1)(ξ)|+θ(|ψ(k+1)(a)|,|ψ(k+1)(ξ)|)10h(z)dz]. (3.24)

    Which leads to the following result:

    Theorem 3.2. Let I be an interval of R, a,ΔI(a<Δ) and α,β>0, such that k1<α,β<k, (kN). Let ψ:IR be a function such that ψACk+1. Assume that |ψ(k+1)| is a generalized modified h-convex function and θ a continuous bifunction, then

    |Γ(kα+1)(CDαa+ψ)(ξ)+Γ(kβ+1)(CDβΔψ)(ξ)(ψ(k)(a)(ξa)kα+ψ(k)(Δ)(Δξ)kβ)|(Δξ)kβ[|ψ(k+1)(ξ)|+θ(|ψ(k+1)(Δ)|,|ψ(k+1)(ξ)|)10h(z)dz]+(ξa)kα[|ψ(k+1)(ξ)|+θ(|ψ(k+1)(a)|,|ψ(k+1)(ξ)|)10h(z)dz] (3.25)

    holds.

    As a consequences, we have

    Corollary 3.3. If in (3.25), we set α=β, then

    |Γ(kα+1)(CDαa+ψ(ξ)+CDαΔψ(ξ))(ψ(k)(a)(ξa)kα+ψ(k)(Δ)(Δξ)kα)|(Δξ)kα[|ψ(k+1)(ξ)|+θ(|ψ(k+1)(Δ)|,|ψ(k+1)(ξ)|)10h(z)dz]+(ξa)kα[|ψ(k+1)(ξ)|+θ(|ψ(k+1)(a)|,|ψ(k+1)(ξ)|)10h(z)dz] (3.26)

    holds.

    Corollary 3.4. By taking θ(z,r)=zr,h(t)=ts,s[0,1] in (3.26), we obtain

    |Γ(kα+1)[(CDαa+ψ)(ξ)+(CDαΔψ)(ξ)](ψ(k)(a)(ξa)kα+ψ(k)(Δ)(Δξ)kα)|s((ξa)kα+(Δξ)kα)|ψ(k+1)(ξ)|s+1+(ξa)kα|ψ(k+1)(a)|+(Δξ)kα|ψ(k+1)(Δ)|s+1. (3.27)

    In particular for s=1, we have

    |Γ(kα+1)[(CDαa+ψ)(ξ)+(CDαΔψ)(ξ)](ψ(k)(a)(ξa)kα+ψ(k)(Δ)(Δξ)kα)|((ξa)kα+(Δξ)kα)|ψ(k+1)(ξ)|2+(ξa)kα|ψ(k+1)(a)|+(Δξ)kα|ψ(k+1)(Δ)|2. (3.28)

    Example 3.2. Let ψ,h,θ as in the Example 3.1. We verify easily that ψ(k+1)(ξ)=2(ξa) is generalized modified h-convex on [a,Δ]. From Corollary 3.3 and Lemma 2.1, we obtain

    lhs:=Γ(kα+1)CDαa+ψ(ξ)=2(ξa)kα+2(kα+1)(kα+2), (3.29)

    and

    rhs:=(ξa)kα[2(ξa)+(0+2(ξa))10h(z)dz]=2(ξa)kα+1(1+10h(z)dz).

    For the right derivative CDαΔψ(ξ), we have

    lhs:=(1)kΓ(kα+1)CDαΔψ(ξ)=2(Δξ)kα+2(kα+1)(kα+2) (3.30)

    and

    rhs:=2(Δξ)kα+1(1+10h(z)dz). (3.31)

    Now suppose that ψ:[a,Δ](0,) is a generalized modified h-convex function and symmetric about a+Δ2, then for all ξ[a,Δ] the inequality

    ψ(a+Δ2)ψ(ξ)(1+h(12)θ(1,1)) (3.32)

    is valid. Here θ is assumed to be nonnegatively homogeneous. Indeed, set

    r=aξaΔa+ΔΔξΔa,z=ΔξaΔa+αΔξΔa.

    Hence

    a+Δ2=r2+z2.

    Since ψ is generalized modified h-convex, symmetric about a+Δ2, and the bifunction θ is assumed to be nonnegatively homogeneous, it results in

    ψ(a+Δ2)=ψ(r2+z2)ψ(z)+h(12)θ(ψ(r),ψ(z))=ψ(ξ)+h(12)θ(ψ(ξ),ψ(ξ))=ψ(ξ)(1+h(12)θ(1,1)).

    Theorem 3.3. Let I be an interval of R, a,ΔI (a<Δ) and α,β1, k1<α,β<k,kN. Let ψ:IR be a real valued function such that ψACk. If ψ(k) is a positive, generalized modified h-convex and symmetric about a+Δ2 and furthermore the bifunction θ is nonnegatively homogeneous, then the following inequality holds

    N1θ{ψ(k)(a+Δ2)kβ+1+ψ(k)(a+Δ2)kα+1}Γ(kβ+1)(CDβ1Δψ)(a)(Δa)kβ+1+Γ(kα+1)(CDα1a+ψ)(Δ)(Δa)kα+1ψ(k)(Δ)+ψ(k)(a)+[θ(ψ(k)(Δ),ψ(k)(a))+θ(ψ(k)(a),ψ(k)(Δ))]10h(z)dz. (3.33)

    If, furthermore, θ is additive, then

    N1θ{ψ(k)(a+Δ2)kβ+1+ψ(k)(a+Δ2)kα+1}Γ(kβ+1)(CDβ1Δψ)(α)(Δa)kβ+1+Γ(kα+1)(CDα1a+ψ)(Δ)(Δa)kα+1Mθ(ψ(k)(Δ)+ψ(k)(a)) (3.34)

    holds. Here

    Nθ=1+h(12)θ(1,1),Mθ=1+θ(1,1)10h(z)dz.

    Proof. For all ξ[a,Δ],k1<α<k, we have ξ=ΔξΔaa+ξaΔaΔ and

    (ξα)kα(Δa)kα (3.35)

    and ψ(k) satisfies

    ψ(k)(ξ)ψ(k)(a)+h(ξaΔa)θ(ψ(k)(Δ),ψ(k)(a)). (3.36)

    Multiplying (3.35) and (3.36) and proceeding as above, we obtain

    Γ(kα+1)(CDα1Δψ)(a)[ψ(k)(a)+θ(ψ(k)(Δ),ψ(k)(a))10h(z)dz]×(Δα)kα+1. (3.37)

    Also, we have for ξ[a,Δ],k1<β<k,

    (Δξ)kβ(Δa)kβ (3.38)

    and

    ψ(k)(ξ)ψ(k)(Δ)+h(ΔξΔa)θ(ψ(k)(a),ψ(k)(Δ)). (3.39)

    Multiplying (3.39) and (3.38) and integrating over [a,Δ], we get

    Γ(kβ+1)(CDβ1Δψ)(a)[ψ(k)(Δ)+θ(ψ(k)(a),ψ(k)(Δ))10h(z)dz](Δa)kβ+1. (3.40)

    Adding (3.37) and (3.40), we obtain

    Γ(kβ+1)(CDβ1Δψ)(α)(Δa)kβ+1+Γ(kα+1)(CDα1a+ψ)(Δ)(Δa)kα+1 (3.41)
    ψ(k)(Δ)+ψ(k)(a)+[θ(ψ(k)(Δ),ψ(k)(a))+θ(ψ(k)(a),ψ(k)(Δ))]10h(z)dz. (3.42)

    Set Nθ=1+h(12)θ(1,1), thus (3.32) is written as

    ψ(k)(a+Δ2)Nθψ(k)(ξ),ξ[a,Δ]. (3.43)

    Multiplying by (ξa)kα on both sides of (3.43) and integrating the result over [a,Δ], it results that

    N1θψ(k)(a+Δ2)kα+1Γ(kα+1)(CDα1Δψ)(a)(Δa)kα+1. (3.44)

    Multiplying (3.43) by (Δξ)kβ, and integrating over [a,Δ], we obtain

    N1θψ(k)(a+Δ2)kβ+1Γ(kβ+1)(CDβ1a+ψ)(Δ)(Δa)kβ+1. (3.45)

    Adding (3.44) and (3.45), we obtain the first inequality. By combining the resulting inequality with (3.41), we obtain (3.33). Using the fact that θ is additive and nonnegatively homogeneous (3.34) results. That proves the claim.

    Corollary 3.5. By taking α=β in (3.33), then

    N1θ2ψ(k)(a+Δ2)kα+1Γ(kα+1)(CDα1a+ψ(Δ)+CDα1Δψ(a))(Δa)kα+1ψ(k)(Δ)+ψ(k)(a)+[θ(ψ(k)(Δ),ψ(k)(a))+θ(ψ(k)(a),ψ(k)(Δ))]10h(z)dz (3.46)

    holds.

    If, θ is additive, then

    2N1θψ(k)(a+Δ2)kα+1Γ(kα+1)(CDα1a+ψ(Δ)+CDα1Δψ(a))(Δa)kα+1Mθ(ψ(k)(Δ)+ψ(k)(a)). (3.47)

    Corollary 3.6. By setting h(t)=ts,s[0,1] in (3.47), it results that

    2sψ(k)(a+Δ2)(2s+θ(1,1))(kα+1)Γ(kα+1)[(CDα+1Δψ)(a)+(CDα+1a+ψ)(Δ)](Δa)kα+1ψ(k)(a)+ψ(k)(Δ)s+1(s+1+θ(1,1)).

    In particular, if h(t)=t, then

    2ψ(k)(a+Δ2)(2+θ(1,1))(kα+1)Γ(kα+1)[(CDα+1Δψ)(a)+(CDα+1a+ψ)(Δ)](Δa)kα+1ψ(k)(a)+ψ(k)(Δ)2(2+θ(1,1)).

    Theorem 3.4. Let ψACk(a,Δ), kN;k1<α<k. Assume that ψ(k) is positive, generalized modified h-convex on [a,Δ] and symmetric to a+Δ2. Assume that θ is nonnegatively homogeneous. Then

    ψ(k)(a+Δ2)1+h(12)θ(1,1)[(CDαΔψ)(a)+(CDαa+ψ)(Δ)]RkαΔ(ψ(k))2(a)+Rkαa+(ψ(k))2(Δ) (3.48)

    holds. Where Rkα. is the Riemann-Liouville integral operator of order kα.

    Proof. Since ψ(k) is generalized modified h-convex and θ is nonnegatively homogeneous, then we have for μ[0,1]

    ψ(k)(a+Δ2)=ψ(k)(μΔ+(1μ)a+μa+(1μ)Δ2)ψ(k)(μΔ+(1μ)a)+h(12)θ(ψ(k)(μa+(1μ)Δ),ψ(k)(μΔ+(1μ)a))=(ψ(k))2(μΔ+(1μ)a)[1+h(12)θ(1,1)]. (3.49)

    Multiplying (3.49) by μkα1ψ(k)(μΔ+(1μ)a) and integrating over [0,1], with respect to μ, we obtain

    ψ(k)(a+Δ2)10μkα1ψ(k)(μΔ+(1μ)a)dμ=ψ(k)(a+Δ2)(Δa)kαΓ(kα)(CDαa+ψ)(Δ),

    and

    [1+h(12)θ(1,1)]10μkα1(ψ(k))2(μΔ+(1μ)a)dμ=1+h(12)θ(1,1)(Δa)kαΔa(xa)kα1(ψ(k))2(x)dx=[1+h(12)θ(1,1)]Γ(kα)(Δa)kαRkαa+(ψ(k))2(Δ).

    Hence

    ψ(k)(a+Δ2)1+h(12)θ(1,1)(CDαa+f)(Δ)Rkαa+(ψ(k))2(Δ). (3.50)

    And similarly

    ψ(k)(a+Δ2)ψ(k)(μa+(1μ)Δ)[1+h(12)θ(1,1)] (3.51)

    by multiplying (3.51) by μkα1ψ(k)(μa+(1μ)Δ), integration yields to

    ψ(k)(a+Δ2)10μkα1ψ(k)(μa+(1μ)Δ)dμ=ψ(k)(a+Δ2)(Δa)kαΓ(kα)(CDαΔψ)(a)

    and

    [1+h(12)θ(1,1)]10μkα1(ψ(k))2(μa+(1μ)Δ)dμ=[1+h(12)θ(1,1)]Γ(kα)(Δa)kαRkαΔ(ψ(k))2(a), (3.52)

    it results that

    ψ(k)(a+Δ2)1+h(12)θ(1,1)(CDαΔψ)(a)RkαΔ(ψ(k))2(a). (3.53)

    By adding (3.50) and (3.53), we get (3.48). That proves the claim.

    Corollary 3.7. Under the same assumptions as Theorem 3.4, if h(t)=ts,s[0,1], then

    2sψ(k)(a+Δ2)2s+θ(1,1)[(CDαΔψ)(a)+(CDαa+ψ)(Δ)]RkαΔ(ψ(k))2(a)+Rkαa+(ψ(k))2(Δ).

    If θ(u,v)=θ(v,u), then

    ψ(k)(a+Δ2)(CDαΔψ(a)+CDαa+ψ(Δ))RkαΔ(ψ(k))2(α)+Rkαa+(ψ(k))2(Δ) (3.54)

    is valid.

    In this work, we have established some estimates including once the derivatives of Caputo and another time the integrals of Riemann-Liouville and the derivatives of Caputo for a function whose derivative order kth (kN) is generalized modified h-convex and symmetrical in the middle. Estimates of consequences for special classes of convex functions and s-convex functions in [0,1] were obtained. The estimates we have just made are compared to those presented in the results [8].

    Future research could focus on extending these results to variable order or other types of convex functions or exploring inequalities for functions that do not necessarily have symmetry. Furthermore, the application of derived inequalities to concrete problems in applied mathematics, physics, or engineering could still validate the practical significance of our theoretical contributions. Taking these limitations into account could lead to a more complete understanding and wider applicability of fractional inequalities.

    HB: conceptualization, writing original draft preparation, writing review and editing, supervision; MSS: conceptualization, writing original draft preparation, writing review and editing, supervision; HG: conceptualization, writing review and editing, supervision; UFG: funding, writing review and editing. All authors have read and approved the final version of the manuscript for publication.

    The work of U.F.-G. was supported by the government of the Basque Country for the ELKARTEK24/78 and ELKARTEK24/26 research programs, respectively.

    The authors declare no competing interests.



    [1] Z. W. Birnbaum, R. C. McCarty, A distribution-free upper confidence bound for Pr(Y<X) based on independent samples of x and y, Ann. Math. Stat., 29 (1958), 558–562.
    [2] S. Kotz, M. Lumelskii, M. Pensky, The stress-strength model and its generalizations, World Scientific, 2003. https://doi.org/10.1142/5015
    [3] M. E. Ghitany, D. K. Al-Mutairi, S. M Aboukhamseen, Estimation of the reliability of a stress-strength system from power Lindley distributions, Commun. Stat., 44 (2015), 118–136. https://doi.org/10.1080/03610918.2013.767910 doi: 10.1080/03610918.2013.767910
    [4] A. Asgharzadeh, R. Valiollahi, M. Z. Raqab, Estimation of Pr(Y<X) for the two-parameter generalized exponential records, Commun. Stat., 46 (2017), 371–394. https://doi.org/10.1080/03610918.2014.964046 doi: 10.1080/03610918.2014.964046
    [5] B. X. Wang, Y. Geng, J. X. Zhou, Inference for the generalized exponential stress-strength model, Appl. Math. Model., 53 (2018), 267–275. https://doi.org/10.1016/j.apm.2017.09.012 doi: 10.1016/j.apm.2017.09.012
    [6] T. Kayal, Y. M. Tripathi, S. Dey, S. J. Wu, On estimating the reliability in a multicomponent stress-strength model based on Chen distribution, Commun. Stat., 49 (2020), 2429–2447. https://doi.org/10.1080/03610926.2019.1576886 doi: 10.1080/03610926.2019.1576886
    [7] J. G. Ma, L. Wang, Y. M. Tripathi, M. K. Rastogi, Reliability inference for stress-strength model based on inverted exponential Rayleigh distribution under progressive type-Ⅱ censored data, Commun. Stat., 52 (2023), 2388–2407. https://doi.org/10.1080/03610918.2021.1908552 doi: 10.1080/03610918.2021.1908552
    [8] V. Agiwal, Bayesian estimation of stress strength reliability from inverse Chen distribution with application on failure time data, Ann. Data Sci., 10 (2023), 317–347. https://doi.org/10.1007/s40745-020-00313-w doi: 10.1007/s40745-020-00313-w
    [9] A. M. Sarhan, H. T. Ahlam, Stress-strength reliability under partially accelerated life testing using Weibull model, Sci. Afr., 20 (2023), e01733. https://doi.org/10.1016/j.sciaf.2023.e01733 doi: 10.1016/j.sciaf.2023.e01733
    [10] J. E. Contreras-Reyes, D. I. Gallardo, O. Kharazmi, Time-dependent residual Fisher information and distance for some special continuous distributions, Commun. Stat., 2022. https://doi.org/10.1080/03610918.2022.2146136
    [11] H. K. T. Ng, D. Kundu, P. S. Chan, Statistical analysis of exponential lifetimes under an adaptive Type-Ⅱ progressive censoring scheme, Naval Res. Log., 56 (2009), 687–698. https://doi.org/10.1002/nav.20371 doi: 10.1002/nav.20371
    [12] M. A. Almuqrin, M. M. Salah, E. A. Ahmed, Statistical inference for competing risks model with adaptive progressively type-Ⅱ censored gompertz life data using industrial and medical applications, Mathematic, 10 (2022), 4274. https://doi.org/10.3390/math10224274 doi: 10.3390/math10224274
    [13] L. A. Al-Essa, A. A. Soliman, G. A. Abd-Elmougod, H. M. Alshanbari, Adaptive type-Ⅱ hybrid progressive censoring samples for statistical inference of comparative inverse Weibull distributions, Axioms, 12 (2023), 973. https://doi.org/10.3390/axioms12100973 doi: 10.3390/axioms12100973
    [14] S. Dutta, S. Dey, S. Kayal, Bayesian survival analysis of logistic exponential distribution for adaptive progressive type-Ⅱ censored data, Comput. Stat., 39 (2024), 2109–2155. https://doi.org/10.1007/s00180-023-01376-y doi: 10.1007/s00180-023-01376-y
    [15] Q. Lv, Y. Tian, W. Gui, Statistical inference for Gompertz distribution under adaptive type-Ⅱ progressive hybrid censoring, J. Appl. Stat., 51 (2024), 451–480. https://doi.org/10.1080/02664763.2022.2136147 doi: 10.1080/02664763.2022.2136147
    [16] M. Xie, C. D. Lai, Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function, Reliab. Eng. Syst. Saf., 52 (1996), 87–93. https://doi.org/10.1016/0951-8320(95)00149-2 doi: 10.1016/0951-8320(95)00149-2
    [17] L. Wang, S. Dey, Y. M. Tripathi, S. J. Wu, Reliability inference for a multicomponent stress-strength model based on Kumaraswamy distribution, J. Comput. Appl. Math., 376 (2020), 112823. https://doi.org/10.1016/j.cam.2020.112823 doi: 10.1016/j.cam.2020.112823
    [18] M. Xie, Y. Tang, T. N. Goh, A modified Weibull extension with bathtub-shaped failure rate function, Reliab. Eng. Syst. Saf., 76 (2002), 279–285. https://doi.org/10.1016/S0951-8320(02)00022-4 doi: 10.1016/S0951-8320(02)00022-4
    [19] Z. Chen, A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function, Stat. Probab. Lett., 49 (2000), 155–161. https://doi.org/10.1016/S0167-7152(00)00044-4 doi: 10.1016/S0167-7152(00)00044-4
    [20] S. J. Wu, Estimation of the two-parameter bathtub-shaped lifetime distribution with progressive censoring, J. Appl. Stat., 35 (2008), 1139–1150. https://doi.org/10.1080/02664760802264996 doi: 10.1080/02664760802264996
    [21] M. K. Rastogi, Y. M. Tripathi, S. J. Wu, Estimating the parameters of a bathtub-shaped distribution under progressive type-Ⅱ censoring, J. Appl. Stat., 39 (2018), 2389–2411. https://doi.org/10.1080/02664763.2012.710899 doi: 10.1080/02664763.2012.710899
    [22] T. Kayal, Y. M. Tripathi, D. P. Singh, M. K. Rastogi, Estimation and prediction for Chen distribution with bathtub shape under progressive censoring, J. Stat. Comput. Simul., 87 (2017), 348–366. https://doi.org/10.1080/00949655.2016.1209199 doi: 10.1080/00949655.2016.1209199
    [23] E. A. Ahmed, Z. A. Alhussain, M. M. Salah, H. H. Ahmed, M. S. Eliwa, Inference of progressively type-Ⅱ censored competing risks data from Chen distribution with an application, J. Appl. Stat., 47 (2020), 2492–2524. https://doi.org/10.1080/02664763.2020.1815670 doi: 10.1080/02664763.2020.1815670
    [24] A. M. Sarhan, B. Smith, D. C. Hamilton, Estimation of P (Y<X) for a two-parameter bathtub shaped failure rate distribution, Int. J. Stat. Probab., 4 (2015), 33–45. http://doi.org/10.5539/ijsp.v4n2p33 doi: 10.5539/ijsp.v4n2p33
    [25] B. Tarvirdizade, M. Ahmadpour, Estimation of the stress-strength reliability for the two-parameter bathtub-shaped lifetime distribution based on upper record values, Stat. Methodol., 31 (2016), 58–72. https://doi.org/10.1016/j.stamet.2016.01.005 doi: 10.1016/j.stamet.2016.01.005
    [26] M. Z. Raqab, O. M. Bdair, F. M. Al-Aboud, Inference for the two-parameter bathtub-shaped distribution based on record data, Metrika, 81 (2018), 229–253. https://doi.org/10.1007/s00184-017-0641-0 doi: 10.1007/s00184-017-0641-0
    [27] S. Shoaee, E. Khorram, Stress-strength reliability of a two-parameter bathtub-shaped lifetime distribution based on progressively censored samples, Commun. Stat., 44 (2015), 5306–5328. https://doi.org/10.1080/03610926.2013.821485 doi: 10.1080/03610926.2013.821485
    [28] L. Wang, K. Wu, Y. M. Tripathi, C. Lodhi, Reliability analysis of multicomponent stress-strength reliability from a bathtub-shaped distribution, J. Appl. Stat., 49 (2022), 122–142. https://doi.org/10.1080/02664763.2020.1803808 doi: 10.1080/02664763.2020.1803808
    [29] B. Efron, R. J. Tibshirani, An introduction to the bootstrap, CRC press, 1994.
    [30] D. Kundu, R. D. Gupta, Estimation of P (y<x) for weibull distributions, IEEE Trans. Reliab., 55 (2006), 270–280. https://doi.org/10.1109/TR.2006.874918 doi: 10.1109/TR.2006.874918
    [31] H. R. Varian, A Bayesian approach to real estate assessment, North-Holland, 1975,195–208.
    [32] R. Calabria, G. Pulcini, Point estimation under asymmetric loss functions for left-truncated exponential samples, Commun. Stat. Theory Meth., 25 (1996), 585–600. https://doi.org/10.1080/03610929608831715 doi: 10.1080/03610929608831715
    [33] M. J. Jozani, É. Marchand, A. Parsian, Bayesian and robust Bayesian analysis under a general class of balanced loss functions, Stat. Pap., 53 (2012), 51–60. https://doi.org/10.1007/s00362-010-0307-8 doi: 10.1007/s00362-010-0307-8
    [34] J. Ahmadi, M. J. Jozani, E. Marchand, A. Parsian, Bayes estimation based on k-record data from a general class of distributions under balanced type loss functions, J. Stat. Plan. Infer., 139 (2009), 1180–11897. https://doi.org/10.1016/j.jspi.2008.07.008 doi: 10.1016/j.jspi.2008.07.008
    [35] A. Zellner, Bayesian and non-Bayesian estimation using balanced loss functions, In: S. S. Gupta, J. O. Burger, Statistical decision theory and related topics, Springer, 1994. https://doi.org/10.1007/978-1-4612-2618-5_28
    [36] W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57 (1970), 97–109. https://doi.org/10.1093/biomet/57.1.97 doi: 10.1093/biomet/57.1.97
    [37] C. P. Robert, G. Casella, Monte Carlo statistical methods, Springer, 2004. https://doi.org/10.1007/978-1-4757-4145-2
    [38] G. Casella, E. I. George, Explaining the Gibbs sampler, Amer. Stat., 46 (1992), 167–74. https://doi.org/10.1080/00031305.1992.10475878
    [39] M. H. Chen, Q. M. Shao, Monte Carlo estimation of Bayesian credible and HPD intervals, J. Comput. Graph. Stat., 8 (1999), 69–92. https://doi.org/10.1080/10618600.1999.10474802 doi: 10.1080/10618600.1999.10474802
    [40] M. Bader, A. Priest, Statistical aspects of fiber and bundle strength in hybrid composites, In: T. K. Hayashi, S. Umekawa, Progress in science and engineering composites, ICCM-IV, 1982.
    [41] Ç. Çetinkaya, A. I. Genç, Stress-strength reliability estimation under the standard two-sided power distribution, Appl. Math. Modell., 65 (2019), 72–88. https://doi.org/10.1016/j.apm.2018.08.008 doi: 10.1016/j.apm.2018.08.008
    [42] M. R. Sheldon, Simulation, Academic Press, 2012.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1036) PDF downloads(69) Cited by(0)

Figures and Tables

Figures(5)  /  Tables(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog