In this article, the generalized (N+1)-dimensional nonlinear Boussinesq equation is analyzed via Lie symmetry method. Lie point symmetries of the considered equation and accompanying invariant groups are computed. After transforming the equation into a nonlinear ordinary differential equation (ODE), analytical solutions of various types are obtained using the (G′/G,1/G) expansion method. The concept of nonlinear self-adjointness is used in order to determine nonlocal conservation laws of the equation in lower dimensions. By selecting the appropriate parameter values, the study provides a graph of the solutions to the equation under study.
Citation: Amjad Hussain, Muhammad Khubaib Zia, Kottakkaran Sooppy Nisar, Velusamy Vijayakumar, Ilyas Khan. Lie analysis, conserved vectors, nonlinear self-adjoint classification and exact solutions of generalized (N+1)-dimensional nonlinear Boussinesq equation[J]. AIMS Mathematics, 2022, 7(7): 13139-13168. doi: 10.3934/math.2022725
[1] | Shiqi Ma . On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, 2021, 29(3): 2391-2415. doi: 10.3934/era.2020121 |
[2] | Xinlin Cao, Huaian Diao, Jinhong Li . Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29(1): 1753-1782. doi: 10.3934/era.2020090 |
[3] | Xiaoping Fang, Youjun Deng, Wing-Yan Tsui, Zaiyun Zhang . On simultaneous recovery of sources/obstacles and surrounding mediums by boundary measurements. Electronic Research Archive, 2020, 28(3): 1239-1255. doi: 10.3934/era.2020068 |
[4] | Yan Chang, Yukun Guo . Simultaneous recovery of an obstacle and its excitation sources from near-field scattering data. Electronic Research Archive, 2022, 30(4): 1296-1321. doi: 10.3934/era.2022068 |
[5] | Deyue Zhang, Yukun Guo . Some recent developments in the unique determinations in phaseless inverse acoustic scattering theory. Electronic Research Archive, 2021, 29(2): 2149-2165. doi: 10.3934/era.2020110 |
[6] | Koung Hee Leem, Jun Liu, George Pelekanos . A regularized eigenmatrix method for unstructured sparse recovery. Electronic Research Archive, 2024, 32(7): 4365-4377. doi: 10.3934/era.2024196 |
[7] | Messoud Efendiev, Vitali Vougalter . Linear and nonlinear non-Fredholm operators and their applications. Electronic Research Archive, 2022, 30(2): 515-534. doi: 10.3934/era.2022027 |
[8] | Won-Ki Seo . Fredholm inversion around a singularity: Application to autoregressive time series in Banach space. Electronic Research Archive, 2023, 31(8): 4925-4950. doi: 10.3934/era.2023252 |
[9] | Yanjiao Li, Yue Zhang . Dynamic behavior on a multi-time scale eco-epidemic model with stochastic disturbances. Electronic Research Archive, 2025, 33(3): 1667-1692. doi: 10.3934/era.2025078 |
[10] | Zhaoyan Meng, Shuting Lyu, Mengqing Zhang, Xining Li, Qimin Zhang . Sufficient and necessary conditions of near-optimal controls for a stochastic listeriosis model with spatial diffusion. Electronic Research Archive, 2024, 32(5): 3059-3091. doi: 10.3934/era.2024140 |
In this article, the generalized (N+1)-dimensional nonlinear Boussinesq equation is analyzed via Lie symmetry method. Lie point symmetries of the considered equation and accompanying invariant groups are computed. After transforming the equation into a nonlinear ordinary differential equation (ODE), analytical solutions of various types are obtained using the (G′/G,1/G) expansion method. The concept of nonlinear self-adjointness is used in order to determine nonlocal conservation laws of the equation in lower dimensions. By selecting the appropriate parameter values, the study provides a graph of the solutions to the equation under study.
In this paper, we mainly focus on the random inverse problems associated with the following time-harmonic Schrödinger system
(−Δ−E+potential)u(x)=source,x∈Rn, | (1.1) |
where
u(x)=α⋅uin(x)+usc(x) | (1.2) |
where
limr→∞r(∂usc∂r−i√Eusc)=0,r:=|x|, | (1.3) |
that characterizes the outgoing nature of the scattered field
Under different assumptions of the potential and source, of the dimension, and of the incident wave, the regularity of the Schrödinger system (1.1)-(1.3) behaves differently and calls for different techniques for the recovery procedure. The randomness of the Schrödinger system (1.1)-(1.3) can present either in the potential, or in the source, or in both. In this paper we shall investigate all of these three cases, survey the results in the literature and give details of part of the proofs.
There are rich literature on the inverse scattering problem using either passive or active measurements as data. For a fixed potential, the recovery of the deterministic unknown source of the system is called the inverse source problem. For the theoretical analysis and computational methods of the inverse source problems, readers may refer to [3,4,5,9,31,34] and references therein. The simultaneous recovery of the deterministic unknown source and potential are also studied in the literature. In [17,26], the authors considered the simultaneous recovery of an unknown source and its surrounding medium parameter. This type of inverse problems also arises in the deterministic magnetic anomaly detections using geomagnetic monitoring [11,12] with passive measurements. While [11,12,17,26] focus on deterministic setting with passive measurements, the works [2,6,7,18,19,20,27,33] pay attention to random settings. We are particularly interested in the case with a single realization of the random sample. The single-realization recovery has been studied in the literature. In this paper we mainly focus on [8,18,19,20,21,22,23,24,25].
In [18,19], Lassas et. al. considered the inverse scattering problem for the two-dimensional random Schrödinger system
In 2019, Caro et. al. [8] considered an inverse scattering problem for an
In [20], Li, et. al. studied the case where the potential is zero and the source is migr field. In [24] Li, et. al. studied the same setting but with the energy level
Then in [23], Li, et. al. further extended their study to Maxwell's equation. The recovery procedure in these three works share the same idea–the leading order term in the Bonn expansion gives the recovery of the desired statistics while the higher order terms converge to zero. The proof of these converges involve the utilization of Fourier integral operator. We shall give detailed explanations in Section 3.
In [21], the authors consider the direct and inverse scatterings for (1.1)–(1.3) with a deterministic potential and a random source. The random source is a generalized Gaussian random field with local mean value function and local variance function, which are assumed to be bounded and compactly supported. The well-posedness of the direct scattering has been formulated in some weighted
In [25], the authors extended the work [21] to the case where the source is a migr field. The direct scattering problem is formulated in a similar manner as in [21], while the technique used in the inverse scattering problem differs from that of [21]. In order to analyze the asymptotics of higher order terms in the Bonn expansion corresponding to the migr fields, stationary phase lemma and pseudodifferential operator are utilized.
Then the authors extended the work [25] to the case where both the potential and the source are random (of migr type), and the extended result is presented in [22]. The results between [21] and [22,25] have two major differences. First, in [21] the random part of the source is assumed to be a Gaussian white noise, while in [22] the potential and the source are assumed to be migr fields. The migr field can fit larger range of randomness by tuning its rough order and rough strength. Second, in [22] both the source and potential are random, while in [25] the potential is assumed to be deterministic. These two facts make [22] much more challenging than that in [25]. The techniques used in the estimates of higher order terms in [22] are pseudodifferential operators and microlocal analysis and we shall give a detailed treatment in Section 4.
Although the techniques used in [21,22,25] are different, the recovery formulae fall into the same pattern. The thesis [28] partially collected these three works[21,22,25] and readers may refer to the thesis for a more coherent discussion on this topic.
In this paper we mainly pay attention to two types of random model, the Gaussian white noise and the migr field. The Gaussian white noise is well-known and readers may refer to [21,Section 2.1] for more details. Here we give a brief introduction to the migr field. We assume
ω∈Ω ↦ 〈f(⋅,ω),φ〉∈C,φ∈S(Rn), |
is a Gaussian random variable whose probabilistic measure depends on the test function
Eω(〈¯f(⋅,ω)−E(f(⋅,ω)),φ〉〈f(⋅,ω)−E(f(⋅,ω)),ψ〉), | (1.4) |
can be understood as the covariance of
Cf:φ∈S(Rn) ↦ Cf(φ)∈S′(Rn), |
in a way that \(\mathfrak C_f (\varphi) \colon \psi \in \mathscr{S}({\mathbb{R}^n}) \ \mapsto \ (\mathfrak C_f (\varphi))(\psi) \in \mathbb C\) where
(Cf(φ))(ψ):=Eω(〈¯f(⋅,ω)−E(f(⋅,ω)),φ〉〈f(⋅,ω)−E(f(⋅,ω)),ψ〉). |
The operator
Definition 1.1 (Migr field). A generalized Gaussian random distribution
1. the expectation
2.
3. the covariance operator
4.
We call a microlocally isotropic Gaussian random distribution as an migr field.
For the case where both the source and the potential are deterministic and are
usc(x)=eik|x||x|(n−1)/2u∞(ˆx,k,d)+o(|x|−(n−1)/2),x∈Rn. |
In (1.1), let us denote the source term as
In [18,19] the authors considered the inverse scattering problem for the two-dimensional random Schrödinger system
Theorem 1.1. In [18,19], for
R(x,y)=limK→+∞1K−1∫K1k2+m|usc(x,y,k,ω)|2dk |
holds almost surely where
R(x,x):=126+mπ2∫R2μq(z)|x−z|2dz,x∈U. |
and the
In [8], the authors considered
Theorem 1.2. In [8], the limit
ˆμq(2τˆx)≃limK→+∞1K∫2KKkmu∞(ˆx,−ˆx,k)¯u∞(ˆx,−ˆx,k+τ)dk,ˆx∈S2, τ>0. |
holds almost surely.
We note that the near-field data are used in [18,19], while in [8], the authors used the far-field data.
Part of the results in [20] and [23,24] are similar to each other and we only survey the first result in [20]. In [20] the authors studied the Helmholtz equation
Theorem 1.3. In [20], the limit
∫μf(z)|x−z|dz≃limK→+∞1K−1∫K1k1+m|usc(x,k,ω)|2dk,x∈U, |
holds almost surely.
In [21], the authors considered direct and inverse scattering for (1.1)–(1.3) with an unknown deterministic potential and a Gaussian noise source of the form
Theorem 1.4. In [21], the identity
^σ2(x)=4√2πlimj→+∞1Kj∫2KjKj¯u∞(ˆx,k,ω)⋅u∞(ˆx,k+τ,ω)dk. |
holds almost surely.
The paper [25] extended the work [21] to the case where the source is a migr field
Theorem 1.5. In [25], assume
ˆμ(τˆx)=4√2πlimj→+∞1Kj∫2KjKjkm¯u∞(ˆx,k,ω)⋅u∞(ˆx,k+τ,ω)dk, |
holds for
Then in [22] the authors further extended the work [25] to the case where both the potential
dist(CH(Df),CH(Dq)):=inf{|x−y|;x∈CH(Df),y∈CH(Dq)}>0, | (1.5) |
where
Theorem 1.6. In [22], suppose that
2<mf<4, mf<5mq−11. |
Assume that (1.5) is satisfied and
ˆμf(τˆx)={limK→+∞4√2πK∫2KKkmf¯u∞(ˆx,k,ω)u∞(ˆx,k+τ,ω)dk,ˆx⋅n≥0, ¯ˆμf(−τˆx),ˆx⋅n<0, | (1.6) |
where
When
ˆμq(τˆx)={limK→+∞4√2πK∫2KKkmq¯u∞(ˆx,k,−ˆx,ω)u∞(ˆx,k+τ2,−ˆx,ω)dk, ˆx⋅n≥0, ¯ˆμf(−τˆx),ˆx⋅n<0, | (1.7) |
where
Remark 1.1. In Theorem 1.6, the data sets
Readers should note that the recovery formulae in Theorems 1.1–1.6 only use a single realization of the randomness; the terms on the left-hand-sides are independent of the random sample
The rest of this paper is organized as follows. In Section 2, we first give some preliminaries and present the well-posedness of the direct problems. In Section 3, we give the sketch of the proofs in [8,18,19,20,23,24]. Section 4 is devoted to the details of the works [22,25]. We conclude the paper in Section 5 with some remarks and open problems.
Due to the presence of the randomness, the regularity of the potential and/or the source may be too bad to fall into the scenarios of standard PDEs techniques. In this section, we show some details used in reformulating the direct problems of (1.1)-(1.3) in a proper sense. Before that, we first present some preliminaries as well as some facts related to the migr field for the subsequent use.
For convenient reference and self- containedness, we first present some preliminary and auxiliary results. In this paper we mainly focus on the two- and three-dimensional cases. Nevertheless, some of the results derived also hold for higher dimensions and in those cases, we choose to present the results in the general dimension
Throughout the paper, we write
The Fourier transform and inverse Fourier transform of a function
\begin{align*} & \mathcal{F} \varphi (\xi) = \widehat \varphi(\xi) : = (2\pi)^{-n/2} \int e^{-ix\cdot \xi} \varphi(x) \,\mathrm{d}{x}, \\ & \mathcal{F}^{-1} \varphi (\xi) : = (2\pi)^{-n/2} \int e^{ix\cdot \xi} \varphi(x) \,\mathrm{d}{x}. \end{align*} |
Set
\Phi(x,y) = \Phi_k(x,y) : = \frac {e^{ik|x-y|}}{4\pi|x-y|}, \quad x\in\mathbb{R}^3\backslash\{y\}. |
\begin{equation} ( {\mathcal{R}_{k}} \varphi)(x) : = \int_{ \mathbb{R}^3} \Phi_k(x,y) \varphi(y) \,\mathrm{d}{{y}}, \quad x \in \mathbb{R}^3, \end{equation} | (2.1) |
where
Write
\begin{equation} \begin{aligned} \left\| {{\varphi}} \right\|_{L_\delta^p( {\mathbb{R}^n})} : = \ & \left\| {{〈\cdot〉^{\delta} \varphi(\cdot)}} \right\|_{L^p( {\mathbb{R}^n})} = \big( \int_{ {\mathbb{R}^n}} 〈x〉^{p\delta} |\varphi|^p \,\mathrm{d}{{x}} \big)^{\frac 1 p}, \\ L_\delta^p( {\mathbb{R}^n}) : = \ & \{\, \varphi \in L_{loc}^1( {\mathbb{R}^n}) \,;\, \left\| {{\varphi}} \right\|_{L_\delta^p( {\mathbb{R}^n})} < +\infty \,\}. \end{aligned} \end{equation} | (2.2) |
We also define
\begin{equation*} \left\| {{f}} \right\|_{H_\delta^{s,p}( {\mathbb{R}^n})} : = \left\| {{(I-\Delta)^{s/2} f}} \right\|_{L_\delta^p( {\mathbb{R}^n})}, \ H_\delta^{s,p}( {\mathbb{R}^n}) = \{ f \in \mathscr{S}'; \left\| {{f}} \right\|_{H_\delta^{s,p}( {\mathbb{R}^n})} < +\infty\}, \end{equation*} |
where
\begin{equation} \left\| {{f}} \right\|_{H_\delta^s( {\mathbb{R}^n})} = \left\| {{〈\cdot〉^s \widehat f(\cdot)}} \right\|_{H^\delta( {\mathbb{R}^n})}. \end{equation} | (2.3) |
Let
\big| (D_{x}^{\alpha}D_{\xi}^{\beta}\sigma)(x,\xi) \big| \leq C_{\alpha, \beta}(1+|\xi|)^{m-|\beta|}, \quad \forall x, \xi \in {\mathbb{R}^n}. |
We call any function
\begin{align*} (T_{\sigma}\varphi)(x) & : = (2\pi)^{-n/2} \int_{ {\mathbb{R}^n}} e^{ix \cdot \xi} \sigma(x,\xi) \hat{\varphi}(\xi) \,\mathrm{d}{{\xi}} \\ & \ = (2\pi)^{-n} \iint_{ {\mathbb{R}^n} \times {\mathbb{R}^n}} e^{i(x-y) \cdot \xi} \sigma(x,\xi) \varphi(y) \,\mathrm{d}{y} \,\mathrm{d}{{\xi}}, \quad \forall \varphi \in \mathscr{S}( {\mathbb{R}^n}). \end{align*} |
Recall Definition 1.1. Lemma 2.1 below shows how the rough order of a migr field is related to its Sobolev regularity.
Lemma 2.1. Let
Proof of Lemma 2.1. See [8,Proposition 2.4].
By the Schwartz kernel theorem (see [15,Theorem 5.2.1]), there exists a kernel
\begin{equation} (\mathfrak C_h \varphi)(\psi) = \mathbb E_\omega ( 〈\overline{h(\cdot,\omega)},\varphi〉 〈h(\cdot,\omega),\psi〉) = \iint K_h(x,y) \varphi(x) \psi(y) \,\mathrm{d}{x} \,\mathrm{d}{y}, \end{equation} | (2.4) |
for all
\left\{\begin{array}{l} K_{h}(x, y) = (2 \pi)^{-n} \int e^{i(x-y) \cdot \xi} c_{h}(x, \xi) \mathrm{d} \xi, \;\;\;\;\;\;\;\;\;\;\;\;(\rm 2.5a)\\ c_{h}(x, \xi) = \int e^{-i \xi \cdot(x-y)} K_{h}(x, y) \mathrm{d} x,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(\rm 2.5b) \end{array}\right. |
hold in the distributional sense, and the integrals in (2.5) shall be understood as oscillatory integrals. {Despite} the fact that
K_h(x,y) \sim \mathbb E_\omega \big( \overline{h(x,\omega)} h(y,\omega) \big). |
One way to study the direct problem of (1.1)-(1.3) is to transform it into the Lippmann-Schwinger equation, and then use the Bonn expansion to define a solution. To that end, the estimate of the operator norm of the resolvent
\begin{equation*} (I - {\mathcal{R}_{k}} q) u^{sc} = \alpha {\mathcal{R}_{k}} q u^{in} - {\mathcal{R}_{k}} f. \end{equation*} |
We demonstrate two lemmas dealing with the lack of regularity when utilizing Agmon's estimates. Lemma 2.2 (cf. [25,Lemma 2.2]) shows the resolvent can take a migr field as an input without any trouble, while Lemma 2.3 (cf. [22,Theorem 2.1]) gives a variation of Agmon's estimate to fit our own problem settings.
Lemma 2.2. Assume
Proof. We split
\begin{align} & \mathbb{E} ( \left\| {{ {\mathcal{R}_{k}} (f - \mathbb{E}f)(\cdot,\omega)}} \right\|_{L_{-1/2-\epsilon}^2}^2 ) \\ = & \int_{ \mathbb{R}^3} 〈x〉^{-1-2\epsilon} \mathbb{E} ( 〈\overline {f - \mathbb{E}f}, \Phi_{-k,x}〉 〈f - \mathbb{E}f, \Phi_{k,x}〉 ) \,\mathrm{d}{{x}} = \int_{ \mathbb{R}^3} 〈x〉^{-1-2\epsilon} 〈\mathfrak C_f \Phi_{-k,x}, \Phi_{k,x}〉 \,\mathrm{d}{{x}} \\ \simeq & \int 〈x〉^{-1-2\epsilon} \int_{D_f} \big( \int_{D_f} \frac{\mathcal I(y,z) e^{-ik|x-z|}}{|x-z| \cdot |y-z|^2} \,\mathrm{d}{{z}} \big) \cdot \frac{e^{ik|x-y|}}{|x-y|} \,\mathrm{d}{{y}} \,\mathrm{d}{{x}}, \end{align} | (2.6) |
where
\mathcal I(y,z) : = \int_{ \mathbb{R}^3} |y-z|^2 e^{i(y-z) \cdot \xi} c_f(y,\xi) \,\mathrm{d}{{\xi}}. |
When
\begin{align} |\mathcal I(y,z)| & = \big| \sum\limits_{j = 1}^3 \int_{ \mathbb{R}^3} e^{i(y-z) \cdot \xi} (\partial_{\xi_j}^2 c_f)(y,\xi) \,\mathrm{d}{{\xi}} \big| \sum\limits_{j = 1}^3 \int_{ \mathbb{R}^3} C_j 〈\xi〉^{-m-2} \,\mathrm{d}{{\xi}} \leq C_0 < +\infty, \end{align} | (2.7) |
for some constant
\begin{equation} \int_{D_f} |x-y|^{-j} \,\mathrm{d}{{y}} \leq C_{f,j} 〈x〉^{-j}, \quad \forall x \in \mathbb{R}^3, \end{equation} | (2.8) |
for some constant
\begin{align*} & \mathbb{E} ( \left\| {{ {\mathcal{R}_{k}} (f - \mathbb{E}f)(\cdot,\omega)}} \right\|_{L_{-1/2-\epsilon}^2}^2 ) \nonumber\\ \lesssim & \int 〈x〉^{-1-2\epsilon} \big( \iint_{D_f \times D_f} (|x-z| \cdot |y-z|^2 \cdot |x-y|)^{-1} \,\mathrm{d}{{z}} \,\mathrm{d}{{y}} \big) \,\mathrm{d}{{x}} \nonumber\\ \leq & \int 〈x〉^{-1-2\epsilon} C_f 〈x〉^{-2} \,\mathrm{d}{{x}} \leq C_f < +\infty, \end{align*} |
which gives
\begin{equation} \mathbb{E} ( \left\| {{ {\mathcal{R}_{k}} (f - \mathbb{E}f)(\cdot,\omega)}} \right\|_{L_{-1/2-\epsilon}^2}^2 ) \leq C_f < +\infty. \end{equation} | (2.9) |
By using the Hölder inequality applied to the probability measure, we obtain from (2.9) that
\begin{equation} \mathbb{E} \left\| {{ {\mathcal{R}_{k}} (f - \mathbb{E}f)}} \right\|_{L_{-1/2-\epsilon}^2} \leq [ \mathbb{E} ( \left\| {{ {\mathcal{R}_{k}} (f - \mathbb{E}f)}} \right\|_{L_{-1/2-\epsilon}^2}^2 ) ]^{1/2} \leq C_f^{1/2} < +\infty, \end{equation} | (2.10) |
for some constant
The proof is complete.
Lemma 2.3. For any
\left\| {{ {\mathcal{R}_{k}} \varphi}} \right\|_{H_{-1/ 2 - \epsilon}^s( \mathbb{R}^3)} \leq C_{\epsilon,s} k^{-(1 - 2s)} \left\| {{\varphi}} \right\|_{H_{1/2 + \epsilon}^{-s}( \mathbb{R}^3)}, \quad \varphi \in H_{1/2 + \epsilon}^{-s}( \mathbb{R}^3). |
Proof. We adopt the concept of Limiting absorption principle to first show desired results on a family of operator
Define an operator
\begin{equation} \mathcal{R}_{k,\tau} \varphi(x) : = (2\pi)^{-3/2} \int_{ \mathbb{R}^3} e^{ix\cdot \xi} \frac {\hat \varphi(\xi)} {|\xi|^2 - k^2 - i\tau} \,\mathrm{d}{\xi}, \end{equation} | (2.11) |
where
\begin{equation} \left\{\begin{aligned} & \chi \in C_c^\infty( {\mathbb{R}^n}),\, 0 \leq \chi \leq 1, \\ & \chi(x) = 1 \mbox{ when } |x| \leq 1, \\ & \chi(x) = 0 \mbox{ when } |x| \geq 2. \end{aligned}\right. \end{equation} | (2.12) |
Write
\begin{align} & \ (\mathcal{R}_{k,\tau} \varphi,\psi)_{L^2( \mathbb{R}^3)} \\ = \ & \ \int_{ \mathbb{R}^3} \mathcal{R}_{k,\tau} \varphi (x) \overline{\psi(x)} \,\mathrm{d}{x} = \int_{ \mathbb{R}^3} \mathcal{F}\{\mathcal{R}_{k,\tau} \varphi\} (\xi) \cdot \mathcal{F}\{\mathfrak{R} \overline \psi\}(\xi) \,\mathrm{d}{\xi} \\ = \ & \ \int_0^\infty \frac {(1 - \chi^2(r - k))} {r^2 - k^2 - i\tau} \,\mathrm{d}{r} \cdot \int_{|\xi| = r} \hat \varphi (\xi) \cdot \widehat{\mathfrak{R} \overline \psi}(\xi) \,\mathrm{d}{{S(\xi)}} \\ & \ + \int_0^\infty \frac {〈r〉^{1/p}\, r^2 \chi^2(r - k)} {r^2 - k^2 - i\tau} \,\mathrm{d}{r} \times \int_{\mathbb{S}^2} [〈k〉^{\frac {-1} {2p}} \hat \varphi (k\omega)] [〈k〉^{\frac {-1} {2p}} \widehat{\mathfrak{R} \overline \psi}(k\omega)] \,\mathrm{d}{{S(\omega)}} \\ & \ + \int_0^\infty \frac {〈r〉^{1/p}\, r^2 \chi^2(r - k)} {r^2 - k^2 - i\tau} \,\mathrm{d}{r} \cdot \int_{\mathbb{S}^2} \{ [〈r〉^{\frac {-1} {2p}} \hat \varphi (r\omega)] [〈r〉^{\frac {-1} {2p}} \widehat{\mathfrak{R} \overline \psi}(r\omega)] \\ & - [〈k〉^{\frac {-1} {2p}} \hat \varphi (k\omega)] [〈k〉^{\frac {-1} {2p}} \widehat{\mathfrak{R} \overline \psi}(k\omega)] \} \,\mathrm{d}{{S(\omega)}} \\ = : & \ I_1(\tau) + I_2(\tau) + I_3(\tau). \end{align} | (2.13) |
Here we divide
Now we estimate
\begin{equation} (p^{1/p} q^{1/q}) a^{1/p} b^{1/q} \leq a + b. \end{equation} | (2.14) |
Note that
\begin{align} |I_1(\tau)| & \leq \int_0^\infty \frac {1 - \chi^2(r - k)} {1 \cdot p^{1/p} q^{1/q} (r+1)^{1/p} (k-1)^{1/q}} \,\mathrm{d}{r} \cdot \int_{|\xi| = r} |\hat \varphi (\xi)| \cdot |\hat \psi(\xi)| \,\mathrm{d}{{S(\xi)}} \quad (\text{by } (2.14)) \\ & \leq C_p k^{1/p - 1} \left\| {{\varphi}} \right\|_{H_\delta^{-1/(2p)}( \mathbb{R}^3)} \left\| {{\psi}} \right\|_{H_\delta^{-1/(2p)}( \mathbb{R}^3)}, \end{align} | (2.15) |
where
We next estimate
\begin{align} I_2(\tau) & = \int_{\mathbb{S}^2} [〈k〉^{\frac {-1} {2p}} \hat \varphi (k\omega)] [〈k〉^{\frac {-1} {2p}} \widehat{\mathfrak{R} \overline \psi}(k\omega)] \int_0^\infty \frac {〈r〉^{\frac 1 p} r^2 \chi^2(r - k) \,\mathrm{d}{r}} {r^2 - k^2 - i\tau} \,\mathrm{d}{{S(\omega)}}. \end{align} | (2.16) |
It can be shown that, by choosing a fixed
\begin{equation} |p_\tau(r)| \geq \tau_0 k {\rm{\; and }}\; |r| \lesssim k, \ \forall r \in \{ r ; 2 \geq |r - k| \geq \tau_0 \} \cup \Gamma_{k,\tau_0},\, \forall \tau \in (0,\tau_0), \end{equation} | (2.17) |
where
\begin{align} |I_2(\tau)| & \leq \int_{|\xi| = k} 〈\xi〉^{\frac {-1} {2p}} |\hat \varphi (\xi)| \cdot 〈\xi〉^{\frac {-1} {2p}} |\hat \psi(\xi)| \big( \int_{\{ r \in \mathbb{R}_+ \,;\, 2 \geq |r - k| \geq \tau_0 \}} \frac {〈r〉^{\frac 1 p} (r/k)^2} {\tau_0 k} \,\mathrm{d}{r} \big) \,\mathrm{d}{{S(\xi)}} \\ & \ \ \ + \int_{|\xi| = k} 〈\xi〉^{\frac {-1} {2p}} |\hat \varphi (\xi)| \cdot 〈\xi〉^{\frac {-1} {2p}} |\hat \psi(\xi)| \big( \int_{\Gamma_{k,\tau_0}} \frac {(1+|r|^2)^{\frac 1 {2p}} (|r|/k)^2} {\tau_0 k} \,\mathrm{d}{r} \big) \,\mathrm{d}{{S(\xi)}} \\ & \leq C_{\tau_0} \int_{|\xi| = k} 〈\xi〉^{\frac {-1} {2p}} |\hat \varphi (\xi)| 〈\xi〉^{\frac {-1} {2p}} |\hat \psi(\xi)| \big( \int_{\Gamma_{k,\tau_0} \cup \{ r \in \mathbb{R}_+; 2 \geq |r - k| \geq \tau_0 \}} \frac {〈k〉^{1/p}} {\tau_0 k} \,\mathrm{d}{r} \big) \,\mathrm{d}{{S(\xi)}} \\ & \ \ \ + C_{\tau_0} \int_{|\xi| = k} 〈\xi〉^{\frac {-1} {2p}} |\hat \varphi (\xi)| 〈\xi〉^{\frac {-1} {2p}} |\hat \psi(\xi)| \big( \int_{\Gamma_{k,\tau_0}} \frac {〈k〉^{1/p}} {\tau_0 k} \,\mathrm{d}{r} \big) \,\mathrm{d}{{S(\xi)}} \\ & \leq C_{\tau_0} k^{1/p - 1} \big( \int_{|\xi| = k} |〈\xi〉^{\frac {-1} {2p}} \hat h(\xi)|^2 \,\mathrm{d}{{S(\xi)}} \big)^{\frac 1 2} \big( \int_{|\xi| = k} |〈\xi〉^{\frac {-1} {2p}} \hat \psi(\xi)|^2 \,\mathrm{d}{{S(\xi)}} \big)^{\frac 1 2} \\ & \leq C_{\tau_0,\epsilon} k^{1/p - 1} \left\| {{\varphi}} \right\|_{H_{1/2 + \epsilon}^{-1/(2p)}( \mathbb{R}^3)} \left\| {{\psi}} \right\|_{H_{1/2 + \epsilon}^{-1/(2p)}( \mathbb{R}^3)}, \end{align} | (2.18) |
where the constant
Finally, we estimate
\begin{align} |I_3(\tau)| & \leq \int_0^\infty \frac {〈r〉^{1/p} \chi^2(r - k)} {|r^2 - k^2|} \cdot \left\| {{\mathbb F_r}} \right\|_{L^2(\mathbb S_r^2)} \cdot \big( r^2 \int_{\mathbb{S}^2} |\mathbb G_r - \mathbb G_k|^2 \,\mathrm{d}{{S(\omega)}} \big)^{\frac 1 2} \,\mathrm{d}{r} \\ & \ \ \ + \int_0^\infty \frac {〈r〉^{1/p} \chi^2(r - k)} {|r^2 - k^2|} \cdot \big( r^2 \int_{\mathbb{S}^2} |\mathbb F_r - \mathbb F_k|^2 \,\mathrm{d}{{S(\omega)}} \big)^{\frac 1 2} \cdot \big(\frac r k \big)^2 \left\| {{\mathbb G_k}} \right\|_{L^2(\mathbb S_k^2)} \,\mathrm{d}{r}, \end{align} | (2.19) |
where
\begin{align} |I_3(\tau)| & \leq C_{\alpha,\epsilon} \int_0^\infty \frac {〈r〉^{1/p} \chi^2(r - k)} {|r - k| (r+k)} \cdot \left\| {{\mathbb F}} \right\|_{H^{1/2+\epsilon}( \mathbb{R}^3)} \cdot |r - k|^\alpha \cdot \left\| {{\mathbb G}} \right\|_{H^{1/2+\epsilon}( \mathbb{R}^3)} \,\mathrm{d}{r} \\ & \leq C_{\alpha,\epsilon,p} \int_0^\infty \frac {〈r〉^{1/p} \chi^2(r - k)} {|r - k|^{1-\alpha} (r+1)^{1/p} (k-1)^{1-1/p}} \,\mathrm{d}{r} \cdot \left\| {{\mathbb F}} \right\|_{H^{1/2+\epsilon}( \mathbb{R}^3)} \left\| {{\mathbb G}} \right\|_{H^{1/2+\epsilon}( \mathbb{R}^3)} \\ & \leq C_{\alpha,\epsilon,p} k^{1/p-1} \left\| {{\varphi}} \right\|_{H_{1/2+\epsilon}^{-1/(2p)}( \mathbb{R}^3)} \cdot \left\| {{\psi}} \right\|_{H_{1/2+\epsilon}^{-1/(2p)}( \mathbb{R}^3)}, \end{align} | (2.20) |
where the
Combining (2.13), (2.15), (2.18) and (2.20), we arrive at
\begin{equation*} |(\mathcal{R}_{k,\tau} \varphi,\psi)_{L^2( \mathbb{R}^3)}| \leq |I_1(\tau)| + |I_2(\tau)| + |I_3(\tau)| \leq C k^{1/p - 1} \left\| {{\varphi}} \right\|_{H_{1/2 + \epsilon}^{-1/(2p)}( \mathbb{R}^3)} \left\| {{\psi}} \right\|_{H_{1/2 + \epsilon}^{-1/(2p)}( \mathbb{R}^3)}, \end{equation*} |
which implies that
\begin{equation} \left\| {{\mathcal{R}_{k,\tau} \varphi}} \right\|_{H_{-1/2 - \epsilon}^{1/(2p)}( \mathbb{R}^3)} \leq C k^{1/p - 1} \left\| {{\varphi}} \right\|_{H_{1/2 + \epsilon}^{-1/(2p)}( \mathbb{R}^3)} \end{equation} | (2.21) |
for some constant
Next we investigate the limiting case
|I_j(\tau_1) - I_j(\tau_2)| \leq \tilde\tau^\beta k^{1/p - 1} \left\| {{\varphi}} \right\|_{H_{1/2 + \epsilon}^{-1/(2p)}( \mathbb{R}^3)} \left\| {{\psi}} \right\|_{H_{1/2 + \epsilon}^{-1/(2p)}( \mathbb{R}^3)}, \quad (j = 1,2,3) |
holds for
\begin{equation*} \left\| {{\mathcal{R}_{k,\tau_1} \varphi - \mathcal{R}_{k,\tau_2} \varphi}} \right\|_{H_{-1/2 - \epsilon}^{-1/(2p)}( \mathbb{R}^3)} \lesssim \tilde \tau \left\| {{\varphi}} \right\|_{H_{1/2 + \epsilon}^{-1/(2p)}( \mathbb{R}^3)}, \quad \forall \tau_1,\tau_2 \in (0,\tilde \tau), \end{equation*} |
and thus
\begin{equation} \lim\limits_{\tilde \tau \to 0^+} \mathcal{R}_{k,\tilde \tau} \varphi = {\mathcal{R}_{k}} \varphi \quad\text{ in }\quad H_{-1/2 - \epsilon}^{1/(2p)}( \mathbb{R}^3). \end{equation} | (2.22) |
Hence from (2.21) and (2.22) we conclude that
\left\| {{ {\mathcal{R}_{k}} \varphi}} \right\|_{H_{-1/2 - \epsilon}^{1/(2p)}( \mathbb{R}^3)} \leq C_{\epsilon,p} k^{-(1 - 1/p)} \left\| {{\varphi}} \right\|_{H_{1/2 + \epsilon}^{-1/(2p)}( \mathbb{R}^3)} |
holds for any
The proof is complete.
With the help of Lemmas 2.2 and 2.3, the direct problems can be reformulated. Readers may refer to [25,Theorem 2.1], [22,Theorem 2.3], [19,Theorem 4.3], [20,Theorem 3.3], and [24,Theorem 3.3] as examples of how to formulate the direct problems, and we omit the details here.
In this section we consider key steps in the works [8,18,19,20,23,24]. Lemma 3.3 is crucial in the key steps of the works, and its proof relies on Lemmas 3.1 and 3.2. We shall first investigate these useful lemmas.
Lemma 3.1 is a standard result in the field of oscillatory integral and microlocal analysis.
Lemma 3.1. Assume
\begin{align} \int_{ \mathbb{R}_x^n \times \mathbb{R}_\xi^n} e^{ix\cdot \xi} \,\mathrm{d}{x} \,\mathrm{d}{\xi} & = (2\pi)^{n}, \end{align} | (3.1) |
\begin{align} \int_{ \mathbb{R}_x^n \times \mathbb{R}_\xi^n} e^{ix\cdot \xi} x^\alpha \xi^\beta \,\mathrm{d}{x} \,\mathrm{d}{\xi} & = (2\pi)^{n} i^{|\alpha|} \alpha! \delta^{\alpha \beta}. \end{align} | (3.2) |
Here
Proof. The integral in (3.1) should be understood as oscillatory integral. Fix a cutoff function
\begin{align} \int_{ \mathbb{R}_x^n \times \mathbb{R}_\xi^n} e^{ix\cdot \xi} \,\mathrm{d}{x} \,\mathrm{d}{\xi} & = \lim\limits_{\epsilon \to 0^+} \int e^{ix\cdot \xi} \chi(\epsilon x) \chi(\epsilon \xi) \,\mathrm{d}{x} \,\mathrm{d}{\xi} \\ & = (2\pi)^{n/2} \lim\limits_{\epsilon \to 0^+} \int \chi(\epsilon^2 \xi) \widehat\chi(-\xi) \,\mathrm{d}{\xi}. \end{align} | (3.3) |
Denote
\begin{align*} \int_{ \mathbb{R}_x^n \times \mathbb{R}_\xi^n} e^{ix\cdot \xi} \,\mathrm{d}{x} \,\mathrm{d}{\xi} & = (2\pi)^{n/2} \int \widehat\chi(-\xi) \,\mathrm{d}{\xi} = (2\pi)^{n} \chi(0) = (2\pi)^{n}. \end{align*} |
We arrive at (3.1).
To show (3.2), we first show that
\begin{equation} (2\pi)^{-n} \iint e^{-iy\cdot \eta} y^\alpha \eta^\beta \,\mathrm{d}{y} \,\mathrm{d}{\eta} = (2\pi)^{-n} \iint e^{-iy\cdot \eta} D_\eta^\alpha(\eta^\beta) \,\mathrm{d}{y} \,\mathrm{d}{\eta}, \end{equation} | (3.4) |
where
\begin{align} & \iint e^{-iy\cdot \eta} y^\alpha \eta^\beta \,\mathrm{d}{y} \,\mathrm{d}{\eta} = \lim\limits_{\epsilon \to 0^+} \iint e^{-iy\cdot \eta} y^\alpha \eta^\beta \chi(\epsilon y) \chi(\epsilon \eta) \,\mathrm{d}{y} \,\mathrm{d}{\eta} \\ = & \lim\limits_{\epsilon \to 0^+} \iint (-D_\eta)^\alpha(e^{-iy\cdot \eta})\, \eta^\beta \chi(\epsilon y) \chi(\epsilon \eta) \,\mathrm{d}{y} \,\mathrm{d}{\eta} \\ = & \lim\limits_{\epsilon \to 0^+} \iint e^{-iy\cdot \eta} \chi(\epsilon y) D_\eta^\alpha \big( \eta^\beta \chi(\epsilon \eta) \big) \,\mathrm{d}{y} \,\mathrm{d}{\eta} \\ = & \lim\limits_{\epsilon \to 0^+} \sum\limits_{0 < \gamma \leq \alpha} \epsilon^{|\gamma|} \binom{\alpha}{\gamma} \iint e^{-iy\cdot \eta} \chi(\epsilon y) \cdot D_\eta^{\alpha-\gamma}(\eta^\beta) \cdot \big( \partial^\gamma \chi \big) (\epsilon \eta) \,\mathrm{d}{y} \,\mathrm{d}{\eta} \\ & \ + \iint e^{-iy\cdot \eta} D_\eta^\alpha \big( \eta^\beta \big) \,\mathrm{d}{y} \,\mathrm{d}{\eta}. \end{align} | (3.5) |
As
\begin{align*} \iint e^{-iy\cdot \eta} \chi(\epsilon y) \cdot D_\eta^{\alpha-\gamma}(\eta^\beta) \cdot \big( \partial^\gamma \chi \big) (\epsilon \eta) \,\mathrm{d}{y} \,\mathrm{d}{\eta} \to & \ D_\eta^{\alpha-\gamma}(\eta^\beta) \cdot \big( \partial^\gamma \chi \big) (\epsilon \eta) \big|_{\eta = 0} \quad (\epsilon \to 0^+). \end{align*} |
Because
\begin{equation} \lim\limits_{\epsilon \to 0^+} \epsilon^{|\gamma|} \sum\limits_{0 < \gamma \leq \alpha} \binom{\alpha}{\gamma} \iint e^{-iy\cdot \eta} \chi(\epsilon y) \cdot D_\eta^{\alpha-\gamma}(\eta^\beta) \cdot \big( \partial^\gamma \chi \big) (\epsilon \eta) \,\mathrm{d}{y} \,\mathrm{d}{\eta} = 0. \end{equation} | (3.6) |
Combining (3.5) and (3.6), we arrive at
\iint e^{-iy\cdot \eta} y^\alpha \eta^\beta \,\mathrm{d}{y} \,\mathrm{d}{\eta} = \lim\limits_{\epsilon \to 0^+} \iint e^{-iy\cdot \eta} y^\alpha \eta^\beta \chi(\epsilon y) \chi(\epsilon \eta) \,\mathrm{d}{y} \,\mathrm{d}{\eta} = \iint e^{-iy\cdot \eta} D_\eta^\alpha \big( \eta^\beta \big) \,\mathrm{d}{y} \,\mathrm{d}{\eta}. |
We proved (3.4).
Then, for multi-indexes
\begin{equation*} \int e^{ix\cdot \xi} x^\alpha \xi^\beta \,\mathrm{d}{x} \,\mathrm{d}{\xi} = \int e^{ix\cdot \xi} (-D_\xi)^\alpha (\xi^\beta) \,\mathrm{d}{x} \,\mathrm{d}{\xi} = 0. \end{equation*} |
When
\begin{equation*} \int e^{ix\cdot \xi} x^\alpha \xi^\beta \,\mathrm{d}{x} \,\mathrm{d}{\xi} = \int e^{ix\cdot \xi} (-D_\xi)^\alpha (\xi^\alpha) \,\mathrm{d}{x} \,\mathrm{d}{\xi} = \int e^{ix\cdot \xi} i^{|\alpha|} \alpha! \,\mathrm{d}{x} \,\mathrm{d}{\xi} = (2\pi)^n i^{|\alpha|} \alpha!. \end{equation*} |
We have arrived at (3.2).
We also need [16,Lemma 18.2.1] and we present a proof below.
Lemma 3.2. If
u(x) = \int e^{i 〈x',\xi'〉} a(x,\xi') \,\mathrm{d}{\xi}', |
then there exists
u(x) = \int e^{i 〈x',\xi'〉} \tilde a(x'',\xi') \,\mathrm{d}{\xi}', |
and
\tilde a(x'',\xi') \sim \sum\limits_{\alpha} i^{|\alpha|} \partial_{x'}^\alpha \partial_{\xi'}^\alpha a(0,x'',\xi') / \alpha!. |
Remark 3.1. Note if
Proof. The
\tilde a(x'',\xi') = (2\pi)^{-k/2} \mathcal{F}_{x'} \{ u(x',x'') \}(\xi') = (2\pi)^{-k} \int e^{-ix' \cdot \xi'} u(x',x'') \,\mathrm{d}{x}'. |
Then we can have
\begin{align*} \tilde a(x'',\xi') & = (2\pi)^{-k} \int e^{-ix' \cdot \xi'} u(x) \,\mathrm{d}{x}' = (2\pi)^{-k} \int e^{ix' \cdot \theta} a(x,\xi' + \theta) \,\mathrm{d}{\theta} \,\mathrm{d}{x}'. \end{align*} |
By adopting the way used in [1,§I.8.1] in computing the oscillatory integral, we can easily show that
|\partial_{\xi'}^\alpha [\chi(x,\theta) a(2^k x',x'',\xi' + 2^k \theta)]| \lesssim 2^{mk} 〈\xi'〉^k, |
so
The idea of the proof is to expand
\begin{align} a(x',x'',\xi' + \theta) & = \sum\limits_{|\alpha| + |\beta| \leq 2N} \frac {x'^\alpha \theta^\beta}{\alpha! \beta!} \partial_{x'}^\alpha \partial_{\xi'}^\beta a(0, x'',\xi') \\ & \quad + \sum\limits_{|\alpha| + |\beta| = 2N+1} \frac {x'^\alpha \theta^\beta}{\alpha! \beta!} \partial_{x'}^\alpha \partial_{\xi'}^\beta a(\eta x', x'',\xi' + \eta \theta), \quad 0 < \eta < 1, \end{align} |
and to use Lemma 3.1. We have
\begin{align} \tilde a(x'', \xi') & = (2\pi)^{-k} \int e^{ix' \cdot \theta} a(x',x'',\xi' + \theta) \,\mathrm{d}{\theta} \,\mathrm{d}{x}' \\ \\ & = \sum\limits_{|\alpha| \leq N} i^{|\alpha|} \partial_{x'}^\alpha \partial_{\xi'}^\beta a(0, x'',\xi') / \alpha! \\ & \quad + \sum\limits_{\substack{|\alpha| + |\beta| = 2N+1 \\ \gamma \leq \alpha \leq \beta + \gamma}} C_{\alpha,\beta,\gamma} \int e^{ix' \cdot \theta} (\partial_{x'}^\alpha \partial_{\xi'}^{\beta + \gamma} a) (\eta^{|\gamma|}) \partial_\theta^{\alpha - \gamma} (\theta^\beta) \,\mathrm{d}{\theta} \,\mathrm{d}{x}' . \end{align} | (3.7) |
Note that the constraint
\begin{equation*} 2N + 1 = |\alpha| + |\beta| \leq 2|\beta| + |\gamma| \leq 2(|\beta| + |\gamma|) \quad \Rightarrow \quad |\beta + \gamma| \geq N + 1. \end{equation*} |
Now we show that each remainder term in (3.7) is controlled by
\begin{align*} &\tilde a(x'', \xi') - \sum\limits_{|\alpha| \leq N} i^{|\alpha|} \partial_{x'}^\alpha \partial_{\xi'}^\beta a(0, x'',\xi') / \alpha!\\ & = \int e^{ix' \cdot \theta} \chi_0(x',\theta) b \,\mathrm{d}{\theta} \,\mathrm{d}{x}' \nonumber \\ & \quad + \sum\limits_{\ell \geq 1} \int e^{ix' \cdot \theta} \chi(x'/2^\ell,\theta/2^\ell) b(x', x'', \theta; \xi',\eta) \,\mathrm{d}{\theta} \,\mathrm{d}{x}', \end{align*} |
where
\begin{align} & \int e^{ix' \cdot \theta} \chi(x'/2^\ell,\theta/2^\ell) b(x', x'', \theta; \xi',\eta) \,\mathrm{d}{\theta} \,\mathrm{d}{x}' \\ \lesssim & \ 2^{2\ell k} \int \big( \frac {(\theta,x') \cdot \nabla_{(x',\theta)}} {i2^{2\ell} (|x'|^2+|\theta|^2)} \big)^L (e^{i 2^{2\ell} x' \cdot \theta}) \cdot \chi(x',\theta) b(x', x'', \theta; \xi', 2^\ell \eta) \,\mathrm{d}{\theta} \,\mathrm{d}{x}' \\ \lesssim & \ 〈\xi'〉^{m-N-1} \cdot 2^{\ell(2k + 1 - 2L)} \int_{ \mathop{{\rm{supp}}} \chi} C_L 2^{\ell (|m-N-1|+L)} \,\mathrm{d}{\theta} \,\mathrm{d}{x}' \\ \lesssim & \ 〈\xi'〉^{m-N-1} \cdot 2^{\ell(2k + 1 + |m-N-1| - L)}, \end{align} |
thus if we take
|\sum\limits_{\ell \geq 1} \int e^{ix' \cdot \theta} \chi(x'/2^\ell,\theta/2^\ell) b \,\mathrm{d}{\theta} \,\mathrm{d}{x}'| \lesssim \sum\limits_{\ell \geq 1} 〈\xi'〉^{m-N-1} 2^{\ell(2k + 1 + |m-N-1| - L)} \lesssim 〈\xi'〉^{m-N-1}. |
This shows
\tilde a(x'', \xi') - \sum\limits_{|\alpha| \leq N} i^{|\alpha|} \partial_{x'}^\alpha \partial_{\xi'}^\alpha a(0,x'',\xi') / \alpha! \in S^{m-N-1}( \mathbb{R}^{n-k} \times \mathbb{R}^k). |
The proof is complete.
We also need [16,Lemma 18.2.9] and we present a proof below.
Lemma 3.3. Assume that
u(x) = \int e^{i 〈x', \xi'〉} a(x,\xi') \,\mathrm{d}{\xi}', \quad \xi' \in \mathbb{R}^k, |
and a
\rho^* u(y) = \int e^{i 〈y', \xi'〉} \tilde a(y'',\xi') \,\mathrm{d}{\xi}', |
and
\tilde a(y'',\eta) - a(0,\rho_2(0,y''),(\psi(0,y''))^{T,-1} \eta) |\det\psi(0,y'')|^{-1} \in S^{m-1}( \mathbb{R}^{n-k} \times \mathbb{R}^k), |
where
Remark 3.2. The condition "
Proof. Because
\begin{align*} \tilde u(y) & : = \rho^* u(y) = u(\rho(y)) = \int e^{i 〈\rho_1(y), \xi'〉} \bar a(\rho_2(y),\xi') \,\mathrm{d}{\xi}' \\ & = \int e^{i 〈\psi(y) \cdot y', \xi'〉} \bar a(\rho_2(y),\xi') \,\mathrm{d}{\xi}' = \int e^{i 〈y', (\psi(y) )^{T} \xi'〉} \bar a(\rho_2(y),\xi') \,\mathrm{d}{\xi}', \nonumber \end{align*} |
According to Remark 3.1, we could continue
\begin{align*} \tilde u(y) & = \int e^{i 〈y', (\psi(y))^{T} \xi'〉} \chi(y') \bar a(\rho_2(y),(\psi(y))^{T,-1} (\psi(y))^{T} \xi') |\det\psi(y)|^{-1} {\rm{d}} ((\psi(y) )^{T} \xi') + v(y) \nonumber \\ & = \int e^{i 〈y', \eta〉} \chi(y') \bar a(\rho_2(y),(\psi(y))^{T,-1} \eta) |\det\psi(y)|^{-1} \,\mathrm{d}{\eta} + v(y), \nonumber \end{align*} |
where
\tilde a(y'',\eta) - \bar a(\rho_2(0,y''),(\psi(0,y''))^{T,-1} \eta) |\det\psi(0,y'')|^{-1} \in S^{m-1}( \mathbb{R}^{n-k} \times \mathbb{R}^k). |
Note that
\tilde a(y'',\eta) - a(0,\rho_2(0,y''),(\psi(0,y''))^{T,-1} \eta) |\det\psi(0,y'')|^{-1} \in S^{m-1}( \mathbb{R}^{n-k} \times \mathbb{R}^k). |
The proof is complete.
Finally, we need Lemma 3.4.
Lemma 3.4. For any stochastic process
\begin{equation} \int_1^{+\infty} k^{m-1} \mathbb E (|g(k,\cdot)|) \,\mathrm{d}{k} < +\infty, \end{equation} | (3.8) |
it holds that
\begin{equation} \lim\limits_{K \to +\infty} \frac 1 K \int_K^{2K} k^m g(k,\omega) \,\mathrm{d}{k} = 0, \ \rm{\; a.s.\; } \omega \in \Omega. \end{equation} | (3.9) |
Proof. Check [22,Lemma 4.1].
Lemma 3.4 turns the justification of the ergodicity into the asymptotic analysis of the expectation of related terms.
With the help of Lemma 3.4, the most difficult part of the work [18,19,20,23,24] boils down to the estimate of the integral
\begin{equation} \mathbb I (x,y,k_1,k_2) : = \int e^{ik_1(|x - z_1| + |z_1 - y|) - ik_2(|x - z_2| + |z_2 - y|)} C(z_1,z_2) \,\mathrm{d}{z_1} \,\mathrm{d}{z_2}, \end{equation} | (3.10) |
where
One wonders the decaying rate of
Proposition 3.1. Assume
|\mathbb I (x,y,k_1,k_2)| \leq C_N 〈k_1 - k_2〉^{-N} (k_1 + k_2)^{-m}, |
holds uniformly for
Proof. Denote
\begin{align} \phi(z_1,z_2, x,y, k_1, k_2) & = \frac {k_1 + k_2} 2 \big[ (|x - z_1| + |z_1 - y|) - (|x - z_2| + |z_2 - y|) \big] \\ & \quad + \frac {k_1 - k_2} 2 \big[ (|x - z_1| + |z_1 - y|) + (|x - z_2| + |z_2 - y|) \big]. \end{align} | (3.11) |
We note that the
\begin{equation*} \tau_1 \colon \quad v = z_1 - z_2, \quad w = z_1 + z_2. \end{equation*} |
The pull-back of
\begin{equation} C_1(v,w) : = (\tau_1^{-1})^* C(v,w) = C(\tau_1^{-1}(v,w)) = \int e^{i v \cdot \xi} c((v + w)/2,\xi) \,\mathrm{d}{\xi}. \end{equation} | (3.12) |
Second, in order to make the phase function
\begin{equation} \tau_2 \colon \quad \left\{ \begin{aligned} s_1 & = (|x - z_1| + |z_1 - y|) - (|x - z_2| + |z_2 - y|), \\ t_1 & = (|x - z_1| + |z_1 - y|) + (|x - z_2| + |z_2 - y|). \end{aligned} \right. \end{equation} | (3.13) |
We comment that under (3.13), the phase function
\begin{equation} C_2(s,t) : = (\tau_1 \circ \tau_2^{-1})^* C_1(s,t) = \int e^{i s \cdot \xi} c_2(t,\xi) \,\mathrm{d}{\xi}, \end{equation} | (3.14) |
By using Lemma 3.3, we can express
The relationship (3.14) also gives
C_2(s,t) = (\tau_1 \circ \tau_2^{-1})^* (\tau_1^{-1})^* C(s,t) = (\tau_2^{-1})^* C(s,t), |
and hence we can do the change of variables
\begin{align} &\mathbb I (x,y,k_1,k_2) \\ & = \int e^{ik_1(|x - z_1| + |z_1 - y|) - ik_2(|x - z_2| + |z_2 - y|)} C(\tau_2^{-1} \circ \tau_2(z_1,z_2)) {\rm{d}} (\tau_2^{-1} \circ \tau_2(z_1,z_2)) \\ & = \int e^{i(k_1 + k_2) s_1 / 2 + i(k_1 - k_2) t_1 / 2} C(\tau_2^{-1} (s,t)) |\det \tau_2^{-1}(s,t)| {\rm{d}} (s,t) \\ & = \int e^{i(k_1 + k_2) s \cdot e_1 / 2 + i(k_1 - k_2) t \cdot e_1 / 2} C_2(s,t) |\det \tau_2^{-1}(s,t)| \,\mathrm{d}{s} \,\mathrm{d}{t}. \end{align} | (3.15) |
Here we need the help of Lemma 3.2 to deal with the
\begin{equation} C_2(s,t) |\det \tau_2^{-1}(s,t)| = \int e^{i s \cdot \xi} \tilde c_2(t,\xi) \,\mathrm{d}{\xi}. \end{equation} | (3.16) |
The computation of the leading term of
\tilde c_2(t,\xi) - c_2(t,\xi) |\det \tau_2^{-1}(0,t)| \in S^{-m-1}. |
Combining (3.15) and (3.16), we arrive at
\begin{align*} \mathbb I (x,y,k_1,k_2) & = \int e^{i(k_1 + k_2) s \cdot e_1 / 2 + i(k_1 - k_2) t \cdot e_1 / 2} \int e^{i s \cdot \xi} \tilde c_2(t,\xi) \,\mathrm{d}{\xi} \,\mathrm{d}{s} \,\mathrm{d}{t} \\ & \simeq \int e^{i(k_1 - k_2) t \cdot e_1 / 2} \tilde c_2(t,-(k_1 + k_2)e_1 / 2) \,\mathrm{d}{t}. \end{align*} |
Now we can see
We would like to comment that the estimation of
In this section we consider the key steps in the works [22,25]. In [22,25], the authors use far-field data to achieve the recovery, and this makes the derivations different from what has been discussed in Section 3. A different methodology is required to obtain accurate estimate of the decaying rate. Lemmas 4.1–4.3 plays key roles in the derivation. Before stepping into the key steps in the derivation, we shall first investigate some useful lemmas.
First, let us recall the notion of the fractional Laplacian [30] of order
\begin{equation} (-\Delta)^{s/2} \varphi(x) : = (2\pi)^{-n} \iint e^{i(x-y) \cdot \xi} |\xi|^s \varphi(y) \,\mathrm{d}{y} \,\mathrm{d}{\xi}, \end{equation} | (4.1) |
where the integration is defined as an oscillatory integral. When
In the following two lemmas, we present the results in a more general form where the space dimension
Lemma 4.1. For any
\begin{equation*} (-\Delta_\xi)^{s/2} (e^{ix \cdot \xi}) = |x|^s e^{ix \cdot \xi} \end{equation*} |
in the distributional sense.
Proof. Check [22,Lemma 3.1].
Lemma 4.2. For any
\big( (-\Delta_\xi)^{s/2} c \big) (x,\xi) \in S^{m-s} \quad \mathit{\text{for any}} \quad c(x,\xi) \in S^m. |
Proof. Check [22,Corollary 3.1].
In the sequel, we denote
Lemma 4.3. Assume
\begin{equation*} \int_\Omega |t|^{-\alpha} |t - p|^{-\beta} \,\mathrm{d}{t} \leq C_{\alpha,\beta} \times \begin{cases} |p|^{n - \alpha - \beta} + ( \mathop{{\rm{diam}}} (\Omega))^{n - \alpha - \beta}, & \alpha + \beta \neq n, \\ \ln \frac 1 {|p|} + \ln ( \mathop{{\rm{diam}}}(\Omega)) +C_{\alpha, \beta}, & \alpha + \beta = n. \end{cases} \end{equation*} |
Proof. Check [25,Lemma 3.5].
In this subsection we restrict ourselves to
\begin{equation} \mathbb J : = \int e^{ik\varphi(y,s,z,t)} \big( \int e^{i(z-y) \cdot \xi} c_q(z,\xi) \,\mathrm{d}{\xi} \big) \big( \int e^{i(t-s) \cdot \eta} c_f(t,\xi) \,\mathrm{d}{\eta} \big) \,\mathrm{d}{{(s, y, t, z)}}, \end{equation} | (4.2) |
in terms of
\begin{equation*} L_1 : = \frac {(y-s) \cdot \nabla_s} {ik|y-s|}, \quad L_2 = L_{2,\hat x} : = \frac {\nabla_y \varphi \cdot \nabla_y} {ik|\nabla_y \varphi|}, \end{equation*} |
where
L_1 (e^{ik\varphi(y,s,z,t)}) = L_2 (e^{ik\varphi(y,s,z,t)}) = e^{ik\varphi(y,s,z,t)}. |
In what follows, we shall use
\begin{align} \mathbb J = & \int \big( L_1^2 L_2^2 \big) (e^{ik\varphi(y,s,z,t)}) \cdot \big( \int e^{i(z-y) \cdot \xi} c_q(z,\xi) \,\mathrm{d}{\xi} \big) \cdot \big( \int e^{i(t-s) \cdot \eta} c_f(t,\eta) \,\mathrm{d}{\eta} \big) \,\mathrm{d}{{(s, y, t, z)}} \\ \simeq & \ k^{-4} \int_{\mathcal D} e^{ik\varphi(y,s,z,t)} \big[ \mathcal J_1\, (\mathcal K_1\, \mathcal{C} + \vec{\mathcal K}_2 \cdot \vec{ \mathcal{C}} + \sum\limits_{a,b = 1,2,3} \mathcal K_{3;a,b}\, \mathcal{C}_{a,b}) \\ & \ + \sum\limits_{c = 1,2,3} \mathcal J_{2;c}\, (\mathcal K_1\, \mathcal{C}_c + \vec{\mathcal K}_2 \cdot \vec{ \mathcal{C}}_c + \sum\limits_{a,b = 1,2,3} \mathcal K_{3;a,b}\, \mathcal{C}_{a,b,c}) \\ & \ + \sum\limits_{a',b' = 1,2,3} \mathcal J_{3;a',b'} (\mathcal K_1\, \mathcal{C}_{a',b'} + \vec{\mathcal K}_2 \cdot \vec{ \mathcal{C}}_{a',b'} + \sum\limits_{a,b = 1,2,3} \mathcal K_{3;a,b}\, \mathcal{C}_{a,b,a',b'}) \big] \,\mathrm{d}{{(s, y, t, z)}}, \end{align} | (4.3) |
where the integral domain
\begin{alignat*} {2} & \mathcal J_1 : = \int e^{i(t-s) \cdot \eta}\, c_f(t,\eta) \,\mathrm{d}{\eta}, & \quad & \mathcal K_1 : = \int e^{i(z-y) \cdot \xi}\, c_q(z,\xi) \,\mathrm{d}{\xi}, \\ & \vec{\mathcal J}_2 : = \nabla_s \int e^{i(t-s) \cdot \eta}\, c_f(t,\eta) \,\mathrm{d}{\eta}, & \quad & \vec{\mathcal K}_2 : = \nabla_y \int e^{i(z-y) \cdot \xi}\, c_q(z,\xi) \,\mathrm{d}{\xi}, \\ & \mathcal J_{3;a,b} : = \partial_{s_a,s_b}^2 \int e^{i(t-s) \cdot \eta}\, c_f(t,\eta) \,\mathrm{d}{\eta}, & \quad & \mathcal K_{3;a,b} : = \partial_{y_a,y_b}^2 \int e^{i(z-y) \cdot \xi}\, c_q(z,\xi) \,\mathrm{d}{\xi}, \end{alignat*} |
and
Here we only show how to estimate
\begin{align} |\mathcal J_1| & = |\int e^{i(t-s) \cdot \eta}\, c_f(t,\eta) \,\mathrm{d}{\eta}| = |s-t|^{-2} \cdot |\int \Delta_\eta (e^{i(s-t) \cdot \eta})\, c_f(t,\eta) \,\mathrm{d}{\eta}| \\ & = |s-t|^{-2} \cdot |\int e^{i(t-s) \cdot \eta} (\Delta_\eta c_f) (t,\eta) \,\mathrm{d}{\eta}| \leq |s-t|^{-2} \int |(\Delta_\eta c_f) (t,\eta)| \,\mathrm{d}{\eta} \\ & \lesssim |s-t|^{-2} \int 〈\eta〉^{-m_f-2} \,\mathrm{d}{\eta} \lesssim |s-t|^{-2}. \end{align} | (4.4) |
Similarly, we can have
\begin{equation} |\mathcal J_1|,\, |\vec{\mathcal J}_2|,\, |\mathcal K_1|,\, |\vec{\mathcal K}_2| \lesssim |y-z|^{-2}. \end{equation} | (4.5) |
But for
\begin{align} \mathcal J_{3;a,b} & \simeq \int e^{i(t-s) \cdot \eta} \cdot c_f(t,\eta) \eta_a \eta_b \,\mathrm{d}{\eta} \simeq |s-t|^{-2} \int \Delta_\eta (e^{i(t-s) \cdot \eta}) \cdot c_f(t,\eta) \eta_a \eta_b \,\mathrm{d}{\eta} \\ & = |s-t|^{-2} \int e^{i(t-s) \cdot \eta} \cdot \Delta_\eta (c_f(t,\eta) \eta_a \eta_b) \,\mathrm{d}{\eta}. \end{align} | (4.6) |
Note that
\begin{equation*} |\mathcal J_{3;a,b}| \lesssim |s-t|^{-3} \int |\nabla_\eta \Delta_\eta (c_f(t,\eta) \eta_a \eta_b)| \,\mathrm{d}{\eta} \leq |s-t|^{-3} \int 〈\eta〉^{-m_f-1} \,\mathrm{d}{\eta}. \end{equation*} |
The term
\begin{align} |\mathcal J_{3;a,b}| & \simeq |s-t|^{-2} \cdot \big| |s-t|^{-s} \int (-\Delta_\eta)^{s/2} (e^{i(t-s) \cdot \eta}) \cdot \Delta_\eta (c_f(t,\eta) \eta_j \eta_\ell) \,\mathrm{d}{\eta} \big| \\ & = |s-t|^{-2-s} \cdot |\int e^{i(t-s) \cdot \eta} \cdot (-\Delta_\eta)^{s/2} \big( \Delta_\eta (c_f(t,\eta) \eta_j \eta_\ell) \big) \,\mathrm{d}{\eta}| \\ & \lesssim |s-t|^{-2-s} \int 〈\eta〉^{-m_f+2-2-s} \,\mathrm{d}{\eta} = |s-t|^{-2-s} \int 〈\eta〉^{-m_f-s} \,\mathrm{d}{\eta}, \end{align} | (4.7) |
where the number
\left\{\begin{array}{l} -m_{f}-s < -3, \;\;\;\;\;\;\;\;\;\;\;\;(\rm 4.8a)\\ -2-s > -3.\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(\rm 4.8b) \end{array}\right. |
Thanks to the condition (4.8a), we can continue (4.7) as
\begin{align} |\mathcal J_{3;a,b} | & \lesssim |s-t|^{-2-s} \int 〈\eta〉^{-m_f-s} \,\mathrm{d}{\eta} \lesssim |s-t|^{-2-s}. \end{align} | (4.9) |
Using similar arguments, we can also conclude that
Combining (4.3), (4.5) and (4.9), we arrive at
\begin{align} |\mathbb J| & \lesssim k^{-4} \int_{\mathcal D} (|\mathcal J_1| + |\vec{\mathcal J}_2| + \sum\limits_{a',b' = 1,2,3} |\mathcal J_{3;a',b'}|) \cdot (|\mathcal K_1| + |\vec{\mathcal K}_2| + \sum\limits_{a,b = 1,2,3} |\mathcal K_{3;a,b}|) \,\mathrm{d}{{(s, y, t, z)}} \\ & \lesssim k^{-4} \int_{\widetilde{\mathcal D}} |s - t|^{-2-s} \,\mathrm{d}{s} \,\mathrm{d}{t} \cdot \int_{\widetilde{\mathcal D}} |y - z|^{-2-s} \,\mathrm{d}{y} \,\mathrm{d}{z} \end{align} | (4.10) |
for some sufficiently large but bounded domain
In this subsection we restrict ourselves to
\begin{equation} \mathbb K(x,y) : = \iint_{D_f \times D_f} K_f(s,t) \Phi(s-y; k_1) \overline \Phi(t-x; k_2) \,\mathrm{d}{{s}} \,\mathrm{d}{{t}}, \end{equation} | (4.11) |
where
\begin{align} \mathbb K(z,y) & \simeq \iint_{\widetilde{\mathcal D} \times \widetilde{\mathcal D}} e^{ik_1|s-y| -ik_2|t-z|} \big( |s-y|^{-1} |t-z|^{-1} \int e^{i(s-t) \cdot \xi} c(s,\xi) \,\mathrm{d}{{\xi}} \big) \,\mathrm{d}{{s}} \,\mathrm{d}{{t}}. \end{align} | (4.12) |
Define two differential operators
L_1 : = \frac {(s-y) \cdot \nabla_s} {ik_1|s-y|} \quad \text{and} \quad L_2 : = \frac {(t-z) \cdot \nabla_t} {-ik_2|t-z|}. |
It can be verified that
L_1 L_2 (e^{ik_1|s-y|-ik_2|t-z|}) = e^{ik_1|s-y|-ik_2|t-z|}. |
Hence, noting that the integrand is compactly supported in
\begin{align} & \ |\mathbb K(z,y) | \\ \simeq & \ |\iint_{\widetilde{\mathcal D} \times \widetilde{\mathcal D}} L_1 L_2 (e^{ik_1|s-y| -ik_2|t-z|}) \big( |s-y|^{-1} |t-z|^{-1} \int e^{i(s-t) \cdot \xi} c_1(s,t,z,y,\xi) \,\mathrm{d}{{\xi}} \big) \,\mathrm{d}{{s}} \,\mathrm{d}{{t}}| \\ \lesssim & \ k_1^{-1} k_2^{-1} \iint_{\widetilde{\mathcal D} \times \widetilde{\mathcal D}} \big[ |s-y|^{-2} |t-z|^{-2} \mathcal J_0 + |s-y|^{-2} |t-z|^{-1} (\max\limits_a \mathcal J_{1;a}) \\ & + |s-y|^{-1} |t-z|^{-2} (\max\limits_{a}\mathcal J_{1;a}) + |s-y|^{-1} |t-z|^{-1} (\max\limits_{a,b} \mathcal J_{2;a,b}) \big] \,\mathrm{d}{s} \,\mathrm{d}{t}, \end{align} | (4.13) |
where
\begin{align*} \mathcal J_0 & : = |\int e^{i(s-t) \cdot \xi}\, c_1(s,t,z,y,\xi) \,\mathrm{d}{\xi}|, \\ \mathcal J_{1;a} & : = |\int e^{i(s-t) \cdot \xi}\, \xi_a c_1(s,t,z,y,\xi) \,\mathrm{d}{\xi}|, \\ \mathcal J_{2;a,b} & : = |\int e^{i(s-t) \cdot \xi}\, \xi_a \xi_b c_1(s,t,z,y,\xi) \,\mathrm{d}{\xi}|. \end{align*} |
Because of the condition
\left\{\begin{array}{l} -m-\tau < -3, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(\rm 4.14a)\\ -2-\tau > -3.\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(\rm 4.14b) \end{array}\right. |
By using Lemmas 4.1 and 4.2, these quantities
\begin{align} \mathcal J_0 & = |s-t|^{-\tau} \cdot |\int (-\Delta_\xi)^{\tau/2} (e^{i(s-t) \cdot \xi}) c_1 (s,t,z,y,\xi) \,\mathrm{d}{\xi}| \\ & = |s-t|^{-\tau} \cdot |\int e^{i(s-t) \cdot \xi}\, (-\Delta_\xi)^{\tau/2} (c_1 (s,t,z,y,\xi)) \,\mathrm{d}{\xi}| \\ & \lesssim |s-t|^{-\tau} \cdot \int 〈\xi〉^{-m-\tau} \,\mathrm{d}{\xi} \lesssim |s-t|^{-\tau}. \end{align} | (4.15) |
The last inequality in (4.15) makes use of the fact (4.14a). Similarly, by first using fractional Laplacian and then using first-order differential operator on
\begin{align} \mathcal J_{1;a} & \leq C |s-t|^{-1-\tau} \int 〈\xi〉^{-m+1-1-\tau} \,\mathrm{d}{\xi} \leq C |s-t|^{-1-\tau}, \end{align} | (4.16) |
\begin{align} \mathcal J_{2;a,b} & \leq C |s - t|^{-2-\tau} |\int 〈\xi〉^{-m+2-2-\tau} \,\mathrm{d}{\xi}| \leq C |s - t|^{-2-\tau}, \end{align} | (4.17) |
where the constant
\begin{align} k_1 k_2 |\mathbb K(z,y)| & \lesssim \iint_{\widetilde{\mathcal D} \times \widetilde{\mathcal D}} \big[ |s-y|^{-2} |t-z|^{-2} |s - t|^{-\tau} + |s-y|^{-2} |t-z|^{-1} |s - t|^{-1-\tau} \\ & + |s-y|^{-1} |t-z|^{-2} |s - t|^{-1-\tau} + |s-y|^{-1} |t-z|^{-1} |s - t|^{-2-\tau} \big] \,\mathrm{d}{s} \,\mathrm{d}{t} \\ & = : \mathbb I_1 + \mathbb I_2 + \mathbb I_3 + \mathbb I_4. \end{align} | (4.18) |
Denote
\begin{align} \mathbb I_1 & = \iint_{\widetilde{\mathcal D} \times \widetilde{\mathcal D}} |s-y|^{-2} |t-z|^{-2} |s - t|^{-\tau} \,\mathrm{d}{s} \,\mathrm{d}{t} \\ & \leq \int_{\mathbf D} |s|^{-2} \big( \int_{\mathbf D} |t|^{-2} |t - (s+y-z)|^{-\tau} \,\mathrm{d}{t} \big) \,\mathrm{d}{s} \\ & \lesssim C_{\widetilde{\mathcal D}} + \int_{\mathbf D} |s|^{-2} |s - (z-y)|^{-(\tau-1)} \,\mathrm{d}{s} \\ & \simeq |z-y|^{2-\tau} + C_{\widetilde{\mathcal D}}. \end{align} | (4.19) |
Note that in (4.19) we used Lemma 4.3 twice. Similarly,
\begin{equation} \mathbb I_2,\, \mathbb I_3,\, \mathbb I_4 \lesssim |z-y|^{2-\tau} + C_{\widetilde{\mathcal D}}. \end{equation} | (4.20) |
Recall that
\begin{equation*} |\mathbb K(z,y)| \leq C k_1^{-1} k_2^{-1} (|z-y|^{2-\tau} + C_{\widetilde{\mathcal D}}) \leq C k^{-2} (( \mathop{{\rm{diam}}} D_V)^{2-\tau} + C_{\widetilde{\mathcal D}}) \lesssim k^{-2}. \end{equation*} |
We have reviewed the recoveries of some statistics by using the near-field data as well as far-field data generated under a single realization of the randomness. In this paper we mainly focus on time-harmonic Schrödinger systems. One of the possible ways to extend the current works is to study the Helmholtz systems. It would be also interesting to conduct the work in the time domain. Moreover, the stability of the recovering procedure is also worth of investigation.
[1] | J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pure. Appl., 1872, 55–108. |
[2] |
Y. L. Ma, A. M. Wazwaz, B. Q. Li, Novel bifurcation solitons for an extended Kadomtsev-Petviashvili equation in fluids, Phys. Lett. A, 413 (2021), 127585. https://doi.org/10.1016/j.physleta.2021.127585 doi: 10.1016/j.physleta.2021.127585
![]() |
[3] |
B. Q. Li, New breather and multiple-wave soliton dynamics for generalized Vakhnenko-Parkes equation with variable coefficients, J. Comput. Nonlinear Dyn., 16 (2021), 091006. https://doi.org/10.1115/1.4051624 doi: 10.1115/1.4051624
![]() |
[4] |
Y. L. Ma, A. M. Wazwaz, B. Q. Li, A new (3+1)-dimensional Kadomtsev-Petviashvili equation and its integrability, multiple-solitons, breathers and lump waves, Math. Comput. Simul., 187 (2021), 505–519. https://doi.org/10.1016/j.matcom.2021.03.012 doi: 10.1016/j.matcom.2021.03.012
![]() |
[5] |
B. Q. Li, Loop-like kink breather and its transition phenomena for the Vakhnenko equation arising from high-frequency wave propagation in electromagnetic physics, Appl. Math. Lett., 112 (2021), 106822. https://doi.org/10.1016/j.aml.2020.106822 doi: 10.1016/j.aml.2020.106822
![]() |
[6] |
Y. L. Ma, A. M. Wazwaz, B. Q. Li, New extended Kadomtsev-Petviashvili equation: Multiple soliton solutions, breather, lump and interaction solutions, Nonlinear Dynam., 104 (2021), 1581–1594. https://doi.org/10.1007/s11071-021-06357-8 doi: 10.1007/s11071-021-06357-8
![]() |
[7] | M. N. Alam, M. A. Akbar, S. T. Mohyud-Din, A novel G^{\prime}/G-expansion method and its application to the Boussinesq equation, Chinese Phys. B, 23 (2013). |
[8] |
X. Lü, J. P. Wang, F. H. Lin, X. W. Zhou, Lump dynamics of a generalized two-dimensional Boussinesq equation in shallow water, Nonlinear Dynam., 91 (2018), 1249–1259. https://doi.org/10.1007/s11071-017-3942-y doi: 10.1007/s11071-017-3942-y
![]() |
[9] |
A. M. Jawad, M. Petković, P. Laketa, A. Biswas, Dynamics of shallow water waves with Boussinesq equation, Sci. Iran., 20 (2013), 179–184. https://doi.org/10.1016/j.scient.2012.12.011 doi: 10.1016/j.scient.2012.12.011
![]() |
[10] |
S. Rashid, K. T. Kubra, H. Jafari, S. U. Lehre, A semi-analytical approach for fractional order Boussinesq equation in a gradient unconfined aquifers, Math. Method. Appl. Sci., 45 (2021), 1033–1062. https://doi.org/10.1002/mma.7833 doi: 10.1002/mma.7833
![]() |
[11] |
M. A. Akbar, N. H. M. Ali, T. Tanjim, Adequate soliton solutions to the perturbed Boussinesq equation and the KdV-Caudrey-Dodd-Gibbon equation, J. King Saud Univ. Sci., 32 (2020), 2777–2785. https://doi.org/10.1016/j.jksus.2020.06.014 doi: 10.1016/j.jksus.2020.06.014
![]() |
[12] |
Y. L. Ma, B. Q. Li, Analytic rogue wave solutions for a generalized fourth-order Boussinesq equation in fluid mechanics, Math. Method. Appl. Sci., 42 (2019), 39–48. https://doi.org/10.1002/mma.5320 doi: 10.1002/mma.5320
![]() |
[13] |
Y. L. Ma, N-solitons, breathers and rogue waves for a generalized Boussinesq equation, Int. J. Comput. Math., 97 (2020), 648–1661. https://doi.org/10.1080/00207160.2019.1639678 doi: 10.1080/00207160.2019.1639678
![]() |
[14] |
Y. L. Ma, B. Q. Li, Bifurcation solitons and breathers for the nonlocal Boussinesq equations, Appl. Math. Lett., 124 (2020), 107677. https://doi.org/10.1016/j.aml.2021.107677 doi: 10.1016/j.aml.2021.107677
![]() |
[15] |
G. Fal'kovich, M. Spector, S. Turitsyn, Destruction of stationary solutions and collapse in the nonlinear string equation, Phys. Lett. A, 99 (1983), 271–274. https://doi.org/10.1016/0375-9601(83)90882-4 doi: 10.1016/0375-9601(83)90882-4
![]() |
[16] | G. Morosanu, Nonlinear evolution equations and applications, Springer Science & Business Media, 26 (1988). |
[17] |
Q. Liu, R. Zhang, L. Yang, J. Song, A new model equation for nonlinear Rossby waves and some of its solutions, Phys. Lett. A, 383 (2019), 514–525. https://doi.org/10.1016/j.physleta.2018.10.052 doi: 10.1016/j.physleta.2018.10.052
![]() |
[18] |
J. Zhang, R. Zhang, L. Yang, Q. Liu, L. Chen, Coherent structures of nonlinear barotropic-baroclinic interaction in unequal depth two-layer model, Appl. Math. Comput., 408 (2021), 126347. https://doi.org/10.1016/j.amc.2021.126347 doi: 10.1016/j.amc.2021.126347
![]() |
[19] |
X. Zhang, H. Zhang, Y. Yang, J. Song, Effect of quadric shear basic zonal flows and topography on baroclinic instability, Tellus A, 72 (2020), 1–9. https://doi.org/10.1080/16000870.2020.1843330 doi: 10.1080/16000870.2020.1843330
![]() |
[20] |
Y. Yang, J. Song, On the generalized eigenvalue problem of Rossby waves vertical velocity under the condition of zonal mean flow and topography, Appl. Math. Lett., 121 (2021), 107485. https://doi.org/10.1016/j.aml.2021.107485 doi: 10.1016/j.aml.2021.107485
![]() |
[21] |
X. L. Gai, Y. T. Gao, X. Yu, Z. Y. Sun, Soliton interactions for the generalized (3+1)-dimensional Boussinesq equation, Int. J. Mod. Phys. B, 26 (2012), 125006. https://doi.org/10.1142/S0217979212500622 doi: 10.1142/S0217979212500622
![]() |
[22] |
Z. Yan, Similarity transformations and exact solutions for a family of higher-dimensional generalized Boussinesq equations, Phys. Lett. A, 361 (2007), 223–230. https://doi.org/10.1016/j.physleta.2006.07.047 doi: 10.1016/j.physleta.2006.07.047
![]() |
[23] |
P. A. Clarkson, M. D. Kruskal, New similarity reductions of the Boussinesq equation, J. Math. Phys., 30 (1989), 2201–2213. https://doi.org/10.1063/1.528613 doi: 10.1063/1.528613
![]() |
[24] |
M. El-Sabbagh, A. Ali, New exact solutions for (3+1)-dimensional Kadomtsev-Petviashvili equation and generalized (2+1)-dimensional Boussinesq equation, Int. J. Nonlinear Sci. Numer. Simul., 6 (2005), 151–162. https://doi.org/10.1515/IJNSNS.2005.6.2.151 doi: 10.1515/IJNSNS.2005.6.2.151
![]() |
[25] |
X. W. Yan, Generalized (3+1)-dimensional Boussinesq equation: Breathers, rogue waves and their dynamics, Mod. Phys. Lett. B, 34 (2020), 2050003. https://doi.org/10.1142/S0217984920500037 doi: 10.1142/S0217984920500037
![]() |
[26] |
W. X. Ma, C. X. Li, J. He, A second Wronskian formulation of the Boussinesq equation, Nonlinear Anal.-Theor., 70 (2009), 4245–4258. https://doi.org/10.1016/j.na.2008.09.010 doi: 10.1016/j.na.2008.09.010
![]() |
[27] | H. Zhang, B. Tian, H. Q. Zhang, T. Geng, X. H. Meng, W. J. Liu, et al., Periodic wave solutions for (2+1)-dimensional Boussinesq equation and (3+1)-dimensional Kadomtsev-Petviashvili equation, Commun. Theor. Phys., 50 (2008), 1169. |
[28] |
W. Y. Sun, Y. Y. Sun, The degenerate breather solutions for the Boussinesq equation, Appl. Math. Lett., 128 (2022), 107884. https://doi.org/10.1016/j.aml.2021.107884 doi: 10.1016/j.aml.2021.107884
![]() |
[29] |
M. Parvizi, A. Khodadadian, M. Eslahchi, Analysis of Ciarlet-Raviart mixed finite element methods for solving damped Boussinesq equation, J. Comput. Appl. Math., 379 (2020), 112818. https://doi.org/10.1016/j.cam.2020.112818 doi: 10.1016/j.cam.2020.112818
![]() |
[30] |
Y. Liu, B. Li, A. M. Wazwaz, Novel high-order breathers and rogue waves in the Boussinesq equation via determinants, Math. Method. Appl. Sci., 43 (2020), 3701–3715. https://doi.org/10.1002/mma.6148 doi: 10.1002/mma.6148
![]() |
[31] |
D. J. Ratliff, Double degeneracy in multiphase modulation and the emergence of the Boussinesq equation, Stud. Appl. Math., 140 (2018), 48–77. https://doi.org/10.1111/sapm.12189 doi: 10.1111/sapm.12189
![]() |
[32] | M. T. Darvishi, M. Najafi, A. M. Wazwaz, Traveling wave solutions for Boussinesq-like equations with spatial and spatial-temporal dispersion, Rom. Rep. Phys., 70 (2018), 108. |
[33] | A. Zafar, H. Rezazadeh, W. Reazzaq, A. Bekir, The simplest equation approach for solving non-linear Tzitzéica type equations in non-linear optics, Mod. Phys. Lett. B, 35 (2021). https://doi.org/10.1142/S0217984921501323 |
[34] |
M. Ekici, M. Mirzazadeh, A. Sonmezoglu, M. Z. Ullah, Q. Zhou, H. Triki, et al., Optical solitons with anti-cubic nonlinearity by extended trial equation method, Optik, 136 (2017), 368–373. https://doi.org/10.1016/j.ijleo.2017.02.004 doi: 10.1016/j.ijleo.2017.02.004
![]() |
[35] |
H. Durur, E. Ilhan, H. Bulut, Novel complex wave solutions of the (2+1)-dimensional hyperbolic nonlinear Schrödinger equation, Fractal Fract., 4 (2020), 41. https://doi.org/10.3390/fractalfract4030041 doi: 10.3390/fractalfract4030041
![]() |
[36] | A. Hussain, A. Jhangeer, S. Tahir, Y. M. Chu, I. Khan, K. S. Nisar, Dynamical behavior of fractional Chen-Lee-Liu equation in optical fibers with beta derivatives, Results Phys., 18 (2020). https://doi.org/10.1016/j.rinp.2020.103208 |
[37] | A. Jhangeer, A. Hussain, S. Tahir, S. Sharif, Solitonic, super nonlinear, periodic, quasiperiodic, chaotic waves and conservation laws of modified Zakharov-Kuznetsov equation in transmission line, Commun. Nonlinear Sci. Numer. Simul., 86 (2020). https://doi.org/10.1016/j.cnsns.2020.105254 |
[38] | A. Hussain, M. Junaid-U-Rehman, F. Jabeen, I. Khan, Optical solitons of NLS-type differential equations by extended direct algebraic method, Int. J. Geom. Methods Mod. Phys., 19 (2022). https://doi.org/10.1142/S021988782250075X |
[39] | M. A. H. Khaled, M. A. Shukri, Y. A. U. Hager, Dust acoustic multi-soliton collisions in a dusty plasma using Hirota bilinear method, J. Amr. Uni., 1 (2021), 129. |
[40] |
A. S. Bezgabadi, M. Bolorizadeh, Analytic combined bright-dark, bright and dark solitons solutions of generalized nonlinear Schrödinger equation using extended Sinh-Gordon equation expansion method, Results Phys., 30 (2021), 104852. https://doi.org/10.1016/j.rinp.2021.104852 doi: 10.1016/j.rinp.2021.104852
![]() |
[41] | Y. Bi, Z. Zhang, Q. Liu, T. Liu, Research on nonlinear waves of blood flow in arterial vessels, Commun. Nonlinear Sci. Numer. Simul., 102 (2021). https://doi.org/10.1016/j.cnsns.2021.105918 |
[42] | B. Elma, E. Mısırlı, Applications of the extended exp (- \phi (\xi))-expansion method to some non-linear fractional evolution equations, In 9th (Online) International Conference on Applied Analysis and Mathematical Modeling (ICAAMM21), Istanbul-Turkey, 2021, 17. |
[43] | Y. L. Zhao, Y. P. Liu, Z. B. Li, A connection between the (G^{\prime}/G)-expansion method and the truncated Painlevé expansion method and its application to the mKdV equation, Chinese Phys. B, 19 (2010). |
[44] |
J. Li, Y. Qiu, D. Lu, R. A. Attia, M. Khater, Study on the solitary wave solutions of the ionic currents on microtubules equation by using the modified Khater method, Therm. Sci., 23 (2019), 2053–2062. https://doi.org/10.2298/TSCI190722370L doi: 10.2298/TSCI190722370L
![]() |
[45] |
H. M. Ahmed, W. B. Rabie, M. A. Ragusa, Optical solitons and other solutions to Kaup-Newell equation with Jacobi elliptic function expansion method, Anal. Math. Phys., 11 (2021), 1–16. https://doi.org/10.1007/s13324-020-00464-2 doi: 10.1007/s13324-020-00464-2
![]() |
[46] | P. E. Hydon, P. E. Hydon, Symmetry methods for differential equations: A beginner's guide, Cambridge University Press, 2000. |
[47] | D. J. Arrigo, Symmetry analysis of differential equations: An introduction, John Wiley & Sons, 2015. |
[48] |
A. Hussain, A. Jhangeer, N. Abbas, I. Khan, K. S. Nisar, Solitary wave patterns and conservation laws of fourth-order nonlinear symmetric regularized long-wave equation arising in plasma, Ain Shams Eng. J., 12 (2021), 3919–3930. https://doi.org/10.1016/j.asej.2020.11.029 doi: 10.1016/j.asej.2020.11.029
![]() |
[49] | S. Kumar, M. Niwas, A. M. Wazwaz, Lie symmetry analysis, exact analytical solutions and dynamics of solitons for (2+1)-dimensional NNV equations, Phys. Scripta, 95 (2020). |
[50] | A. Hussain, A. Jhangeer, N. Abbas, Symmetries, conservation laws and dust acoustic solitons of two-temperature ion in inhomogeneous plasma, Int. J. Geom. Methods Mod. Phys., 18 (2021). https://doi.org/10.1142/S0219887821500717 |
[51] | M. R. Ali, W. X. Ma, R. Sadat, Lie symmetry analysis and invariant solutions for (2+1)-dimensional Bogoyavlensky-Konopelchenko equation with variable-coefficient in wave propagation, J. Ocean Eng. Sci., 2021. https://doi.org/10.1016/j.joes.2021.08.006 |
[52] |
A. Hussain, S. Bano, I. Khan, D. Baleanu, K. Sooppy Nisar, Lie symmetry analysis, explicit solutions and conservation laws of a spatially two-dimensional Burgers-Huxley equation, Symmetry, 12 (2020), 170. https://doi.org/10.3390/sym12010170 doi: 10.3390/sym12010170
![]() |
[53] |
K. Sethukumarasamy, P. Vijayaraju, P. Prakash, On Lie symmetry analysis of certain coupled fractional ordinary differential equations, J. Nonlinear Math. Phys., 28 (2021), 219–241. https://doi.org/10.2991/jnmp.k.210315.001 doi: 10.2991/jnmp.k.210315.001
![]() |
[54] | A. Jhangeer, A. Hussain, M. Junaid-U-Rehman, I. Khan, D. Baleanu, K. S. Nisar, Lie analysis, conservation laws and travelling wave structures of nonlinear Bogoyavlenskii-Kadomtsev-Petviashvili equation, Results Phys., 19 (2020). https://doi.org/10.1016/j.rinp.2020.103492 |
[55] | D. Yu, Z. G. Zhang, H. H. Dong, H. W. Yang, Bäcklund transformation, infinite number of conservation laws and fission properties of an integro-differential model for ocean internal solitary waves, Commun. Theor. Phys., 73 (2021). https://doi.org/10.1088/1572-9494/abda1e |
[56] |
R. Naz, F. M. Mahomed, D. P. Mason, Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics, Appl. Math. Comput., 205 (2008), 212–230. https://doi.org/10.1016/j.amc.2008.06.042 doi: 10.1016/j.amc.2008.06.042
![]() |
[57] |
M. B. Riaz, D. Baleanu, A. Jhangeer, N. Abbas, Nonlinear self-adjointness, conserved vectors, and traveling wave structures for the kinetics of phase separation dependent on ternary alloys in iron (Fe-Cr-Y (Y = Mo, Cu)), Results Phys., 25 (2021), 104151. https://doi.org/10.1016/j.rinp.2021.104151 doi: 10.1016/j.rinp.2021.104151
![]() |
[58] |
M. Inc, A. I. Aliyu, A. Yusuf, D. Baleanu, Combined optical solitary waves and conservation laws for nonlinear Chen-Lee-Liu equation in optical fibers, Optik, 158 (2018), 297–304. https://doi.org/10.1016/j.ijleo.2017.12.075 doi: 10.1016/j.ijleo.2017.12.075
![]() |
[59] | C. M. Khalique, O. D. Adeyemo, A study of (3+1)-dimensional generalized Korteweg-de Vries-Zakharov-Kuznetsov equation via Lie symmetry approach, Results Phys., 18 (2020). https://doi.org/10.1016/j.rinp.2020.103197 |
[60] |
C. Fu, C. N. Lu, H. W. Yang, Timespace fractional (2+1)-dimensional nonlinear Schrödinger equation for envelope gravity waves in baroclinic atmosphere and conservation laws as well as exact solutions, Adv. Diff. Equ., 2018 (2018), 1–20. https://doi.org/10.1186/s13662-018-1512-3 doi: 10.1186/s13662-018-1512-3
![]() |
[61] | N. H. Ibragimov, Nonlinear self-adjointness and conservation laws, J. Phys. A, 44 (2021). https://doi.org/10.1088/1751-8113/44/43/432002 |
[62] | M. Gandarias, Weak self-adjoint differential equations, J. Phys. A, 44 (2011). https://doi.org/10.1088/1751-8113/44/26/262001 |
[63] | S. F. Tian, Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized Boussinesq water wave equation, Appl. Math. Lett., 100 (2020). https://doi.org/10.1016/j.aml.2019.106056 |
[64] |
M. J. Xu, S. F. Tian, J. M. Tu, T. T. Zhang, Bäcklund transformation, infinite conservation laws and periodic wave solutions to a generalized (2+1)-dimensional Boussinesq equation, Nonlinear Anal.-Real, 31 (2016), 388–408. https://doi.org/10.1016/j.nonrwa.2016.01.019 doi: 10.1016/j.nonrwa.2016.01.019
![]() |
1. | Jianliang Li, Peijun Li, Xu Wang, Inverse Random Potential Scattering for Elastic Waves, 2023, 21, 1540-3459, 426, 10.1137/22M1497183 | |
2. | Qi Lü, Xu Zhang, Inverse problems for stochastic partial differential equations: Some progresses and open problems, 2023, 0, 2155-3289, 0, 10.3934/naco.2023014 |