The study of optical solitons has advanced significantly due to their stability and diverse applications, particularly in high-speed telecommunications, optical signal processing, and quantum technologies. This paper focuses on the derivation of exact soliton solutions for the nonlinear Kairat-Ⅱ (K-Ⅱ) equation, which models second-order spatiotemporal and group velocity dispersion effects in nonlinear optical systems. By applying the Kumar–Malik method and the extended hyperbolic function method, a comprehensive set of soliton solutions are obtained, capturing the intricate propagation dynamics of solitons in nonlinear media. The Kumar–Malik method yields numerous soliton solutions such as Jacobi elliptic function solution with an elliptic modulus, the trigonometric function solution, the hyper-trigonometric solution, dark solitons, bright solitons, periodic, singular and rational function solutions, etc. The behavior, stability, and evolution of these solitons are further illustrated through two-dimensional (2D), three-dimensional (3D), and contour plots, providing insights into their structural characteristics under various physical conditions. In this article, new soliton solutions in Jacobi elliptic form are derived for the given equation, providing valuable insights into the theoretical framework of solitons in nonlinear optics and presenting potential advancements for soliton-based technologies.
Citation: Abdul Mateen, Ghulam Hussain Tipu, Loredana Ciurdariu, Fengping Yao. Analytical soliton solutions of the Kairat-Ⅱ equation using the Kumar–Malik and extended hyperbolic function methods[J]. AIMS Mathematics, 2025, 10(4): 8721-8752. doi: 10.3934/math.2025400
The study of optical solitons has advanced significantly due to their stability and diverse applications, particularly in high-speed telecommunications, optical signal processing, and quantum technologies. This paper focuses on the derivation of exact soliton solutions for the nonlinear Kairat-Ⅱ (K-Ⅱ) equation, which models second-order spatiotemporal and group velocity dispersion effects in nonlinear optical systems. By applying the Kumar–Malik method and the extended hyperbolic function method, a comprehensive set of soliton solutions are obtained, capturing the intricate propagation dynamics of solitons in nonlinear media. The Kumar–Malik method yields numerous soliton solutions such as Jacobi elliptic function solution with an elliptic modulus, the trigonometric function solution, the hyper-trigonometric solution, dark solitons, bright solitons, periodic, singular and rational function solutions, etc. The behavior, stability, and evolution of these solitons are further illustrated through two-dimensional (2D), three-dimensional (3D), and contour plots, providing insights into their structural characteristics under various physical conditions. In this article, new soliton solutions in Jacobi elliptic form are derived for the given equation, providing valuable insights into the theoretical framework of solitons in nonlinear optics and presenting potential advancements for soliton-based technologies.
| [1] |
S. Dong, Z. Z. Lan, B. Gao, Y. Shen, Bäcklund transformation and multi-soliton solutions for the discrete Korteweg-de Vries equation, Appl. Math. Lett., 125 (2022), 107747. https://doi.org/10.1016/j.aml.2021.107747 doi: 10.1016/j.aml.2021.107747
|
| [2] |
X. Liu, H. Zhang, W. Liu, The dynamic characteristics of pure-quartic solitons and soliton molecules, Appl. Math. Model., 102 (2022), 305–312. https://doi.org/10.1016/j.apm.2021.09.042 doi: 10.1016/j.apm.2021.09.042
|
| [3] |
L. Akinyemi, Shallow ocean soliton and localized waves in extended (2+1)-dimensional non-linear evolution equations, Phys. Lett. A, 463 (2023), 128668. https://doi.org/10.1016/j.physleta.2023.128668 doi: 10.1016/j.physleta.2023.128668
|
| [4] |
R. F. Zhang, M. C. Li, J. Y. Gan, Q. Li, Z. Z. Lan, Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method, Chaos Soliton. Fract., 154 (2022), 111692. https://doi.org/10.1016/j.chaos.2021.111692 doi: 10.1016/j.chaos.2021.111692
|
| [5] |
C. Kumar, A. Prakash, Non-linear interaction among second mode resonance waves in high-speed boundary layers using the method of multiple scales, Phys. Fluids, 34 (2022), 014107. https://doi.org/10.1063/5.0078099 doi: 10.1063/5.0078099
|
| [6] |
C. Zhang, Z. Shi, Non-linear wave interactions in a transitional hypersonic boundary layer, Phys. Fluids, 34 (2022), 114106. https://doi.org/10.1063/5.0120425 doi: 10.1063/5.0120425
|
| [7] |
G. Tao, J. Sabi'u, S. Nestor, R. M. E. Shiekh, L. Akinyemi, E. A. Zo'bi, et al., Dynamics of a new class of solitary wave structures in telecommunications systems via [2+1]-dimensional non-linear transmission line, Mod. Phys. Lett. B, 36 (2022), 2150596. https://doi.org/10.1142/S0217984921505965 doi: 10.1142/S0217984921505965
|
| [8] |
M. A. Isah, M. A. Külahcı, A study on null cartan curve in Minkowski 3-space, Appl. Math. Nonlin. Sci., 5 (2020), 413–424. https://doi.org/10.2478/amns.2020.1.00039 doi: 10.2478/amns.2020.1.00039
|
| [9] |
M. A. Isah, M. A. Külahçı, Special curves according to bishop frame in Minkowski 3-space, Appl. Math. Nonlin. Sci., 5 (2020), 237–248. https://doi.org/10.2478/amns.2020.1.00021 doi: 10.2478/amns.2020.1.00021
|
| [10] |
S. Kumar, B. Mohan, R. Kumar, Lump, soliton, and interaction solutions to a generalized two-mode higher-order non-linear evolution equation in plasma physics, Nonlinear Dynam., 110 (2022), 693–704. https://doi.org/10.1007/s11071-022-07647-5 doi: 10.1007/s11071-022-07647-5
|
| [11] |
U. Younas, T. A. Sulaiman, J. Ren, On the study of optical soliton solutions to the three-component coupled non-linear Schrödinger equation: Applications in fiber optics, Opt. Quant. Electron., 55 (2023), 72. https://doi.org/10.1007/s11082-022-04254-x doi: 10.1007/s11082-022-04254-x
|
| [12] |
U. Younas, T. A. Sulaiman, J. Ren, Diversity of optical soliton structures in the spinor Bose-Einstein condensate modeled by three-component Gross-Pitaevskii system, Int. J. Mod. Phys. B, 37 (2023), 2350004. https://doi.org/10.1142/S0217979223500042 doi: 10.1142/S0217979223500042
|
| [13] |
S. Kumar, A. Kumar, Abundant closed-form wave solutions and dynamical structures of soliton solutions to the [3+1]-dimensional BLMP equation in mathematical physics, J. Ocean Eng. Sci., 7 (2022), 178–187. https://doi.org/10.1016/j.joes.2021.08.001 doi: 10.1016/j.joes.2021.08.001
|
| [14] |
G. H. Tipu, W. A. Faridi, Z. Myrzakulova, R. Myrzakulov, S. A. AlQahtani, N. F. AlQahtani, et al., On optical soliton wave solutions of non‑linear Kairat‑X equation via new extended direct algebraic method, Opt. Quant. Electron., 56 (2024), 655. https://doi.org/10.1007/s11082-024-06369-9 doi: 10.1007/s11082-024-06369-9
|
| [15] |
Y. Li, S. F. Tian, J. J. Yang, Riemann-Hilbert problem and interactions of solitons in the component nonlinear Schrödinger equations, Stud. Appl. Math., 148 (2022), 577–605. https://doi.org/10.1111/sapm.12450 doi: 10.1111/sapm.12450
|
| [16] |
M. I. Asjad, H. U. Rehman, Z. Ishfaq, J. Awrejcewicz, A. Akgül, M. B. Riaz, On soliton solutions of perturbed Boussinesq and KdV-Caudery-Dodd-Gibbon equations, Coatings, 11 (2021), 1429. https://doi.org/10.3390/coatings11111429 doi: 10.3390/coatings11111429
|
| [17] |
F. Tchier, A. Yusuf, A. I. Aliyu, M. Inc, Soliton solutions and conservation laws for lossy nonlinear transmission line equation, Superlattice. Microst., 107 (2017), 320. https://doi.org/10.1016/j.spmi.2017.04.003 doi: 10.1016/j.spmi.2017.04.003
|
| [18] |
J. Manafian, M. Lakestani, A new analytical approach to solve some of the fractional-order partial differential equations, Indian J. Phys., 91 (2017), 243. https://doi.org/10.1007/s12648-016-0912-z doi: 10.1007/s12648-016-0912-z
|
| [19] |
W. A. Faridi, M. A. Bakar, Z. Myrzakulova, R. Myrzakulov, A. Akgül, S. M. E. Din, The formation of solitary wave solutions and their propagation for Kuralay equation, Results Phys., 52 (2023), 106774. https://doi.org/10.1016/j.rinp.2023.106774 doi: 10.1016/j.rinp.2023.106774
|
| [20] |
M. Mirzazadeh, M. Eslami, Exact multisoliton solutions of nonlinear Klein-Gordon equation in $[1+2]$-dimensions, Eur. Phys. J. Plus, 128 (2013), 132. https://doi.org/10.1140/epjp/i2013-13132-y doi: 10.1140/epjp/i2013-13132-y
|
| [21] |
W. X. Ma, A combined Kaup-Newell type integrable Hamiltonian hierarchy with four potentials and a hereditary recursion operator, Discrete Cont. Dyn.-S, 18 (2024), 931–941. https://doi.org/10.3934/dcdss.2024117 doi: 10.3934/dcdss.2024117
|
| [22] |
M. Gürses, A. Pekcan, Nonlocal nonlinear Schrödinger equations and their soliton solutions, J. Math. Phys., 59 (2018), 051501. https://doi.org/10.1063/1.4997835 doi: 10.1063/1.4997835
|
| [23] |
W. X. Ma, Type $(\lambda^{*}, \lambda)$ reduced nonlocal integrable AKNS equations and their soliton solutions, Appl. Numer. Math., 199 (2024), 105. https://doi.org/10.1016/j.apnum.2022.12.007 doi: 10.1016/j.apnum.2022.12.007
|
| [24] |
W. A. Faridi, A. M. Wazwaz, A. M. Mostafa, R. Myrzakulov, Z. Umurzakhova, The Lie point symmetry criteria and formation of exact analytical solutions for Kairat-Ⅱ equation: Paul-Painlevé approach, Chaos Soliton. Fract., 182 (2024), 114745. https://doi.org/10.1016/j.chaos.2024.114745 doi: 10.1016/j.chaos.2024.114745
|
| [25] |
W. X. Ma, The algebraic structure of zero curvature representations and application to coupled KdV systems, J. Phys. A-Math. Gen., 26 (1993), 2573. https://doi.org/10.1088/0305-4470/26/11/009 doi: 10.1088/0305-4470/26/11/009
|
| [26] |
Z. Z. Lan, Multi-soliton solutions, breather-like and bound-state solitons for complex modified Korteweg-de Vries equation in optical fibers, Chinese Phys. B, 33 (2024), 060201. https://doi.org/10.1088/1674-1056/ad39d7 doi: 10.1088/1674-1056/ad39d7
|
| [27] |
N. Nasreen, A. R. Seadawy, D. Lu, M. Arshad, Optical fibers to model pulses of ultrashort via generalized third-order non-linear Schrödinger equation by using extended and modified rational expansion method, J. Nonlinear Opt. Phys., 33 (2023), 2350058. https://doi.org/10.1142/S0218863523500583 doi: 10.1142/S0218863523500583
|
| [28] |
N. Nasreen, D. Lu, Z. Zhang, A. Akgül, U. Younas, S. Nasreen, et al., Propagation of optical pulses in fiber optics modeled by coupled space-time fractional dynamical system, Alex. Eng. J., 73 (2023), 173–187. https://doi.org/10.1016/j.aej.2023.04.046 doi: 10.1016/j.aej.2023.04.046
|
| [29] |
M. B. Almatrafi, Solitary wave solutions to a fractional model using the improved modified extended tanh-function method, Fractal Fract., 7 (2023), 252. https://doi.org/10.3390/fractalfract7030252 doi: 10.3390/fractalfract7030252
|
| [30] |
H. F. Ismael, U. Younas, T. A. Sulaiman, N. Nasreen, N. A. Shah, M. R. Ali, Non classical interaction aspects to a non-linear physical model, Results Phys., 49 (2023), 106520. https://doi.org/10.1016/j.rinp.2023.106520 doi: 10.1016/j.rinp.2023.106520
|
| [31] |
S. Samir, E. Salah, E. A. E. Dahab, H. M. Ahmed, M. Ammar, W. Alexan, et al., Unraveling solitons dynamics in system of dispersive NLSE with Kudryashov's law of nonlinearity using improved modified extended tanh function method, Alex. Eng. J., 91 (2024), 419–428. https://doi.org/10.1016/j.aej.2024.02.020 doi: 10.1016/j.aej.2024.02.020
|
| [32] | T. Ma, S. Wang, Bifurcation theory and applications, World Scientific, 53 (2005). |
| [33] |
W. A. Faridi, M. Iqbal, M. B. Riaz, S. A. AlQahtani, A. M. Wazwaz, The fractional soliton solutions of dynamical system arising in plasma physics: The comparative analysis, Alex. Eng. J., 95 (2024), 247. https://doi.org/10.1016/j.aej.2024.03.061 doi: 10.1016/j.aej.2024.03.061
|
| [34] |
R. Ali, T. Xie, M. Awais, R. Babar, Deflection angle and shadow evolution from charged torus-like black hole under the effect of non-magnetic plasma and non-plasma medium, Int. J. Geom. Methods M., 21 (2024), 2450180. https://doi.org/10.1142/S0219887824501809 doi: 10.1142/S0219887824501809
|
| [35] | J. Y. Yang, W. X. Ma, Four-component Liouville integrable models and their bi-Hamiltonian formulations, Rom. J. Phys., 69 (2024), 10. |
| [36] |
W. X. Ma, Integrable couplings and two-dimensional unital algebras, Axioms, 13 (2024), 481. https://doi.org/10.3390/axioms13070481 doi: 10.3390/axioms13070481
|
| [37] |
A. Jhangeer, Beenish, Dynamics and wave analysis in longitudinal motion of elastic bars or fluids, Ain Shams Eng. J., 15 (2024), 102907. https://doi.org/10.1016/j.asej.2024.102907 doi: 10.1016/j.asej.2024.102907
|
| [38] |
A. Jhangeer, A. R. Ansari, M. Imran, Beenish, M. B. Riaz, Lie symmetry analysis, and traveling wave patterns arising in the model of transmission lines, AIMS Math., 9 (2024), 18013. https://doi.org/10.3934/math.2024878 doi: 10.3934/math.2024878
|
| [39] |
L. Yang, H. Huang, Z. Xi, L. Zheng, S. Xu, G. Tian, et al., Simultaneously achieving giant piezoelectricity and record coercive field enhancement in relaxor-based ferroelectric crystals, Nat. Commun., 13 (2022), 2444. https://doi.org/10.1038/s41467-022-29962-6 doi: 10.1038/s41467-022-29962-6
|
| [40] |
Y. M. Chu, S. Arshed, M. Sadaf, G. Akram, M. Maqbool, Solitary wave dynamics of thin-film ferroelectric material equation, Results Phys., 45 (2023), 106201. https://doi.org/10.1016/j.rinp.2022.106201 doi: 10.1016/j.rinp.2022.106201
|
| [41] |
X. Wang, H. Ehsan, M. Abbas, G. Akram, M. Sadaf, T. Abdeljawad, Analytical solitary wave solutions of a time-fractional thin-film ferroelectric material equation involving beta-derivative using modified auxiliary equation method, Results Phys., 48 (2023), 106411. https://doi.org/10.1016/j.rinp.2023.106411 doi: 10.1016/j.rinp.2023.106411
|
| [42] |
A. Souleymanou, K. K. Ali, H. Rezazadeh, M. Eslami, M. Mirzazadeh, A. Korkmaz, The propagation of waves in thin-film ferroelectric materials, Pramana, 93 (2019), 27. https://doi.org/10.1007/s12043-019-1774-7 doi: 10.1007/s12043-019-1774-7
|
| [43] |
W. A. Faridi, M. A. Bakar, A. Akgül, M. Abd E. Rahman, S. M. El Din, Exact fractional soliton solutions of thin-film ferroelectric material equation by analytical approaches, Alex. Eng. J., 78 (2023), 483. https://doi.org/10.1016/j.aej.2023.07.049 doi: 10.1016/j.aej.2023.07.049
|
| [44] | Z. Myrzakulova, S. Manukure, R. Myrzakulov, G. Nugmanova, Integrability, geometry and wave solutions of some Kairat equations, arXiv Preprint, 2023. https://doi.org/10.48550/arXiv.2307.00027 |
| [45] |
F. N. K. Sağlam, S. Malik, Various traveling wave solutions for (2+1)-dimensional extended Kadomtsev-Petviashvili equation using a newly created methodology, Chaos Soliton. Fract., 186 (2024), 115318. https://doi.org/10.1016/j.chaos.2024.115318 doi: 10.1016/j.chaos.2024.115318
|
| [46] |
G. H. Tipu, W. A. Faridi, M. B. Riaz, F. P. Yao, U. Younas, M. Garayev, Chaotic analysis and a damped oscillator solitary wave structures to the generalized reaction Duffing model, Results Phys., 72 (2025), 108203. https://doi.org/10.1016/j.rinp.2025.108203 doi: 10.1016/j.rinp.2025.108203
|
| [47] |
U. Younas, J. Muhammad, D. K. Almutairi, A. Khan, T. Abdeljawad, Analyzing the neural wave structures in the field of neuroscience, Sci. Rep., 15 (2025), 7181. https://doi.org/10.1038/s41598-025-91397-y doi: 10.1038/s41598-025-91397-y
|
| [48] |
L. Borcea, J. Garnier, Enhanced wave transmission in random media with mirror symmetry, P. Roy. Soc. A, 480 (2024), 20240073. https://doi.org/10.1098/rspa.2024.0073 doi: 10.1098/rspa.2024.0073
|