Research Article Special Issues

Exploring solitonic wave dynamics in the context of nonlinear conformable Kairat-X equation via unified method

  • Published: 13 May 2025
  • MSC : 35R11, 35B30, 35C07

  • This research is aimed at finding exact soliton solutions of the nonlinear fractional Kairat-X equation, which describes soliton behavior in nonlinear media and has applications in quantum physics, materials science, signal processing, and telecommunications. We use a unified method that generalizes the tanh-function method to find new exact soliton solutions in trigonometric, hyperbolic, and plane wave forms. Computational simulations with fixed parameters are performed to produce two-dimensional and three-dimensional visualizations, e.g., contour and density plots, representing the physical properties of the derived solitons. The simulations result in the identification of several soliton types, namely kink wave solitons, dark solitons, bright solitons, and periodic wave solitons. Our results increase the knowledge of the solution properties of the Kairat-X equation and give a platform to interpret a variety of significant physical phenomena. The systematicity and stability of our methodology prove its usefulness as a device for solving other nonlinear partial differential equations in applied physics and mathematics, always returning different exact solutions.

    Citation: Jamshad Ahmad, Zulaikha Mustafa, Mehjabeen Anwar, Marouan Kouki, Nehad Ali Shah. Exploring solitonic wave dynamics in the context of nonlinear conformable Kairat-X equation via unified method[J]. AIMS Mathematics, 2025, 10(5): 10898-10916. doi: 10.3934/math.2025495

    Related Papers:

  • This research is aimed at finding exact soliton solutions of the nonlinear fractional Kairat-X equation, which describes soliton behavior in nonlinear media and has applications in quantum physics, materials science, signal processing, and telecommunications. We use a unified method that generalizes the tanh-function method to find new exact soliton solutions in trigonometric, hyperbolic, and plane wave forms. Computational simulations with fixed parameters are performed to produce two-dimensional and three-dimensional visualizations, e.g., contour and density plots, representing the physical properties of the derived solitons. The simulations result in the identification of several soliton types, namely kink wave solitons, dark solitons, bright solitons, and periodic wave solitons. Our results increase the knowledge of the solution properties of the Kairat-X equation and give a platform to interpret a variety of significant physical phenomena. The systematicity and stability of our methodology prove its usefulness as a device for solving other nonlinear partial differential equations in applied physics and mathematics, always returning different exact solutions.



    加载中


    [1] M. Iqbal, A. R. Seadawy, D. Lu, Z. Zhang, Computational approaches for nonlinear gravity dispersive long waves and multiple soliton solutions for coupled system nonlinear (2+1)-dimensional Broer-Kaup-Kupershmit dynamical equation, Int. J. Geom. Methods M., 21 (2024), 2450126. https://doi.org/10.1142/S0219887824501263 doi: 10.1142/S0219887824501263
    [2] H. F. Ismael, H. M. Baskonus, H. Bulut, W. Gao, Instability modulation and novel optical soliton solutions to the Gerdjikov-Ivanov equation with $M$-fractional, Opt. Quant. Electron., 55 (2023), 303. https://doi.org/10.1007/s11082-023-04581-7 doi: 10.1007/s11082-023-04581-7
    [3] J. Ahmad, S. Akram, A. Ali, Analysis of new soliton type solutions to generalized extended (2+1)-dimensional Kadomtsev-Petviashvili equation via two techniques, Ain Shams Eng. J., 15 (2024), 102302. https://doi.org/10.1016/j.apr.2024.102302 doi: 10.1016/j.apr.2024.102302
    [4] N. Raza, A. Batool, H. M. Baskonus, F. S. V. Causanilles, A variety of soliton solutions of the extended Gerdjikov-Ivanov equation in the DWDM system, Int. J. Mod. Phys. B, 38 (2024), 2450075. https://doi.org/10.1142/S0217979224500759 doi: 10.1142/S0217979224500759
    [5] M. Iqbal, A. R. Seadawy, D. Lu, Dispersive solitary wave solutions of nonlinear further modified Korteweg-de Vries dynamical equation in an unmagnetized dusty plasma, Mod. Phys. Lett. A, 33 (2018), 1850217. https://doi.org/10.1142/S0217732318502176 doi: 10.1142/S0217732318502176
    [6] W. A. Faridi, A. Yusuf, A. Akgül, F. M. Tawfiq, F. Tchier, R. A. Deiakeh, et al., The computation of Lie point symmetry generators, modulational instability, classification of conserved quantities, and explicit power series solutions of the coupled system, Results Phys., 54 (2023), 107126. https://doi.org/10.1016/j.rinp.2023.107126 doi: 10.1016/j.rinp.2023.107126
    [7] W. A. Faridi, S. A. AlQahtani, The formation of invariant exact optical soliton solutions of Landau-Ginzburg-Higgs equation via Khater analytical approach, Int. J. Theor. Phys., 63 (2024), 1–17. https://doi.org/10.1007/s10773-024-05559-1 doi: 10.1007/s10773-024-05559-1
    [8] M. Bilal, J. Ahmad, Stability analysis and diverse nonlinear optical pluses of dynamical model in birefringent fibers without four-wave mixing, Opt. Quant. Electron., 54 (2022), 277. https://doi.org/10.1007/s11082-022-03659-y doi: 10.1007/s11082-022-03659-y
    [9] O. Guner, Singular and non-topological soliton solutions for nonlinear fractional differential equations, Chinese Phys. B, 24 (2015), 100201. https://doi.org/10.1088/1674-1056/24/10/100201 doi: 10.1088/1674-1056/24/10/100201
    [10] M. S. Osman, A. Korkmaz, H. Rezazadeh, M. Mirzazadeh, M. Eslami, Q. Zhou, The unified method for conformable time fractional Schrödinger equation with perturbation terms, Chinese J. Phys., 56 (2018), 2500–2506. https://doi.org/10.1016/j.cjph.2018.06.009 doi: 10.1016/j.cjph.2018.06.009
    [11] M. Bilal, J. Ren, M. Inc, B. Almohsen, L. Akinyemi, Dynamics of diverse wave propagation to integrable Kraenkel-Manna-Merle system under zero damping effect in ferrites materials, Opt. Quant. Electron., 55 (2023), 646. https://doi.org/10.1007/s11082-023-04879-6 doi: 10.1007/s11082-023-04879-6
    [12] J. Ahmad, Z. Mustafa, A. Zulfiqar, Solitonic solutions of two variants of nonlinear Schrödinger model by using exponential function method, Opt. Quant. Electron., 55 (2023), 633. https://doi.org/10.1007/s11082-023-04901-x doi: 10.1007/s11082-023-04901-x
    [13] S. U. Rehman, M. Bilal, J. Ahmad, Highly dispersive optical and other soliton solutions to fiber Bragg gratings with the application of different mechanisms, Int. J. Mod. Phys. B, 36 (2022), 2250193. https://doi.org/10.1142/S0217979222501934 doi: 10.1142/S0217979222501934
    [14] S. U. Rehman, M. Bilal, M.Inc, U. Younas, H. Rezazadeh, M. Younis, et al., Investigation of pure-cubic optical solitons in nonlinear optics, Opt. Quant. Electron., 54 (2022), 400. https://doi.org/10.1007/s11082-022-03814-5 doi: 10.1007/s11082-022-03814-5
    [15] M. Bilal, S. U. Rehman, J. Ahmad, Analysis in fiber Bragg gratings with Kerr law nonlinearity for diverse optical soliton solutions by reliable analytical techniques, Mod. Phys. Lett. B, 36 (2022), 2250122. https://doi.org/10.1142/S0217984922501226 doi: 10.1142/S0217984922501226
    [16] M. Iqbal, D. Lu, A. R. Seadawy, F. A. Alomari, Z.Umurzakhova, R. Myrzakulov, Constructing the soliton wave structure to the nonlinear fractional Kairat-X dynamical equation under computational approach, Mod. Phys. Lett. B, 39 (2025), 2450396. https://doi.org/10.1142/S0217984924503962 doi: 10.1142/S0217984924503962
    [17] G. H. Tipu, W. A. Faridi, Z. Myrzakulova, R. Myrzakulov, S. A. AlQahtani, N. F. AlQahtani, et al., On optical soliton wave solutions of non-linear Kairat-X equation via new extended direct algebraic method, Opt. Quant. Electron., 56 (2024), 655. https://doi.org/10.1007/s11082-024-06369-9 doi: 10.1007/s11082-024-06369-9
    [18] W. A. Faridi, A. M. Wazwaz, A. M. Mostafa, R. Myrzakulov, Z. Umurzakhova, The Lie point symmetry criteria and formation of exact analytical solutions for Kairat-Ⅱ equation: Paul-Painlevé approach, Chaos, Soliton. Fract., 182 (2024), 114745. https://doi.org/10.1016/j.chaos.2024.114745 doi: 10.1016/j.chaos.2024.114745
    [19] H. Afsar, G. Peiwei, A. Alshamrani, M. Aldandani, M. M. Alam, A. F. Aljohani, Dimensionless dynamics: Multipeak and envelope solitons in perturbed nonlinear Schrödinger equation with Kerr law nonlinearity, Phys. Fluids, 36 (2024). https://doi.org/10.1063/5.0215021 doi: 10.1063/5.0215021
    [20] M. Iqbal, D. Lu, A. R. Seadawy, G. Mustafa, Z. Zhang, M. Ashraf, et al., Dynamical analysis of soliton structures for the nonlinear third-order Klein-Fock-Gordon equation under explicit approach, Opt. Quant. Electron., 56 (2024), 651. https://doi.org/10.1007/s11082-023-05435-y doi: 10.1007/s11082-023-05435-y
    [21] M. Iqbal, D. Lu, A. R. Seadawy, F. A. Alomari, Z. Umurzakhova, N. E. Alsubaie, et al., Exploration of unexpected optical mixed, singular, periodic and other soliton structure to the complex nonlinear Kuralay-ⅡA equation, Optik, 301 (2024), 171694. https://doi.org/10.1016/j.ijleo.2024.171694 doi: 10.1016/j.ijleo.2024.171694
    [22] J. Manafian, M. A. S. Murad, A. A. Alizadeh, S. Jafarmadar, M-lump, interaction between lumps and stripe solitons solutions to the (2+1)-dimensional KP-BBM equation, Eur. Phys. J. Plus, 135 (2020), 167. https://doi.org/10.1140/epjp/s13360-020-00109-0 doi: 10.1140/epjp/s13360-020-00109-0
    [23] M. M. Kabir, A. Khajeh, E. A. Aghdam, A. Y. Koma, Modified Kudryashov method for finding exact solitary wave solutions of higher-order nonlinear equations, Math. Method. Appl. Sci., 34 (2011), 213–219. https://doi.org/10.1002/mma.1349 doi: 10.1002/mma.1349
    [24] M. Li, T. Xu, L. Wang, Dynamical behaviors and soliton solutions of a generalized higher-order nonlinear Schrödinger equation in optical fibers, Nonlinear Dynam., 80 (2015), 1451–1461. https://doi.org/10.1007/s11071-015-1954-z doi: 10.1007/s11071-015-1954-z
    [25] M. Iqbal, A. R. Seadawy, D. Lu, Z. Zhang, Physical structure and multiple solitary wave solutions for the nonlinear Jaulent-Miodek hierarchy equation, Mod. Phys. Lett. B, 38 (2024), 2341016. https://doi.org/10.1142/S0217984923410166 doi: 10.1142/S0217984923410166
    [26] M. Javidi, A. Golbabai, Numerical studies on nonlinear Schrödinger equations by spectral collocation method with preconditioning, J. Math. Anal. Appl., 333 (2007), 1119–1127. https://doi.org/10.1016/j.jmaa.2006.12.018 doi: 10.1016/j.jmaa.2006.12.018
    [27] J. Ahmad, Z. Mustafa, M. Hameed, S. Alkarni, N. A. Shah, Dynamics characteristics of soliton structures of the new (3+1) dimensional integrable wave equations with stability analysis, Results Phys., 57 (2024), 107434. https://doi.org/10.1016/j.rinp.2024.107434 doi: 10.1016/j.rinp.2024.107434
    [28] B. A. Malomed, Multidimensional soliton systems, Adv. Phys.-X, 9 (2024), 2301592. https://doi.org/10.1080/23746149.2023.2301592 doi: 10.1080/23746149.2023.2301592
    [29] P. Singh, K. Senthilnathan, Evolution of a solitary wave: Optical soliton, soliton molecule and soliton crystal, SN Appl. Sci., 6 (2024), 464. https://doi.org/10.1007/s42452-024-06152-1 doi: 10.1007/s42452-024-06152-1
    [30] M. Iqbal, D. Lu, M. Alammari, A. R. Seadawy, N. E. Alsubaie, Z. Umurzakhova, et al., A construction of novel soliton solutions to the nonlinear fractional Kairat-Ⅱ equation through computational simulation, Opt. Quant. Electron., 56 (2024), 845. https://doi.org/10.1007/s11082-024-06467-8 doi: 10.1007/s11082-024-06467-8
    [31] M. V. Flamarion, E. Pelinovsky, E. Didenkulova, Non-integrable soliton gas: The Schamel equation framework, Chaos Soliton. Fract., 180 (2024), 114495. https://doi.org/10.1016/j.chaos.2024.114495 doi: 10.1016/j.chaos.2024.114495
    [32] R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [33] G. Bedrosian, A new method for coupling finite element field solutions with external circuits and kinematics, IEEE T. Magn., 29 (1993), 1664–1668. https://doi.org/10.1109/20.250726 doi: 10.1109/20.250726
    [34] M. R. Song, H. L. Shi, Z. T. Jiang, Y. H. Ren, J. Yang, Q. Z. Han, Universalities of anomalous properties in electron transport through different Z-shaped phosphorene nanoribbon devices, Mod. Phys. Lett. B, 36 (2022), 2150240. https://doi.org/10.1142/S0217984921502407 doi: 10.1142/S0217984921502407
    [35] W. Hereman, A. Nuseir, Symbolic methods to construct exact solutions of nonlinear partial differential equations, Math Comput Simulat., 43 (1997), 13–27. https://doi.org/10.1016/S0378-4754(96)00053-5 doi: 10.1016/S0378-4754(96)00053-5
    [36] Z. Myrzakulova, S. Manukure, R. Myrzakulov, G. Nugmanova, Integrability, geometry and wave solutions of some Kairat equations, arXiv Preprint, 2023. https://doi.org/10.48550/arXiv.2307.00027
    [37] M. Awadalla, A. Zafar, A. Taishiyeva, M. Raheel, R. Myrzakulov, A. Bekir, The analytical solutions to the M-fractional Kairat-Ⅱ and Kairat-X equations, Front. Phys., 11 (2023), 1335423. http://dx.doi.org/10.13140/RG.2.2.22148.30088 doi: 10.13140/RG.2.2.22148.30088
    [38] M. Iqbal, D. Lu, A. R. Seadawy, F. A. Alomari, Z. Umurzakhova, R. Myrzakulov, Constructing the soliton wave structure to the nonlinear fractional Kairat-X dynamical equation under computational approach, Mod. Phys. Lett. B, 39 (2024), 2450396. https://doi.org/10.1142/S0217984924503962 doi: 10.1142/S0217984924503962
    [39] A. M. Wazwaz, Extended (3+1)-dimensional Kairat-Ⅱ and Kairat-X equations: Painleve integrability, multiple soliton solutions, lump solutions, and breather wave solutions, Int. J. Numer. Method. H., 34 (2024), 2177–2194. https://doi.org/10.1108/HFF-01-2024-0053 doi: 10.1108/HFF-01-2024-0053
    [40] G. H. Tipu, W. A. Faridi, Z. Myrzakulova, R. Myrzakulov, S. A. AlQahtani, N. F. AlQahtani, et al., On optical soliton wave solutions of non-linear Kairat-X equation via new extended direct algebraic method, Opt. Quant. Electron., 56 (2024), 655. https://doi.org/10.1007/s11082-024-06369-9 doi: 10.1007/s11082-024-06369-9
    [41] A. Has, B. Yilmaz, D. Baleanu, On the geometric and physical properties of conformable derivative, Math. Sci. Appl. E-Notes, 12 (2024), 60–70. https://doi.org/10.36753/mathenot.1384280 doi: 10.36753/mathenot.1384280
    [42] M. Awadalla, A. Zafar, A. Taishiyeva, M. Raheel, R. Myrzakulov, A. Bekir, The analytical solutions to the $M$-fractional Kairat-Ⅱ and Kairat-X equations, Front. Phys., 11 (2023), 1335423. http://dx.doi.org/10.13140/RG.2.2.22148.30088 doi: 10.13140/RG.2.2.22148.30088
    [43] J. V. D. C. Sousa, E. C. D. Oliveira, A new truncated $M$-fractional derivative type unifying some fractional derivative types with classical properties, arXiv Preprint, 2017. https://doi.org/10.48550/arXiv.1704.08187
    [44] M. V. Flamarion, E. Pelinovsky, Interaction of interfacial waves with an external force: The Benjamin-Ono equation framework, Symmetry, 15 (2023), 1478. https://doi.org/10.3390/sym15081478 doi: 10.3390/sym15081478
    [45] A. Kumar, S. Kumar, Dynamic nature of analytical soliton solutions of the (1+1)-dimensional Mikhailov-Novikov-Wang equation using the unified approach, Int. J. Math. Comput. Eng., 1 (2023), 217–228. https://doi.org/10.2478/ijmce-2023-0018 doi: 10.2478/ijmce-2023-0018
    [46] K. Zhang, J. Cao, J. Lyu, Dynamic behavior and modulation instability for a generalized nonlinear Schrödinger equation with nonlocal nonlinearity, Phys. Scripta, 100 (2024), 015262. https://doi.org/10.1088/1402-4896/ad9cfa doi: 10.1088/1402-4896/ad9cfa
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1211) PDF downloads(75) Cited by(1)

Article outline

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog