Research article Special Issues

Diverse wave solutions for the (2+1)-dimensional Zoomeron equation using the modified extended direct algebraic approach

  • Published: 04 June 2025
  • MSC : 34G20, 35A20, 35A22, 35R11

  • This work used the modified extended direct algebraic expansion method to find exact soliton solutions for the (2+1)-dimensional nonlinear Zoomeron equation. The modified extended direct algebraic technique employs a wave transformation and, in order to determine solutions, it then performs an algebraic expansion, compares coefficients, and balances the equation. The results were an effective acquisition of a variety of solitons with unique wave characteristics including bright, kink, periodic, singular periodic, and dark solitons. A stability investigation has confirmed the structural integrity of these solutions under minor perturbations. In the form of 2D, contour, and 3D graphical representations, the stability and propagation of these solutions were further investigated. The findings illustrate how effectively this technique can solve higher-dimensional nonlinear equations and yield more soliton solutions. Beyond broadening our knowledge of nonlinear wave behavior, this research could be beneficial in nonlinear optics, fluid motion, and plasma systems.

    Citation: Maheen Waqar, Khaled M. Saad, Muhammad Abbas, Miguel Vivas-Cortez, Waleed M. Hamanah. Diverse wave solutions for the (2+1)-dimensional Zoomeron equation using the modified extended direct algebraic approach[J]. AIMS Mathematics, 2025, 10(6): 12868-12887. doi: 10.3934/math.2025578

    Related Papers:

  • This work used the modified extended direct algebraic expansion method to find exact soliton solutions for the (2+1)-dimensional nonlinear Zoomeron equation. The modified extended direct algebraic technique employs a wave transformation and, in order to determine solutions, it then performs an algebraic expansion, compares coefficients, and balances the equation. The results were an effective acquisition of a variety of solitons with unique wave characteristics including bright, kink, periodic, singular periodic, and dark solitons. A stability investigation has confirmed the structural integrity of these solutions under minor perturbations. In the form of 2D, contour, and 3D graphical representations, the stability and propagation of these solutions were further investigated. The findings illustrate how effectively this technique can solve higher-dimensional nonlinear equations and yield more soliton solutions. Beyond broadening our knowledge of nonlinear wave behavior, this research could be beneficial in nonlinear optics, fluid motion, and plasma systems.



    加载中


    [1] S. Malik, M. S. Hashemi, S. Kumar, H. Rezazadeh, W. Mahmoud, M. S. Osman, Application of new Kudryashov method to various nonlinear partia differential equations, Opt. Quant. Electron., 55 (2023), 8. https://doi.org/10.1007/s11082-022-04261-y doi: 10.1007/s11082-022-04261-y
    [2] S. Peitz, H. Harder, F. Nske, F. Philipp, M. Schaller, K. Worthmann, Equivariance and partial observations in Koopman operator theory for partial differential equations, J. Comput. Dyn., 12 (2025), 305–324. https://doi.org/10.3934/jcd.2024035 doi: 10.3934/jcd.2024035
    [3] X. Lü, S. J. Chen, Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types, Nonlinear Dyn., 103 (2021), 947–977. https://doi.org/10.1007/s11071-020-06068-6 doi: 10.1007/s11071-020-06068-6
    [4] J. H. He, Variational iteration method: a kind of non-linear analytical technique: some examples, Int. J. Nonlinear Mech., 34 (1999), 699–708. https://doi.org/10.1016/S0020-7462(98)00048-1 doi: 10.1016/S0020-7462(98)00048-1
    [5] M. A. Abdou, A. A. Soliman, New applications of variational iteration method, Phys. D, 211 (2005), 1–8. https://doi.org/10.1016/j.physd.2005.08.002 doi: 10.1016/j.physd.2005.08.002
    [6] J. H. He, X. H. Wu, Variational iteration method: new development and applications, Comput. Math. Appl., 54 (2007), 881–894. https://doi.org/10.1016/j.camwa.2006.12.083 doi: 10.1016/j.camwa.2006.12.083
    [7] E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, 277 (2000), 212–218. https://doi.org/10.1016/S0375-9601(00)00725-8 doi: 10.1016/S0375-9601(00)00725-8
    [8] E. H. M. Zahran, M. M. A. Khater, Modified extended tanh-function method and its applications to the Bogoyavlenskii equation, Appl. Math. Model., 40 (2016), 1769–1775. https://doi.org/10.1016/j.apm.2015.08.018 doi: 10.1016/j.apm.2015.08.018
    [9] H. H. Hussein, H. M. Ahmed, W. Alexan, Analytical soliton solutions for cubic-quartic perturbations of the Lakshmanan-Porsezian-Daniel equation using the modified extended tanh function method, Ain Shams Eng. J., 15 (2024), 102513. https://doi.org/10.1016/j.asej.2023.102513 doi: 10.1016/j.asej.2023.102513
    [10] M. A. Abdou, A. A. Soliman, Modified extended tanh-function method and its application on non linear physical equations, Phys. Lett. A, 353 (2006), 487–492. https://doi.org/10.1016/j.physleta.2006.01.013 doi: 10.1016/j.physleta.2006.01.013
    [11] M. Alquran, A. Qawasmeh, Classifications of solutions to some generalized nonlinear evolution equations and systems by the sine-cosine method, Nonlinear Stud., 20 (2013), 261–270.
    [12] E. Yusufolu, A. Bekir, Solitons and periodic solutions of coupled nonlinear evolution equations by using the sinecosine method, Int. J. Comput. Math., 83 (2006), 915–924. https://doi.org/10.1080/00207160601138756 doi: 10.1080/00207160601138756
    [13] M. A. Noor, S. T. Mohyud-Din, A. Waheed, E. A. Al-Said, Exp-function method for traveling wave solutions of nonlinear evolution equations, Appl. Math. Comput., 216 (2010), 477–483. https://doi.org/10.1016/j.amc.2010.01.042 doi: 10.1016/j.amc.2010.01.042
    [14] T. Kawata, H. Inoue, Inverse scattering method for the nonlinear evolution equations under nonvanishing conditions, J. Phys. Soc. Jpn., 44 (1978), 1722–1729. https://doi.org/10.1143/JPSJ.44.1722 doi: 10.1143/JPSJ.44.1722
    [15] W. X. Ma, Y. Zhou, Lump solutions to nonlinear partial differential equations via Hirota bilinear forms, J. Differ. Equations, 264 (2018), 2633–2659. https://doi.org/10.1016/j.jde.2017.10.033 doi: 10.1016/j.jde.2017.10.033
    [16] M. Nadeem, O. A. Arqub, A. H. Ali, H. A. Neamah, Bifurcation, chaotic analysis and soliton solutions to the (3+1)-dimensional p-type model, Alex. Eng. J., 107 (2024), 245–253. https://doi.org/10.1016/j.aej.2024.07.032 doi: 10.1016/j.aej.2024.07.032
    [17] M. Nadeem, O. A. Arqub, F. M. Alotaibi, Optical soliton solutions and modulation instability for unstable conformable Schrödinger model, Int. J. Modern Phys. C, 36 (2025), 1–23. https://doi.org/10.1142/S0129183124501754 doi: 10.1142/S0129183124501754
    [18] M. Wang, Y. Zhou, Z. Li, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A, 216 (1996), 67–75. https://doi.org/10.1016/0375-9601(96)00283-6 doi: 10.1016/0375-9601(96)00283-6
    [19] K. U. Tariq, J. G. Liu, S. Nisar, Study of explicit travelling wave solutions of nonlinear (2+1)-dimensional Zoomeron model in mathematical physics, J. Nonlinear, Complex Data Sci., 25 (2024), 109–124. https://doi.org/10.1515/jncds-2023-0068 doi: 10.1515/jncds-2023-0068
    [20] M. Alqhtani, R. Srivastava, H. I. Abdel-Gawad, J. E. Macías-Díaz, K. M. Saad, W. M. Hamanah, Insight into functional Boiti–Leon–Mana–Pempinelli equation and error control: approximate similarity solutions, Mathematics, 11 (2023), 4569. https://doi.org/10.3390/math11224569 doi: 10.3390/math11224569
    [21] M. Alqhtani, K. M. Saad, R. Shah, W. M. Hamanah, Discovering novel soliton solutions for (3+1)-modified fractional Zakharov–Kuznetsov equation in electrical engineering through an analytical approach, Opt. Quant. Electron., 55 (2023), 1149. https://doi.org/10.1007/s11082-023-05407-2 doi: 10.1007/s11082-023-05407-2
    [22] A. A. Alderremy, H. I. Abdel-Gawad, K. M. Saad, S. Aly, New exact solutions of time conformable fractional Klein Kramer equation, Opt. Quant. Electron., 53 (2021), 1–14. https://doi.org/10.1007/s11082-021-03343-7 doi: 10.1007/s11082-021-03343-7
    [23] E. M. E. Zayed, A sine-Gordon expansion method for solving nonlinear evolution equations, Appl. Math. Comput., 218 (2012), 8097–8106.
    [24] F. Calogero, A. Degasperis, Nonlinear evolution equations solvable by the inverse spectral transform.—Ⅰ, Nuov. Cim. B, 32 (1976), 201–242. https://doi.org/10.1007/BF02727634 doi: 10.1007/BF02727634
    [25] M. Younis, S. T. R. Rizvi, Dispersive dark optical soliton in (2+1)-dimensions by (G'/G)-expansion with dual-power law nonlinearity, Optik, 126 (2015), 5812–5814. https://doi.org/10.1016/j.ijleo.2015.08.233 doi: 10.1016/j.ijleo.2015.08.233
    [26] A. Akgül, S. Manzoor, F. Ashraf, R. Ashraf, Exact solutions of the (2+1)-dimensional Zoomeron model arising in nonlinear optics via mapping method, Opt. Quant. Electron., 56 (2024), 1207. https://doi.org/10.1007/s11082-024-07075-2 doi: 10.1007/s11082-024-07075-2
    [27] M. Ozisik, A. Secer, M. Bayram, Obtaining analytical solutions of (2+1)-dimensional nonlinear Zoomeron equation by using modified F-expansion and modified generalized Kudryashov methods, Eng. Comput., 41 (2024), 1105–1120. https://doi.org/10.1108/EC-10-2023-0688 doi: 10.1108/EC-10-2023-0688
    [28] H. Ismael, H. Bulut, On the wave solutions of (2+1)-dimensional time-fractional Zoomeron equation, Konuralp J. Math., 8 (2020), 410–418.
    [29] M. H. Ali, H. M. El-Owaidy, H. M. Ahmed, A. A. El-Deeb, I. Samir, Solitons and other wave solutions for (2+1)-dimensional perturbed nonlinear Schrödinger equation by modified extended direct algebraic method, J. Opt., 53 (2024), 2229–2237. https://doi.org/10.1007/s12596-023-01421-5 doi: 10.1007/s12596-023-01421-5
    [30] M. H. Ali, H. M. El-Owaidy, H. M. Ahmed, A. A. El-Deeb, I. Samir, Optical solitons and complexitons for generalized Schrödinger–Hirota model by the modified extended direct algebraic method, Opt. Quant. Electron., 55 (2023), 675. https://doi.org/10.1007/s11082-023-04962-y doi: 10.1007/s11082-023-04962-y
    [31] M. Bilal, J. Iqbal, R. Ali, F. A. Awwad, E. A. Ismail, Exploring families of solitary wave solutions for the fractional coupled Higgs system using modified extended direct algebraic method, Fractal Fract., 7 (2023), 653. https://doi.org/10.3390/fractalfract7090653 doi: 10.3390/fractalfract7090653
    [32] M. Younis, H. U. Rehman, M. Iftikhar, Computational examples of a class of fractional order nonlinear evolution equations using modified extended direct algebraic method, J. Comput. Methods Sci. Eng., 15 (2015), 359–365. https://doi.org/10.3233/JCM-150548 doi: 10.3233/JCM-150548
    [33] V. E. Zakharov, A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP, 34 (1972), 62–69.
    [34] Y. S. Kivshar, B. Luther-Davies, Dark optical solitons: physics and applications, Phys. Rep., 298 (1998), 81–197. https://doi.org/10.1016/S0370-1573(97)00073-2 doi: 10.1016/S0370-1573(97)00073-2
    [35] J. M. Dudley, F. Dias, M. Erkintalo, G. Genty, Instabilities, breathers and rogue waves in optics, Nature Photonics, 8 (2014), 755–764. https://doi.org/10.1038/nphoton.2014.220 doi: 10.1038/nphoton.2014.220
    [36] S. A. AlQahtani, M. E. M. Alngar, R. M. A. Shohib, A. M. Alawwad, Enhancing the performance and efficiency of optical communications through soliton solutions in birefringent fibers, J. Opt., 53 (2024), 3581–3591. https://doi.org/10.1007/s12596-023-01490-6 doi: 10.1007/s12596-023-01490-6
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(910) PDF downloads(58) Cited by(2)

Article outline

Figures and Tables

Figures(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog