This manuscript is associated with a study of general Appell polynomials. In this research work, we introduced a new sequence of Szász-Integral type of sequence of operators via general-Appell polynomials to discuss approximation properties for Lebesgue integrable functions $ (L^p[0, \infty)) $. In addition, estimates are studied in view of test functions and central moments. Next, the convergence rate is discussed using the Korovkin theorem and a Voronovskaja-type theorem. Moreover, direct approximation results via modulus of continuity of first and second order, Peetre's K-functional, Lipschitz type space, and the $ r^{th} $ order Lipschitz type maximal functions are investigated. In the following section, we present weighted approximation results, and statistical approximation theorems are discussed.
Citation: Nadeem Rao, Mohammad Farid, Nand Kishor Jha. Szász-integral operators linking general-Appell polynomials and approximation[J]. AIMS Mathematics, 2025, 10(6): 13836-13854. doi: 10.3934/math.2025623
This manuscript is associated with a study of general Appell polynomials. In this research work, we introduced a new sequence of Szász-Integral type of sequence of operators via general-Appell polynomials to discuss approximation properties for Lebesgue integrable functions $ (L^p[0, \infty)) $. In addition, estimates are studied in view of test functions and central moments. Next, the convergence rate is discussed using the Korovkin theorem and a Voronovskaja-type theorem. Moreover, direct approximation results via modulus of continuity of first and second order, Peetre's K-functional, Lipschitz type space, and the $ r^{th} $ order Lipschitz type maximal functions are investigated. In the following section, we present weighted approximation results, and statistical approximation theorems are discussed.
| [1] | K. Weierstrass, Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen einer reellen Veränderlichen, Sitzungsber, Kgl. Preuss. Akad. Wiss., 2 (1885), 633–639. |
| [2] |
S. N. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul de probabilités, Commun. Soc. Math. Kharkow., 13 (1913), 1–2. http://dx.doi.org/10.2307/27203467 doi: 10.2307/27203467
|
| [3] |
O. Szász, Generalization of Bernstein's polynomials to the infinite interval, J. Res. Nat. Bur. Stds., 45 (1950), 239–245. http://dx.doi.org/10.6028/jres.045.024 doi: 10.6028/jres.045.024
|
| [4] |
F. Özger, Weighted statistical approximation properties of univariate and bivariate $\lambda$-Kantorovich operators, Filomat, 33 (2019), 3473–3486. http://dx.doi.org/10.2298/FIL1911473 doi: 10.2298/FIL1911473
|
| [5] |
R. Aslan, Approximation by Szász Mirakjan Durrmeyer operators based on shape parameter $\lambda$, Commun. Fac. Sci. Univ., 71 (2022), 407–421. http://dx.doi.org/10.31801/cfsuasmas.941919 doi: 10.31801/cfsuasmas.941919
|
| [6] |
F. $\ddot{O}$zger, On new Bézíer bases with Schurer polynomials and corresponding results in approximation theory, Commun. Fac. Sci. Univ., 69 (2020), 376–393. http://dx.doi.org/10.31801/cfsuasmas.510382 doi: 10.31801/cfsuasmas.510382
|
| [7] |
F. $\ddot{O}$zger, M. T. Ersoy, O. Z. $\ddot{O}$zger, Existence of solutions: Investigating Fredholm integral equations via a fixed-point theorem, Axioms, 13 (2024), 261. http://dx.doi.org/10.3390/axioms13040261 doi: 10.3390/axioms13040261
|
| [8] |
A. M. Acu, T. Acar, V. A. Radu, Approximation by modified $U_{n}^{\rho}$ operators, RACSAM, 113 (2019), 2715–2729. http://dx.doi.org/10.1007/s13398-019-00655-y doi: 10.1007/s13398-019-00655-y
|
| [9] |
A. M. Acu, P. Agrawal, D. Kumar, Approximation properties of modified $q$-Bernstein-Kantorovich operators, Commun. Fac. Sci. Univ., 68 (2019), 2170–2197. http://dx.doi.org/10.31801/cfsuasmas.545460 doi: 10.31801/cfsuasmas.545460
|
| [10] |
N. L. Braha, Some summability methods for Dunkl-Gamma-type operators including Appell polynomials, Math. Meth. Appl. Sci., 47 (2024), 8904–8921. http://dx.doi.org/10.1002/mma.10051 doi: 10.1002/mma.10051
|
| [11] |
N. L. Braha, T. Mansour, M. Mursaleen, Some approximation properties of parametric Baskakov-Schurer-Szász operators through a power series summability method, Complex Anal. Oper. Theory, 18 (2024), 71. https://doi.org/10.1007/s11785-024-01510-8 doi: 10.1007/s11785-024-01510-8
|
| [12] |
M. A. Mursaleen, M. Heshamuddin, N. Rao, B. K. Sinha, A. K. Yadav, Hermite polynomials linking Szász-Durrmeyer operators, Comp. Appl. Math., 43 (2024), 407–421. http://dx.doi.org/10.1007/s40314-024-02752-0 doi: 10.1007/s40314-024-02752-0
|
| [13] |
K. J. Ansari, M. Mursaleen, S. Rahman, Approximation by Jakimovski-Leviatan operators of Durrmeyer type involving multiple Appell polynomials, RACSAM, 113 (2019), 1007–1024. http://dx.doi.org/10.1007/s13398-018-0525-9 doi: 10.1007/s13398-018-0525-9
|
| [14] |
K. J. Ansari, F. $\ddot{O}$zger, O. Z. $\ddot{O}$zger, Numerical and theoretical approximation results for Schurer-Stancu operators with shape parameter $\lambda$, Comput. Appl. Math., 41 (2022), 181. http://dx.doi.org/10.1007/s40314-022-01877-4 doi: 10.1007/s40314-022-01877-4
|
| [15] |
S. A. Mohiuddine, T. Acar, A. Alotaibi, Construction of a new family of Bernstein-Kantorovich operators, Math. Meth. Appl. Sci., 40 (2017), 7749–7759. http://dx.doi.org/10.1002/mma.4559 doi: 10.1002/mma.4559
|
| [16] |
S. A. Mohiuddine, N. Ahmad, F. $\ddot{O}$zger, A. Alotaibi, B. Hazarika, Approximation by the parametric generalization of Baskakov-Kantorovich operators linking with Stancu operators, Iran. J. Sci. Technol. Trans., 45 (2021), 593–605. http://dx.doi.org/10.1007/s40995-020-01024-w doi: 10.1007/s40995-020-01024-w
|
| [17] |
M. Mursaleen, K. J. Ansari, A. Khan, Approximation properties and error estimation of q-Bernstein shifted operators, Numer. Algorithms, 84 (2020), 207–227. http://dx.doi.org/10.1007/s11075-019-00752-4 doi: 10.1007/s11075-019-00752-4
|
| [18] |
M. Mursaleen, A. Naaz, A. Khan, Improved approximation and error estimations by King type (p, q)-Szász-Mirakjan Kantorovich operators, Appl. Math. Comput., 348 (2019), 2175–2185. http://dx.doi.org/10.3934/math.2020317 doi: 10.3934/math.2020317
|
| [19] | A. Khan, M. Mansoori, K. Khan, M. Mursaleen, Phillips-type q-Bernstein operators on triangles, J. Funct. Space., 2021, 1–13. http://dx.doi.org/10.1155/2021/6637893 |
| [20] |
M. Nasiruzzaman, Approximation properties by Szász-Mirakjan operators to bivariate functions via Dunkl analogue, Iran. J. Sci. Technol. Trans., 45 (2021), 259–269. http://dx.doi.org/10.3934/mfc.2022037 doi: 10.3934/mfc.2022037
|
| [21] |
N. Rao, M. Farid, R. Ali, Study of Szász-Durremeyer-type operators involving adjoint Bernoulli polynomials, Mathematics, 12 (2024), 3645. http://dx.doi.org/10.3390/math12233645 doi: 10.3390/math12233645
|
| [22] |
N. Rao, M. Farid, M. Raiz, Symmetric properties of $\lambda$-Szász operators coupled with generalized Beta functions and approximation theory, Symmetry, 16 (2024), 1703. http://dx.doi.org/10.3390/sym16121703 doi: 10.3390/sym16121703
|
| [23] |
A. Wafi, N. Rao, Kantorovich form of generalized Szász-type operators using Charlier polynomials, Korean J. Math., 25 (2017), 99–116. http://dx.doi.org/10.11568/kjm.2017.25.1.99 doi: 10.11568/kjm.2017.25.1.99
|
| [24] | S. Khan, N. Raza, General-Appell polynomials within the context of monomiality principle, Int. J. Anal., 2013 (2013). http://dx.doi.org/10.1155/2013/328032 |
| [25] | N. Raza, M. Kumar, M. Mursaleen, Approximation with Szász-Chlodowsky operators employing general-Appell polynomials, J. Inequal. Appl., 26 (2024). http://dx.doi.org/10.1186/s13660-024-03105-5 |
| [26] | R. A. DeVore, G. G. Lorentz, Constructive approximation, Grudlehren der Mathematischen Wissenschaften Fundamental principales of Mathematical Sciences, Springer-Verlag, Berlin, 1993. |
| [27] |
W. Heping, Korovkin-type theorem and application, J. Approx. Theory, 132 (2005), 258–264. http://dx.doi.org/10.2478/s11533-009-0006-7 doi: 10.2478/s11533-009-0006-7
|
| [28] |
O. Shisha, B. Mond, The degree of convergence of linear positive operators, P. Natl. Acad. Sci. USA, 60 (1968), 1196–1200. http://dx.doi.org/10.1073/pnas.60.4.1196 doi: 10.1073/pnas.60.4.1196
|
| [29] |
M. A. Özarslan, H. Aktuğlu, Local approximation properties for certain King type operators, Filomat, 27 (2013), 173–181. http://dx.doi.org/10.1155/2012/178316 doi: 10.1155/2012/178316
|
| [30] |
B. Lenze, On Lipschitz type maximal functions and their smoothness spaces, Indagat. Math., 91 (1988), 53–63. http://dx.doi.org/10.1016/1385-7258(88)90007-8 doi: 10.1016/1385-7258(88)90007-8
|
| [31] |
E. Ibikli, E. A. Gadjiev, The order of approximation of some unbounded function by the sequences of positive linear operators, Turk. J. Math., 19 (1995), 331–337. http://dx.doi.org/10.1137/0709026 doi: 10.1137/0709026
|
| [32] | A. D. Gadjiev, The convergence problem for a sequence of positive linear operators on bounded sets and theorems analogous to that of P. P. Korovkin, Dokl. Akad. Nauk SSSR, 218 (1974). http://dx.doi.org/10.1155/2012/178316 |
| [33] | A. D. Gadjiev, Theorems of Korovkin type, Math. Notes Acad. Sci. USSR, 20 (1976), 995–998. http://dx.doi.org/10.1007/BF01146928 |
| [34] |
A. D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mt. J. Math., 32 (2007), 129–138. http://dx.doi.org/10.1515/jaa-2014-0008 doi: 10.1515/jaa-2014-0008
|