Many years of research have gone into spline functions, and they are now used in countless computational tasks. Splines have a lot of useful properties that make them an excellent tool for numerical problem solving, which account for their never-ending applications. The piecewise continuous functions known as spline functions yield smooth outcomes. The numerical solution to the nonhomogeneous time-fractional Banjamin-Bona-Mahony-Burger problem was presented in this study. The objective of the study was to obtain accurate numerical results by applying the Atangana-Baleanu fractional derivative with the help of the forward difference scheme for integer-order time derivative while the $ \theta $-weighted scheme with the collaboration of cubic B-spline functions was used for the spatial derivatives. The stability of the proposed scheme was analyzed and proved to be unconditionally stable. The convergence analysis was also studied, and it was of the second order $ O(h^2 + (\Delta s)^2) $. The proposed scheme was applicable and accurate, as demonstrated by numerical examples and their conceivable outcomes. The proposed scheme provided accuracy compared to other numerical techniques because it yielded numerical solutions in $ C^2 $ continuous piecewise form at each knot in the domain.
Citation: Muserat Shaheen, Muhammad Abbas, Miguel Vivas-Cortez, M. R. Alharthi, Y. S. Hamed. Numerical approximation for solving time-fractional Benjamin-Bona-Mahony-Burger model via cubic B-spline functions[J]. AIMS Mathematics, 2025, 10(6): 13855-13879. doi: 10.3934/math.2025624
Many years of research have gone into spline functions, and they are now used in countless computational tasks. Splines have a lot of useful properties that make them an excellent tool for numerical problem solving, which account for their never-ending applications. The piecewise continuous functions known as spline functions yield smooth outcomes. The numerical solution to the nonhomogeneous time-fractional Banjamin-Bona-Mahony-Burger problem was presented in this study. The objective of the study was to obtain accurate numerical results by applying the Atangana-Baleanu fractional derivative with the help of the forward difference scheme for integer-order time derivative while the $ \theta $-weighted scheme with the collaboration of cubic B-spline functions was used for the spatial derivatives. The stability of the proposed scheme was analyzed and proved to be unconditionally stable. The convergence analysis was also studied, and it was of the second order $ O(h^2 + (\Delta s)^2) $. The proposed scheme was applicable and accurate, as demonstrated by numerical examples and their conceivable outcomes. The proposed scheme provided accuracy compared to other numerical techniques because it yielded numerical solutions in $ C^2 $ continuous piecewise form at each knot in the domain.
| [1] |
M. Xiao, W. X. Zheng, G. Jiang, J. Cao, Undamped oscillations generated by Hopf bifurcations in fractional-order recurrent neural networks with Caputo derivative, IEEE T. Neur. Net. Lear., 26 (2015), 3201–3214. https://doi.org/10.1109/TNNLS.2015.2425734 doi: 10.1109/TNNLS.2015.2425734
|
| [2] | N. Laskin, Fractional market dynamics, Physica A, 287 (2000), 482–492. https://doi.org/10.1016/S0378-4371(00)00387-3 |
| [3] |
V. D. Djordjevic, J. Jaric, B. Fabry, J. J. Fredberg, D. Stamenovic, Fractional derivatives embody essential features of cell rheological behavior, Ann. Biomed. Eng., 31 (2003), 692–699. https://doi.org/10.1114/1.1574026 doi: 10.1114/1.1574026
|
| [4] |
A. Babaei, H. Jafari, M. Ahmadi, A fractional order HIV/AIDS model based on the effect of screening of unaware infectives, Math. Method. Appl. Sci., 42 (2019), 2334–2343. https://doi.org/10.1002/mma.5511 doi: 10.1002/mma.5511
|
| [5] |
A. Babaei, M. Ahmadi, H. Jafari, A. Liya, A mathematical model to examine the effect of quarantine on the spread of coronavirus, Chaos Soliton. Fract., 142 (2021), 110418. https://doi.org/10.1016/j.chaos.2020.110418 doi: 10.1016/j.chaos.2020.110418
|
| [6] | I. Podlubny, Fractional differential equations, San Diego: Academic, 1999. |
| [7] | J. H. He, Some applications of nonlinear fractional differential equations and their approximations, Bull. Sci. Technol., 15 (1999), 86–90. |
| [8] |
N. H. Tuan, Y. E. Aghdam, H. Jafari, H. Mesgarani, A novel numerical manner for two-dimensional space fractional diffusion equation arising in transport phenomena, Numer. Meth. Part. D. E., 37 (2021), 1397–1406. https://doi.org/10.1002/num.22586 doi: 10.1002/num.22586
|
| [9] |
E. Atilgan, M. Senol, A. Kurt, O. Tasbozan, New wave solutions of time-fractional coupled Boussinesq-Whitham-Broer-Kaup equation as a model of water waves, China Ocean Eng., 33 (2019), 477–483. https://doi.org/10.1007/s13344-019-0045-1 doi: 10.1007/s13344-019-0045-1
|
| [10] |
O. A. Arqub, Z. Odibat, M. A. Smadi, Numerical solutions of time-fractional partial integrodifferential equations of Robin functions types in Hilbert space with error bounds and error estimates, Nonlinear Dynam., 94 (2018), 1819–1834. https://doi.org/10.1007/s11071-018-4459-8 doi: 10.1007/s11071-018-4459-8
|
| [11] |
C. I. Kondo, C. M. Webler, The generalized BBM-Burgers equations: Convergence results for conservation law with discontinuous flux function, Appl. Anal., 95 (2016), 503–523. https://doi.org/10.1080/00036811.2015.1015524 doi: 10.1080/00036811.2015.1015524
|
| [12] | J. Zhang, Z. Wei, L. Yong, Y. Xiao, Analytical solution for the time fractional BBM-Burger equation by using modified residual power series method, Complexity, 2018 (2018). https://doi.org/10.1155/2018/2891373 |
| [13] |
S. Abbasbandy, A. Shirzadi, The first integral method for modified Benjamin-Bona-Mahony equation, Commun. Nonlinear Sci., 15 (2010), 1759–1764. https://doi.org/10.1016/j.cnsns.2009.08.003 doi: 10.1016/j.cnsns.2009.08.003
|
| [14] |
A. Majeed, M. Kamran, M. K. Iqbal, D. Baleanu, Solving time fractional Burgers' and Fisher's equations using cubic B-spline approximation method, Adv. Differ. Equ., 2020 (2020), 1–15. https://doi.org/10.1186/s13662-020-02619-8 doi: 10.1186/s13662-020-02619-8
|
| [15] |
A. Majeed, M. Kamran, N. Asghar, D. Baleanu, Numerical approximation of inhomogeneous time fractional Burgers-Huxley equation with B-spline functions and Caputo derivative, Eng. Comput., 38 (2022), 885–900. https://doi.org/10.1007/s00366-020-01261-y doi: 10.1007/s00366-020-01261-y
|
| [16] |
M. Shafiq, F. A. Abdullah, M. Abbas, A. S. M. Alzaidi, M. B. Riaz, Memory effect analysis using piecewise cubic B-spline of time fractional diffusion equation, Fractals, 30 (2022), 2240270. https://doi.org/10.1142/S0218348X22402708 doi: 10.1142/S0218348X22402708
|
| [17] |
M. Shafiq, M. Abbas, F. A. Abdullah, A. Majeed, T. Abdeljawad, M. A. Alqudah, Numerical solutions of time fractional Burgers' equation involving Atangana-Baleanu derivative via cubic B-spline functions, Results Phys., 34 (2022), 105244. https://doi.org/10.1016/j.rinp.2022.105244 doi: 10.1016/j.rinp.2022.105244
|
| [18] | G. Arora, R. C. Mittal, B. K. Singh, Numerical solution of BBM-Burger equation with quartic B-spline collocation method, Eng. Sci. Technol., 9 (2014), 104–116. |
| [19] |
A. Umer, M. Abbas, M. Shafiq, F. A. Abdullah, M. D. L. Sen, T. Abdeljawad, Numerical solutions of Atangana-Baleanu time-fractional advection diffusion equation via an extended cubic B-spline technique, Alex. Eng. J., 74 (2023), 285–300. https://doi.org/10.1016/j.aej.2023.05.028 doi: 10.1016/j.aej.2023.05.028
|
| [20] |
R. M. Ganji, H. Jafari, A new approach for solving nonlinear Volterra integro-differential equations with Mittag-Leffler kernel, Proc. Inst. Math. Mech., 46 (2020), 144–158. https://doi.org/10.29228/proc.24 doi: 10.29228/proc.24
|
| [21] |
H. Jafari, N. A. Tuan, R. M. Ganji, A new numerical scheme for solving pantograph type nonlinear fractional integro-differential equations, J. King Saud Univ. Sci., 33 (2021), 101185. https://doi.org/10.1016/j.jksus.2020.08.029 doi: 10.1016/j.jksus.2020.08.029
|
| [22] |
R. K. Pandey, O. P. Singh, V. K. Baranwal, An analytic algorithm for the space-time fractional advection-dispersion equation, Comput. Phys. Commun., 182 (2021), 1134–1144. https://doi.org/10.1016/j.cpc.2011.01.015 doi: 10.1016/j.cpc.2011.01.015
|
| [23] |
R. M. Ganji, H. Jafari, D. Baleanu, A new approach for solving multi variable orders differential equations with Mittag-Leffler kernel, Chaos Soliton. Fract., 130 (2020), 109–405. https://doi.org/10.1016/j.chaos.2019.109405 doi: 10.1016/j.chaos.2019.109405
|
| [24] |
X. Shen, A. Zhu, A Crank-Nicolson linear difference scheme for a BBM equation with a time fractional nonlocal viscous term, Adv. Differ. Equ., 2018 (2018), 1–12. https://doi.org/10.1186/s13662-018-1815-4 doi: 10.1186/s13662-018-1815-4
|
| [25] | C. Li, Linearized difference schemes for a BBM equation with a fractional nonlocal viscous term. Appl. Math. Comput., 31 (2017), 240–250. https://doi.org/10.1016/j.amc.2017.05.022 |
| [26] |
A. Fakhari, D. Ganji, Ebrahimpour, Approximate explicit solutions of nonlinear BBM-Burger equations by homotopy analysis method and comparison with the exact solution, Phys. Lett. A, 368 (2007), 64–68. https://doi.org/10.1016/j.physleta.2007.03.062 doi: 10.1016/j.physleta.2007.03.062
|
| [27] |
L. Song, H. Zhang, Solving the fractional BBM-Burgers equation using homotopy analysis method, Chaos Soliton. Fract., 40 (2009), 1616–1622. https://doi.org/10.1016/j.chaos.2007.09.042 doi: 10.1016/j.chaos.2007.09.042
|
| [28] |
S. Kumar, D. Kumar, Fractional modelling for BBM-Burger equation by using new homotopy analysis transform method, J. Assoc. Arab Univ. Basic Appl. Sci., 16 (2014), 16–20. https://doi.org/10.1016/j.jaubas.2013.10.002 doi: 10.1016/j.jaubas.2013.10.002
|
| [29] |
M. Shakeel, Q. M. U. Hassan, J. Ahmad, T. Naqvi, Exact solutions of the time fractional BBM-Burger equation by novel expansion method, Adv. Math. Phys., 2014 (2014), 181594. https://doi.org/10.1155/2014/181594 doi: 10.1155/2014/181594
|
| [30] |
B. Hong, Assorted exact explicit solutions for the generalized Atangana's fractional BBM-Burgers equation with the dissipative term, Front. Phys., 10 (2022), 1071200. https://doi.org/10.3389/fphy.2022.1071200 doi: 10.3389/fphy.2022.1071200
|
| [31] | J. Zhang, Z. Wei, L. Yong, Y. Xiao, Analytical solution for the time fractional BBM-Burger by using modified residual power series method, Complexity, 2018 (2018). https://doi.org/10.1155/2018/2891373 |
| [32] | H. M. Salih, L. N. M. Tawfiq, Z. R. Yahya, Using cubic trigonometric B-spline method to solve BBM-Burger equation, IWNEST Conf. P., 2 (2016), 1–9. |
| [33] |
S. Arora, R. Jain, V. K. Kukreja, Solution of Benjamin-Bona-Mahony-Burgers equation using collocation method with quintic Hermite splines, Appl. Numer. Math., 154 (2020), 1–16. https://doi.org/10.1016/j.apnum.2020.03.015 doi: 10.1016/j.apnum.2020.03.015
|
| [34] |
S. B. G. Karakoc, K. K. Ali, Theorical and computational structure on solitary wave solution of Benjamin Bona Mahony-Burger equation, Tbilisi Math. J., 14 (2014), 33–50. https://doi.org/10.32513/tmj/19322008120 doi: 10.32513/tmj/19322008120
|
| [35] |
K. Omrani, M. Ayadi, Finite difference discretization of the Benjamin-Bona-Mahony-Burger equation, Numer. Meth. Part. D. E., 24 (2008), 239–248. https://doi.org/10.1002/num.20256 doi: 10.1002/num.20256
|
| [36] |
S. B. G. Karakoc, S. K. Bhowmik, Galerkin finite element solution for Benjamin-Bona-Mahony-Burgers equation with cubic B-splines, Comput. Math. Appl., 77 (2019), 1917–1932. https://doi.org/10.1016/j.camwa.2018.11.023 doi: 10.1016/j.camwa.2018.11.023
|
| [37] |
A. Majeed, M. Kamran, M. Abbas, M. Y. B. Misro, An efficient numerical scheme for the simulation of time-fractional nonhomogeneous Benjamin-Bona-Mahony-Burger model, Phys. Scripta, 96 (2021), 084002. https://doi.org/10.1088/1402-4896/abfde2 doi: 10.1088/1402-4896/abfde2
|
| [38] |
J. Lin, L. Shi, S. Reutskiy, J. Lu, Numerical treatment of multi-dimensional time-fractional Benjamin-Bona-Mahony-Burgers equations in arbitrary domains with a novel improvised RBF-based method, Comput. Math. Appl., 167 (2024), 178–198. https://doi.org/10.1016/j.camwa.2024.05.018 doi: 10.1016/j.camwa.2024.05.018
|
| [39] |
M. Kamran, M. Abbas, A. Majeed, H. Emadifar, T. Nazir, Numerical simulation of time fractional BBM-Burger equation using cubic B-Spline functions, J. Funct. Space., 2022 (2022), 2119416. https://doi.org/10.1155/2022/2119416 doi: 10.1155/2022/2119416
|
| [40] |
H. Salih, Solution BBM-Burger equation via quartic trigonometric B-spline approach, J. Phys. Conf. Ser., 1879 (2021), 022109. https://doi.org/10.1088/1742-6596/1879/2/022109 doi: 10.1088/1742-6596/1879/2/022109
|
| [41] |
L. Mohan, A. Prakash, Stability and numerical analysis of fractional BBM-Burger equation and fractional diffusion-wave equation with Caputo derivative, Opt. Quant. Electron., 56 (2024), 26. https://doi.org/10.1007/s11082-023-05608-9 doi: 10.1007/s11082-023-05608-9
|
| [42] |
V. Kumar, Nonlinear waves and modulation instability in the generalized Burger-BBM equation, Nonlinear Sci., 2 (2025), 100013. https://doi.org/10.1016/j.nls.2025.100013 doi: 10.1016/j.nls.2025.100013
|
| [43] | A. E. shenawy, M. E. Gamel, D. Reda, Troesch's problem: A numerical study with cubic trigonometric B-spline method. Part. Differ. Eq. Appl. Math., 10 (2024), 100694. https://doi.org/10.1016/j.padiff.2024.100694 |
| [44] |
M. E. Gamel, W. E. Bashbashy, A. E. Shenawy, Numerical solutions for the time-dependent Emden-Fowler-type equations by B-spline method, Appl. Math., 5 (2014), 593–600. https://doi.org/10.4236/am.2014.54056 doi: 10.4236/am.2014.54056
|
| [45] |
A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 757–763. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
|
| [46] | M. Partohaghighi, M. Inc, M. Bayram, D. Baleanu, On numerical solution of the time fractional advection-diffusion equation involving Atangana-Baleanu-Caputo derivative, Open Phys., 17, (2019), 816-822. https://doi.org/10.1515/phys-2019-0085 |
| [47] | J. R. Poulin, Calculating infinie series using parsevals identity (master thesis), The University of Maine, Orono, 2020. |
| [48] |
M. Shafiq, M. Abbas, H. Emadifar, A. S. Alzaidi, T. Nazir, F. A. Abdullah, Numerical investigation of the fractional diffusion wave equation with exponential kernal via cubic B-spline approach, PLoS One, 18 (2023), 0295525. https://doi.org/10.1371/journal.pone.0295525 doi: 10.1371/journal.pone.0295525
|
| [49] |
M. Shafiq, M. Abbas, K. M. Abualnaja, M. J. Huntul, A. Majeed, T. Nazir, An efficient technique based on cubic B-spline functions for solving time-fractional advective diffusion equation involving Atangana-Baleanu derivative, Eng. Comput., 38 (2022), 901–917. https://doi.org/10.1007/s00366-021-01490-9 doi: 10.1007/s00366-021-01490-9
|
| [50] | S. G. Rubin, R. A. J. Graves, A cubic spline approximation for problems in fluid mechanics, NASA STI/Recon Tech. Rep. N, 75 (1975), 33345. |
| [51] |
M. Yaseen, M. Abba, A. I. Ismail, T. Nazir, A cubic trigonometric B-spline collocation approach for the fractional sub-diffusion equations, Appl. Math. Comput., 293 (2017), 311–319. https://doi.org/10.1016/j.amc.2016.08.028 doi: 10.1016/j.amc.2016.08.028
|
| [52] |
S. T. M. Din, T. Akram, M. Abbas, A. T. Ismail, N. H. M. Ali, A fully implicit finite difference scheme based on extanded Cubic B-spline for time fractional advective diffusion equation, Adv. Differ. Equ., 2018 (2018), 1–17. https://doi.org/10.1186/s13662-018-1537-7 doi: 10.1186/s13662-018-1537-7
|
| [53] | C. A. Hall, Optimal erroe bounds for cubic B-spline interpolation. J. Approx. Theory, 16 (1976) 105–122. https://doi.org/10.1016/0021-9045(76)90040-X |
| [54] |
C. D. Boor, On the convergence of odd-degree spline interpolation, J. Approx. Theory, 1 (1968), 452–463. https://doi.org/10.1016/0021-9045(68)90033-6 doi: 10.1016/0021-9045(68)90033-6
|
| [55] |
S. Yadav, R. K. Pandey, A. K. Shukla, Numerical approximation of Atangana-Baleanue Caputo derivative and its applications, Chaos Soliton. Fract., 118 (2019), 58–64. https://doi.org/10.1016/j.chaos.2018.11.009 doi: 10.1016/j.chaos.2018.11.009
|