Research article Special Issues

A viscosity-based iterative method for solving split generalized equilibrium and fixed point problems of strict pseudo-contractions

  • Received: 31 January 2025 Revised: 27 March 2025 Accepted: 03 April 2025 Published: 16 April 2025
  • MSC : 47H05, 47H09, 47J20, 47J25

  • In this paper, we developed a viscosity-based extragradient iterative algorithm to approximate the solution of the split generalized equilibrium problem, the variational inequality problem, and the fixed point problem for a finite family of $ \epsilon $-strict pseudo-contractive and a nonexpansive mapping in Hilbert space. The main purpose was to establish strong convergence of the proposed algorithm under suitable conditions. We presented a comprehensive computational analysis to illustrate the effectiveness of our method and compared its performance with existing approaches. Our results extend and unify several well-known results in the literature, contributing significantly to the field.

    Citation: Saud Fahad Aldosary, Mohammad Farid. A viscosity-based iterative method for solving split generalized equilibrium and fixed point problems of strict pseudo-contractions[J]. AIMS Mathematics, 2025, 10(4): 8753-8776. doi: 10.3934/math.2025401

    Related Papers:

  • In this paper, we developed a viscosity-based extragradient iterative algorithm to approximate the solution of the split generalized equilibrium problem, the variational inequality problem, and the fixed point problem for a finite family of $ \epsilon $-strict pseudo-contractive and a nonexpansive mapping in Hilbert space. The main purpose was to establish strong convergence of the proposed algorithm under suitable conditions. We presented a comprehensive computational analysis to illustrate the effectiveness of our method and compared its performance with existing approaches. Our results extend and unify several well-known results in the literature, contributing significantly to the field.



    加载中


    [1] S. Ant$ \acute{\rm{o}} $n, Fixed points of automorphisms of the vector bundle moduli space over a compact Riemann surface, Mediterr. J. Math., 21 (2024), 20. https://doi.org/10.1007/s00009-023-02559-z doi: 10.1007/s00009-023-02559-z
    [2] S. Banach, Sur les op$ \acute{\rm{e}} $rations dans les ensembles abstraits et leur application aux $ \acute{\rm{e}} $quations int$ \acute{\rm{e}} $grales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181
    [3] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 123–145.
    [4] F. E. Browder, W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl., 20 (1967), 197–228. https://doi.org/10.1016/0022-247X(67)90085-6 doi: 10.1016/0022-247X(67)90085-6
    [5] C. Byrne, Y. Censor, A. Gibali, S. Reich, Weak and strong convergence of algorithms for the split common null point problem, 2011.
    [6] L. C. Ceng, N. Hadjisavvas, N. C. Wong, Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems, J. Glob. Optim., 46 (2010), 635–646. https://doi.org/10.1007/s10898-009-9454-7 doi: 10.1007/s10898-009-9454-7
    [7] Y. Censor, T. Elfving, A multiprojection algorithms using Bragman prtojection in a product space, Numer. Algor., 8 (1994), 221–239. https://doi.org/10.1007/BF02142692 doi: 10.1007/BF02142692
    [8] Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach for inversion problems in intensity modulated radiation therapy, Phys. Med. Biol., 51 (2006), 2353. https://doi.org/10.1088/0031-9155/51/10/001 doi: 10.1088/0031-9155/51/10/001
    [9] P. L. Combettes, S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6 (2005), 117–136.
    [10] M. Farid, The subgradient extragradient method for solving mixed equilibrium problems and fixed point problems in Hilbert spaces, J. Appl. Numer. Optim., 1 (2019), 335–345. https://doi.org/10.23952/jano.1.2019.3.10 doi: 10.23952/jano.1.2019.3.10
    [11] M. Farid, K. R. Kazmi, A new mapping for finding a common solution of split generalized equilibrium problem, variational inequality problem and fixed point problem, Korean J. Math., 27 (2019), 295–325. https://doi.org/10.11568/kjm.2019.27.2.297 doi: 10.11568/kjm.2019.27.2.297
    [12] M. Farid, W. Cholamjiak, R. Ali, K. R. Kazmi, A new shrinking projection algorithm for a generalized mixed variational-like inequality problem and asymptotically quasi-$\phi$-nonexpansive mapping in a Banach space, RACSAM, 115 (2021), 114. https://doi.org/10.1007/s13398-021-01049-9 doi: 10.1007/s13398-021-01049-9
    [13] P. Hartman, G. Stampacchia, On some non-linear elliptic differential-functional equation, Acta Math., 115 (1966), 271–310. https://doi.org/10.1007/BF02392210 doi: 10.1007/BF02392210
    [14] N. Hitchin, Stable bundles and integrable systems, Duke Math. J., 54 (1987), 91–114. https://doi.org/10.1215/S0012-7094-87-05408-1 doi: 10.1215/S0012-7094-87-05408-1
    [15] K. R. Kazmi, S. H. Rizvi, M. Farid, A viscosity Ces$\grave{a}$ro mean approximation method for split generalized vector equilibrium problem and fixed point problem, J. Egypt. Math. Soc., 23 (2015), 362–370. https://doi.org/10.1016/j.joems.2014.05.001 doi: 10.1016/j.joems.2014.05.001
    [16] G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Matecon, 12 (1976), 747–756.
    [17] D. Kundur, D. Hatzinakos, Blind image deconvolution, IEEE Signal Proc. Mag., 13 (1996), 43–64. https://doi.org/10.1109/79.489268 doi: 10.1109/79.489268
    [18] P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899–912. https://doi.org/10.1007/s11228-008-0102-z doi: 10.1007/s11228-008-0102-z
    [19] G. Marino, H. K. Xu, Weak and strong convergence theorems for $k$-strict pseudo-contractive in Hilbert spaces, J. Math. Anal. Appl., 329 (2007), 336–346. https://doi.org/10.1016/j.jmaa.2006.06.055 doi: 10.1016/j.jmaa.2006.06.055
    [20] A. Moudafi, The split common fixed point problem for demicontractive mappings, Inverse Probl., 26 (2010), 5. https://doi.org/10.1088/0266-5611/26/5/055007 doi: 10.1088/0266-5611/26/5/055007
    [21] N. Nadezhkina, W. Takahashi, Strong convergence theorem by a hybrid method for nonexpansive mapping and Lipschitz continuous monotone mappings, SIAM J. Optim., 16 (2006), 1230–1241. https://doi.org/10.1137/050624315 doi: 10.1137/050624315
    [22] N. Nadezhkina, W. Takahashi, Weak convergence theorem by a extragradient method for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 128 (2006), 191–201. https://doi.org/10.1007/s10957-005-7564-z doi: 10.1007/s10957-005-7564-z
    [23] K. Nakajo, W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., 279 (2003), 372–379. https://doi.org/10.1016/S0022-247X(02)00458-4 doi: 10.1016/S0022-247X(02)00458-4
    [24] J. Nash, Equilibrium points in $n$-person games, Proc. Natl. Acad. Sci. USA, 36 (1950), 48–49. https://doi.org/10.1073/pnas.36.1.48 doi: 10.1073/pnas.36.1.48
    [25] J. Nash, Non-Cooperative Games, Ann. Math., 54 (1951), 286–295. https://doi.org/10.2307/1969529 doi: 10.2307/1969529
    [26] M. O. Osilike, D. I. Igbokewe, Weak and strong convergence theorems for fixed points of pseudo-contractive and solutions of monotone type operator equations, Comput. Math. Appl., 40 (2000), 559–567. https://doi.org/10.1016/S0898-1221(00)00179-6 doi: 10.1016/S0898-1221(00)00179-6
    [27] M. Patriksson, The traffic assignment problem: Models and methods, Courier Dover Publications, 2015.
    [28] B. D. Rouhani, K. R. Kazmi, M. Farid, Common solutions to some systems of variational inequalities and fixed point problems, Fixed Point Theor., 18 (2017), 167–190. https://doi.org/10.24193/fpt-ro.2017.1.14 doi: 10.24193/fpt-ro.2017.1.14
    [29] S. Reich, S. Sabach, Three strong convergence theorems regarding iterative methods for solving equilibrium problems in reflexive Banach spaces, Contemp. Math., 568 (2012), 225–240.
    [30] O. Scherzer, Convergence criteria of iterative methods based on Landweber iteration for solving nonlinear problems, J. Math. Anal. Appl., 194 (1991), 911–933. https://doi.org/10.1006/jmaa.1995.1335 doi: 10.1006/jmaa.1995.1335
    [31] S. Takahashi, W. Takahashi, Viscosity approximation method for equilibrium problems and fixed point problems in Hilbert space, J. Math. Anal. Appl., 331 (2007), 506–515. https://doi.org/10.1016/j.jmaa.2006.08.036 doi: 10.1016/j.jmaa.2006.08.036
    [32] H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66 (2002), 240–256. https://doi.org/10.1112/S0024610702003332 doi: 10.1112/S0024610702003332
    [33] G. L. Acedo, H. K. Xu, Iterative methods for strict pseudo-contractive in Hilbert spaces, Nonlinear Anal. Theor., 67 (2007), 2258–2271. https://doi.org/10.1016/j.na.2006.08.036 doi: 10.1016/j.na.2006.08.036
    [34] M. Younis, L. Chen, D. Singh, Recent developments in fixed point theory: Theoretical foundations and real-world applications, Singapore: Springer, 2024. https://doi.org/10.1007/978-981-99-9546-2
    [35] H. Y. Zhou, Convergence theorems of fixed points for $k$-strict pseudo-contractive in Hilbert space, Nonlinear Anal. Theor., 69 (2008), 456–462. https://doi.org/10.1016/j.na.2007.05.032 doi: 10.1016/j.na.2007.05.032
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(819) PDF downloads(77) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog