Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

A viscosity-based iterative method for solving split generalized equilibrium and fixed point problems of strict pseudo-contractions

  • In this paper, we developed a viscosity-based extragradient iterative algorithm to approximate the solution of the split generalized equilibrium problem, the variational inequality problem, and the fixed point problem for a finite family of ϵ-strict pseudo-contractive and a nonexpansive mapping in Hilbert space. The main purpose was to establish strong convergence of the proposed algorithm under suitable conditions. We presented a comprehensive computational analysis to illustrate the effectiveness of our method and compared its performance with existing approaches. Our results extend and unify several well-known results in the literature, contributing significantly to the field.

    Citation: Saud Fahad Aldosary, Mohammad Farid. A viscosity-based iterative method for solving split generalized equilibrium and fixed point problems of strict pseudo-contractions[J]. AIMS Mathematics, 2025, 10(4): 8753-8776. doi: 10.3934/math.2025401

    Related Papers:

    [1] Mohammad Dilshad, Aysha Khan, Mohammad Akram . Splitting type viscosity methods for inclusion and fixed point problems on Hadamard manifolds. AIMS Mathematics, 2021, 6(5): 5205-5221. doi: 10.3934/math.2021309
    [2] Jamilu Abubakar, Poom Kumam, Jitsupa Deepho . Multistep hybrid viscosity method for split monotone variational inclusion and fixed point problems in Hilbert spaces. AIMS Mathematics, 2020, 5(6): 5969-5992. doi: 10.3934/math.2020382
    [3] Lu-Chuan Ceng, Li-Jun Zhu, Tzu-Chien Yin . Modified subgradient extragradient algorithms for systems of generalized equilibria with constraints. AIMS Mathematics, 2023, 8(2): 2961-2994. doi: 10.3934/math.2023154
    [4] Habib ur Rehman, Wiyada Kumam, Poom Kumam, Meshal Shutaywi . A new weak convergence non-monotonic self-adaptive iterative scheme for solving equilibrium problems. AIMS Mathematics, 2021, 6(6): 5612-5638. doi: 10.3934/math.2021332
    [5] Wenlong Sun, Gang Lu, Yuanfeng Jin, Zufeng Peng . Strong convergence theorems for split variational inequality problems in Hilbert spaces. AIMS Mathematics, 2023, 8(11): 27291-27308. doi: 10.3934/math.20231396
    [6] Lu-Chuan Ceng, Shih-Hsin Chen, Yeong-Cheng Liou, Tzu-Chien Yin . Modified inertial subgradient extragradient algorithms for generalized equilibria systems with constraints of variational inequalities and fixed points. AIMS Mathematics, 2024, 9(6): 13819-13842. doi: 10.3934/math.2024672
    [7] Kifayat Ullah, Junaid Ahmad, Hasanen A. Hammad, Reny George . Iterative schemes for numerical reckoning of fixed points of new nonexpansive mappings with an application. AIMS Mathematics, 2023, 8(5): 10711-10727. doi: 10.3934/math.2023543
    [8] Yali Zhao, Qixin Dong, Xiaoqing Huang . A self-adaptive viscosity-type inertial algorithm for common solutions of generalized split variational inclusion and paramonotone equilibrium problem. AIMS Mathematics, 2025, 10(2): 4504-4523. doi: 10.3934/math.2025208
    [9] Shahram Rezapour, Maryam Iqbal, Afshan Batool, Sina Etemad, Thongchai Botmart . A new modified iterative scheme for finding common fixed points in Banach spaces: application in variational inequality problems. AIMS Mathematics, 2023, 8(3): 5980-5997. doi: 10.3934/math.2023301
    [10] Habib ur Rehman, Poom Kumam, Kanokwan Sitthithakerngkiet . Viscosity-type method for solving pseudomonotone equilibrium problems in a real Hilbert space with applications. AIMS Mathematics, 2021, 6(2): 1538-1560. doi: 10.3934/math.2021093
  • In this paper, we developed a viscosity-based extragradient iterative algorithm to approximate the solution of the split generalized equilibrium problem, the variational inequality problem, and the fixed point problem for a finite family of ϵ-strict pseudo-contractive and a nonexpansive mapping in Hilbert space. The main purpose was to establish strong convergence of the proposed algorithm under suitable conditions. We presented a comprehensive computational analysis to illustrate the effectiveness of our method and compared its performance with existing approaches. Our results extend and unify several well-known results in the literature, contributing significantly to the field.



    Let Y1 and Y2 represent real Hilbert spaces with the inner product , and induced norm . Define Q1 and Q2 as nonempty, closed, convex subsets of Y1 and Y2, respectively. This paper addresses the task of finding a unified solution for the split generalized equilibrium problem, variational inequality problem, and fixed point problem, focusing on a finite family of ϵ-strict pseudo-contractive and nonexpansive mappings within real Hilbert spaces. These problems are commonly encountered in a wide range of mathematical models, where equilibrium and fixed-point conditions play a crucial role. Notable examples include applications in game theory, as seen in Nash's foundational work [24], image reconstruction [12,17], network optimization in telecommunications, public infrastructure planning [27], and the analysis of Nash equilibria in strategic decision-making [25]. The variational inequality problem (VIP) involves finding an element sQ1 such that

    As,vs0,vQ1, (1.1)

    where A:Q1Y1 is a nonlinear mapping, as introduced by Hartman and Stampacchia [13].

    In 1994, Blum and Oettli [3] introduced and studied the following equilibrium problem (EP): finding sQ1 that satisfies

    f1(s,v)0,vQ1, (1.2)

    where f1:Q1×Q1R is a bifunction, with the solution set denoted by Sol(EP(1.2)). EP(1.2) has been widely studied and extended in multiple directions over the past two decades due to its importance. For details on existence and iterative solution approximations, see [9,10,29,31] and the references therein. Censor et al. [7] introduced the split feasibility problem (SFP) for finite-dimensional Hilbert spaces, primarily for applications in phase retrieval and medical imaging, defined as:

    FindsQ1suchthatBsQ2,

    where B:Y1Y2 is a bounded linear operator.

    We introduce the split generalized equilibrium problem (SGEP) as follows. Let fj,ϕj:Qj×QjR,j=1,2, be non-linear bifunctions, with B:Y1Y2 as a bounded linear operator. SGEP aims to find sQ1 that satisfies

    f1(s,v)+ϕ1(v,s)ϕ1(s,s)0,vQ1, (1.3)

    such that

    t=BsQ2solvesf2(t,u)+ϕ2(u,t)ϕ2(t,t)0,uQ2. (1.4)

    If ϕ1,ϕ20, SGEP becomes split equilibrium problem (SEP) as:

    f1(s,v)0,vQ1, (1.5)

    such that

    t=BsQ2solvesf2(t,u)0,uQ2. (1.6)

    We note that SGEP generalizes the multiple-set split feasibility problem and includes split variational inequalities as a special case, which further extends split zero problems and split feasibility problems for the existence and iterative approaches (see, e.g., [5,8,11,15,20]).

    The fixed point problem (in short, FPP) for a map T:Q1Q1 is to find vQ1 such that Tv=v. The fixed point set of T is denoted by Fix(T) and Fix(T)={vQ1:v=Tv}. Fixed point theory is a cornerstone of mathematics, with applications in solving equations, optimization, and modeling in pure and applied sciences. The study of fixed points in the moduli spaces of vector bundles over algebraic curves is fundamental in understanding the geometry of these spaces, see [1]. It is foundational to fields like topology (Brouwer's theorem), analysis (Banach's contraction principle), and mathematical physics (e.g., Hitchin integrable systems and mirror symmetry). Fixed points also play a vital role in economics and game theory, such as in Nash equilibria, see [2,14,24,34].

    Korpelevich [16] introduced the extragradient iterative method in Hilbert space Y1 for solving VIP (1.1):

    v0Q1,ϱn=PQ1(vnαAvn),vn+1=PQ1(vnαAϱn),} (1.7)

    where α>0, A:Q1Y1 is a monotone and Lipschitz continuous mapping, and PQ1 denotes the metric projection onto Q1. Under certain conditions, this sequence converges to a solution of VIP (1.1).

    In 2006, Nadezkhina and Takahashi [21] introduced a modified form of (1.7) as follows::

    v0Q1,un=PQ1(vnrnAvn),vn+1=βnvn+(1βn)TPQ1(vnrnAun).} (1.8)

    By setting appropriate conditions on control sequences, they examined the weak convergence of the generated sequence toward a common solution of Fix(T) and VIP (1.1).

    In the same year, Nadezhkina and Takahashi [22] proposed an alternative extragradient approach. This method combined the hybrid method [23] with the extragradient iterative approach [16] and was formulated as:

    v0Q1,ϱn=PQ1(vnrnAvn),zn=αnvn+(1αn)TPQ1(vnrnAϱn),Pn={vQ1:znv2vnz2},Qn={vQ1:vnz,xvn0},vn+1=PPnQnv0.} (1.9)

    Using specific control sequences, they demonstrated the strong convergence of this iterative sequence to a common solution of Fix(T) and VIP (1.1). For additional generalizations of the iterative method (1.9), refer to [6].

    Notably, only a few strong convergence theorems exist for extragradient iterative methods, other than the hybrid extragradient approach. Therefore, our primary objective is to develop a novel extragradient method distinct from the hybrid type.

    A mapping S:Q1Y1 is defined as an ϵ-strict pseudo-contractive if there exists ϵ[0,1) such that:

    Sv1Sv22v1v22+ϵ(IS)v1(IS)v22,v1,v2Q1. (1.10)

    When ϵ=0, the mapping S is termed nonexpansive, and when ϵ=1, it is termed pseudo-contractive. S is said to be strongly pseudo-contractive if η(0,1) with Sv1Sv2,v1v2ηv1v22,v1,v2Q1. Thus, the ϵ-strict pseudo-contractive class lies between the nonexpansive and pseudo-contractive mappings. Note that the class of strongly pseudo-contractive mappings is independent from ϵ-strict pseudo-contractive (for more, see [4]). It is obvious that for real Hilbert space Y1, (1.10) is equivalent to

    Sv1Sv2,v1v2v1v221ϵ2(IS)v1(IS)v22,v1,v2Q1. (1.11)

    Moreover, iterative approaches for strict pseudo-contractive are less advanced than those for nonexpansive mappings, despite Browder and Petryshyn's early work in 1967 [4]. This gap may be due to the additional term on the right-hand side of (1.10), which complicates the convergence analysis for algorithms that locate a fixed point of the strict pseudo-contractive S. However, strict pseudo-contractive offer stronger applications than nonexpansive mappings for solving inverse problems (see [30]). This motivates the development of iterative methods to find a common solution to SGEP((1.3) and (1.4)) and fixed-point problems for nonexpansive mappings, as well as for a finite family of ϵ-strict pseudo-contractive mappings. For further reading, refer to [19,33] and the references therein.

    Inspired by previous contributions (e.g., [11,15,22,33]), we propose a viscosity-based extragradient iterative approach for approximating solutions to split generalized equilibrium, variational inequality, and fixed point problems involving nonexpansive and ϵ-strict pseudo-contractive mappings in Hilbert space. We discuss strong convergence and highlight specific results derived from our theorems, along with numerical analysis to demonstrate the significance of our findings.

    This paper is structured as follows: Section 2 covers foundational concepts, lemmas, and assumptions. In Section 3, we present main results, numerical analyses, and graphical illustrations. Section 4 provides an interpretation of our findings.

    In this section, we compile key concepts and results needed for the presentation of this work. We denote strong and weak convergence by and , respectively.

    For any v1Y1 a unique nearest point to v1 in Q1 denoted by PQ1v1 such that

    v1PQ1v1v1v2,v2Q1.

    The operator PQ1 is called the metric projection of Y1 onto Q1. This projection is nonexpansive and satisfies

    v1v2,PQ1v1PQ1v2PQ1v1PQ1v22,v1,v2Y1.

    Additionally, PQ1v1 is characterized by PQ1v1Q1 and

    v1PQ1v1,v2PQ1v10,v2Q1.

    This implies that

    v1v22v1PQ1v12+v2PQ1v12,v1Y1,v2Q1.

    In a real Hilbert space Y1, it is known that

    βv1+(1β)v22=βv12+(1β)v22β(1β)v1v22,v1,v2Y1andβ[0,1]; (2.1)

    and

    v1+v22v12+2v2,v1+v2,v1,v2Y1. (2.2)

    Lemma 2.1. [18] Let {bn} be a sequence of nonnegative real numbers with a subsequence {bni} such that bni<bni+1 for all iN. Then, there exists a non-decreasing sequence {mj}N such that lim and, for all sufficiently large j\in \mathbb{N} , the following hold:

    b_{m_{j}}\leq b_{m_{j+1}} \; \; {\rm and}\; b_{j}\leq b_{m_{j}}.

    Moreover, m_{j} is the largest number n in the set \{1, 2, 3, ..., j\} such that b_{n} < b_{n+1} .

    Lemma 2.2. [19] Assume that D is a strongly positive, self-adjoint, and bounded linear operator on a Hilbert space Y_1 with a positive coefficient \overline{\gamma} > 0 and 0 < \rho\leq \|D\|^{-1} . Then, it follows that \|I-\rho D\|\leq 1-\rho \overline{\gamma} .

    Assumption 2.1. Let f_{1}, \phi_{1} :Q_{1}\times Q_{1}\to \mathbb {R} be bimappings satisfying the following conditions:

    (1) f_{1}(v_{1}, v_{1}) = 0, \; \; \; \; \forall v_{1} \in Q_{1};

    (2) f_{1} is monotone, i.e.,

    f_{1}(v_{1}, v_{2})+f_{1}(v_{2}, v_{1})\leq0, \; \; \; \; \forall v_{1}, v_{2} \in Q_{1};

    (3) For each v_{2}\in Q_{1} , v_{1}\rightarrow f_{1}(v_{1}, v_{2}) is weakly upper semicontinuous;

    (4) For each v_{1}\in Q_{1} , v_{2}\rightarrow f_{1}(v_{1}, v_{2}) is convex and lower semicontinuous;

    (5) \phi_{1}(., .) is weakly continuous and \phi_{1}(., v_{2}) is convex;

    (6) \phi_{1} is skew-symmetric, i.e.,

    \phi_{1}(v_{1}, v_{1})-\phi_{1}(v_{1}, v_{2})+\phi_{1}(v_{2}, v_{2})-\phi_{1}(v_{2}, v_{1})\geq0, \; \; \; \; \forall v_{1}, v_{2} \in Q_{1}.

    Now, we define \digamma_{r}^{(f_{1}, \phi_{1})}:Y_{1}\to Q_{1} by

    \begin{equation} \digamma_{r}^{(f_{1}, \phi_{1})}(w) = \{v_{1}\in Q_{1}: f_{1}(v_{1}, v_{2})+\phi_{1} (v_{2}, v_{1})-\phi_{1}(v_{1}, v_{1}) +\frac{1}{r}\langle v_{2}-v_{1}, v_{1}-w\rangle \geq 0, \; \; \forall v_{2}\in Q_{1}\}, \end{equation} (2.3)

    where r is a positive real number.

    Lemma 2.3. [28] Let f_{1}, \phi_{1} satisfy Assumption 2.1. Suppose that for each w \in Y_{1} and for each v_{1}\in Q_{1} , there exist a bounded subset D_{v_{1}}\subseteq Q_{1} and w_{v_{1}}\in Q_{1} such that for any v_{2}\in Q_{1}\setminus D_{v_{1}} ,

    f_{1}(v_{2}, w_{v_{1}})+\phi_{1} (w_{v_{1}}, v_{2})-\phi_{1}(v_{2}, v_{2})+\frac{1}{r}\langle w_{v_{1}}-v_{2}, v_{2}-z\rangle < 0.

    Let the mapping \digamma_{r}^{(f_{1}, \phi_{1})} be defined by (2.3). Then, the following properties hold:

    {\rm{(i)}} \digamma_{r}^{(f_{1}, \phi_{1})}(w) is nonempty for each w\in Y_{1} ;

    {\rm{(ii)}} \digamma_{r}^{(f_{1}, \phi_{1})} is single-valued;

    {\rm{(iii)}} \digamma_{r}^{(f_{1}, \phi_{1})} is a firmly nonexpansive mapping, i.e., for all w_{1}, w_{2}\in Y_{1} ,

    \|\digamma_{r}^{(f_{1}, \phi_{1})}(w_{1})-\digamma_{r}^{(f_{1}, \phi_{1})}(w_{2})\|^{2}\leq \langle \digamma_{r}^{(f_{1}, \phi_{1})}(w_{1})-\digamma_{r}^{(f_{1}, \phi_{1})}(w_{2}), w_{1}-w_{2} \rangle ;

    {\rm{(iv)}} {\rm Fix}(\digamma_{r}^{(f_{1}, \phi_{1})}) = Sol(GEP(1.3));

    {\rm{(v)}} Sol(GEP(1.3)) is closed and convex.

    Further, suppose f_{2}, \phi_{2}:Q_{2}\times Q_{2}\to \mathbb{R} satisfies Assumption 2.1. For s > 0 and v_{1}\in Y_{2} , define the mapping \digamma_{s}^{(f_{2}, \phi_{2})}:Y_{2}\to Q_{2} as follows:

    \begin{equation} \digamma_{s}^{(f_{2}, \phi_{2})}(v_{1}) = \{v_{2}\in Q_{2}: f_{2}(v_{1}, v_{3})+\phi_{2} (v_{3}, v_{2})-\phi_{2}(v_{2}, v_{2}) +\frac{1}{s}\langle v_{3}-v_{2}, v_{2}-v_{1}\rangle \geq 0, \; \; \forall v_{3}\in Q_{2}\}. \end{equation} (2.4)

    It follows that \digamma_{s}^{(f_{2}, \phi_{2})} is nonempty, single-valued, and firmly nonexpansive, {\rm Fix}(\digamma_{s}^{(f_{2}, \phi_{2})}) = Sol(GEP(1.4)), and Sol(GEP(1.4)) is closed and convex.

    Lemma 2.4. [28] Let f_{1} and \phi_{1} satisfy Assumption 2.1 and let \digamma_{r}^{(f_{1}, \phi_{1})} be defined by (2.3). Then, for v_{1}, v_{2}\in Y_{1} and r_{1}, r_{2} > 0 , we have

    \begin{equation} \nonumber \|\digamma_{r_{2}}^{(f_{1}, \phi_{1})}(v_{2})-\digamma_{r_{1}}^{(f_{1}, \phi_{1})}(v_{1})\|\leq\|v_{2}-v_{1}\|+ \frac{\vert r_2-r_1 \vert}{r_2}\|\digamma_{r_{2}}^{(f_{1}, \phi_{1})}(v_{2})-v_{2}\|. \end{equation}

    Lemma 2.5. [35] Let S: Q_{1} \to Y_{1} be a \epsilon_{i} -strictly pseudo-contractive mapping. Then, {\rm Fix}(S) is closed convex and it yields that P_{{\rm Fix}(S)} is well defined.

    Lemma 2.6. [26] For any u, v, w\in Y_{1} , we have

    \begin{equation} \nonumber \|\sigma u+\gamma v+\mu w\|^{2} = \sigma \|u\|^{2}+\gamma \|v\|^{2}+\mu \|w\|^{2}-\sigma \gamma \|u-v\|^{2}-\mu \gamma \|v-w\|^{2}-\sigma \mu \|u-w\|^{2}, \end{equation}

    where \sigma, \; \gamma, \; \mu \in [0, 1] with \sigma +\gamma +\mu = 1 .

    Lemma 2.7. [33] For each i = 1, 2, 3, ..., \mathbb{N} , where \mathbb{N} is a natural number, consider S_{i}: Q_{1} \to Y_{1} to be a \epsilon_{i} -strictly pseudo-contractive mapping for some 0\leq\epsilon_{i} < 1 with \cap_{i = 1}^{\mathbb{N}}{\rm Fix}(S_{i})\neq\emptyset . Let \{\xi_{i}\}_{i = 1}^{\mathbb{N}} be a positive sequence with \sum\limits_{i = 1}^{\mathbb{N}}\xi_{i = 1}^{n} = 1 . Then, \sum\limits_{i = 1}^{\mathbb{N}}\xi_{i}S_{i}:Q_{1} \to Y_{1} is \epsilon -strictly pseudo-contractive with coefficient \epsilon = \max\limits_{1\leq i < \mathbb{N}}\epsilon_{i} and {\rm Fix}(\sum\limits_{i = 1}^{\mathbb{N}}\xi_{i}S_{i}) = \cap_{i = 1}^{\mathbb{N}}{\rm Fix}(S_{i}) .

    Lemma 2.8. [32] Assume that \{a_{n}\} is a sequence of nonnegative real numbers such that

    a_{n+1}\leq (1-\gamma_{n})a_{n}+\delta_{n}, \; \; \; \; n\geq 0,

    where \{\gamma_{n}\} is a sequence in (0, 1) and \{\delta_{n}\} is a sequence in \mathbb{R} such that

    {\rm{(i)}} \sum\limits_{n = 1}^{\infty}\gamma_{n} = \infty ;

    {\rm{(ii)}} \limsup\limits_{n\to \infty}\frac{\delta_{n}}{\gamma_{n}}\leq 0 \; {\rm or} \; \sum\limits_{n = 1}^{\infty}|\delta_{n}| < +\infty .

    Then, \lim\limits_{n\to \infty}a_{n} = 0 .

    Suppose f_{j}, \phi_{j}: Q_{j}\times Q_{j}\to \mathbb{R} for j = 1, 2 are nonlinear bifunctions, and B:Y_{1}\to Y_{2} is a bounded linear operator. Let A:Q_{1} \to Y_{1} be a \sigma -inverse strongly monotone mapping and h: Q_{1} \to Q_{1} a \delta -contraction mapping. Additionally, assume T:Q_{1} \to Y_{1} is a nonexpansive mapping, and for each i = 1, 2, 3, ..., \mathbb{N} , let S_{i}: Q_{1} \to Y_{1} be an \epsilon_{i} -strictly pseudo-contractive mapping. Let \{\xi_{i}^{n}\}_{i = 1}^{\mathbb{N}} be a finite sequence of positive numbers satisfying \sum\limits_{i = 1}^{\mathbb{N}}\xi_{i}^{n} = 1 . The algorithm we propose is as follows:

    Algorithm 3.1.
    Initialization: Given v_{1}\in Q_{1} .
    Iterative steps: Iterate v_{n+1} using the following procedure:
    Step 1. Compute:
            \begin{equation} \nonumber \left\{\begin{array}{lll} \mathfrak{z}_{n} = \digamma_{r_{n}}^{(f_{1}, \phi_{1})}(v_{n}+\eta B^{*}((\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n}), \\ \varrho_{n} = P_{Q_{1}}(\mathfrak{z}_{n}-\alpha_{n}A\mathfrak{z}_{n}), \\ \end{array}\right\} \end{equation}
    and calculate the next iterate
        \begin{equation} \nonumber v_{n+1} = \beta_{n}h(v_{n})+(1-\beta_{n})P_{Q_{1}}[\sigma_{n}v_{n}+\gamma_{n}T\varrho_{n}+\mu_{n}\sum\limits_{i = 1}^{\mathbb{N}}\xi_{i}^{n}S_{i}v_{n}], \; \; \; n\geq 1, \end{equation}
    where \digamma_{r_{n}}^{(f_{1}, \phi_{1})} is defined by (2.3). Set n: = n+1 and move to Step 1.
    We consider control parameters in our main theorem as:
     (ⅰ) \beta_{n}, \sigma_{n}, \gamma_{n}, \mu_{n}\in (0, 1) and \sigma_{n}+\gamma_{n}+\mu_{n} = 1 ,
     (ⅱ) \lim\limits_{n\to \infty}\beta_{n} = 0, \; \sum\limits_{n = 1}^{\infty}\beta_{n} = \infty ,
    (ⅲ) \sum\limits_{n = 1}^{\infty}\sum\limits_{i = 1}^{\mathbb{N}}|\xi_{i}^{n}-\xi_{i}^{n-1}| < +\infty ,
    (ⅳ) 0\leq \epsilon_{i}\leq \sigma_{n} \leq c < 1, \; \lim\limits_{n\to \infty}\sigma_{n} = c ,
     (ⅴ) \eta\in (0, \frac{1}{L}) , L is the spectral radius of B^{*}B and B^{*} is the adjoint of B ,
    (ⅵ) \alpha_{n}\in (0, 2\sigma) .
    These parameters play a crucial role in the convergence and behavior of our algorithm, providing flexibility and adaptability across iterations.

    Theorem 3.1. Let Q_{1} and Q_{2} be non-empty closed convex subsets of Hilbert spaces Y_{1} and Y_{2} , respectively. Let f_{j}, \phi_{j}: Q_{j}\times Q_{j}\to \mathbb{R} , where j = 1, 2, be non-linear bifunctions that satisfy Assumption 2.1, and B:Y_{1}\to Y_{2} be a bounded linear operator. Let A:Q_{1} \to Y_{1} and h: Q_{1} \to Q_{1} be a \sigma -inverse strongly monotone mapping and \delta -contraction mapping, respectively. Further, assume that T:Q_{1} \to Y_{1} is a nonexpansive mapping and for each i = 1, 2, 3, ..., \mathbb{N} , S_{i}: Q_{1} \to Y_{1} is a \epsilon_{i} -strict pseudo-contractive mapping. Let \{\xi_{i}^{n}\}_{i = 1}^{\mathbb{N}} be a finite sequence of positive numbers with \sum\limits_{i = 1}^{\mathbb{N}}\xi_{i}^{n} = 1 . Assume \Omega: = \cap_{i = 1}^{\mathbb{N}}{\rm Fix}(S_{i})\cap{\rm Fix}(T) \cap{\rm{Sol(SGEP(1.3-1.4))}}\cap {\rm{Sol(VIP(1.1))}} \neq\emptyset . Then, the sequence \{v_{n}\} generated by Algorithm 3.1 converges strongly to \bar{v}\in \Omega , where \bar{v} = P_{\Omega}h(\bar{v}) .

    For convenience, we split the proof of our main Theorem 3.1 into some lemmas as follows:

    Lemma 3.1. The sequences \{v_{n}\} , \{\mathfrak{z}_{n}\} , and \{\varrho_{n}\} generated by iterative Algorithm 3.1 are bounded.

    Proof. We claim that \{v_{n}\} is bounded. We set s_{n} = \sigma_{n}v_{n}+\gamma_{n}T\varrho_{n}+\mu_{n}\sum\limits_{i = 1}^{\mathbb{N}}\xi_{i}^{n}S_{i}v_{n} . Let s^*\in \Omega . Using the concept of non-expansivity of I-\alpha_{n}A and T , we compute

    \begin{eqnarray} \| \varrho_{n}-s^* \| & = &\| P_{Q_{1}}(\mathfrak{z}_{n}-\alpha_{n}A\mathfrak{z}_{n})-s^* \|\\ &\leq&\| (I-\alpha_{n}A)\mathfrak{z}_{n}-(I-\alpha_{n}A)s^* \|\\ &\leq& \| \mathfrak{z}_{n}-s^*\|, \end{eqnarray} (3.1)

    and thus

    \begin{equation} \label{Rs3e3}\nonumber \| T\varrho_{n}-s^*\| \leq \| \varrho_{n}-s^*\|. \end{equation}

    We calculate

    \begin{eqnarray} \label{3e4} \|\mathfrak{z}_{n}-s^*\|^2 & = & \|\digamma_{r_{n}}^{(f_{1}, \phi_{1})}(v_{n}+\eta B^{*}(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n})- s^*\|^2 \\ &\leq& \|v_{n}+\eta B^{*}(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n})- s^*\|^2\\ &\leq&\|v_{n}-s^*\|^{2}+\eta^{2}\|B^{*}(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n}\|^{2}\\ &&+\; 2\eta\langle v_{n}-s^*, B^{*}(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n}\rangle. \end{eqnarray}

    Thus, we have

    \begin{eqnarray} \|\mathfrak{z}_{n}-s^*\|^2&\leq& \|v_{n}-s^*\|^{2}+\eta^{2}\langle (\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n}, \; BB^{*}(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n} \rangle\\ &&+\; 2\eta\langle v_{n}-s^*, B^{*}(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n}\rangle. \end{eqnarray} (3.2)

    Thus,

    \begin{align} \eta^{2}\langle (\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n}, &BB^{*}(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n} \rangle\\ &\leq L\eta^2\langle (\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n}, (\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n}\rangle\\ & = L\eta^2\|(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n}\|^2. \end{align} (3.3)

    Assume that \Pi : = 2\eta\langle v_{n}-s^*, B^{*}(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n}\rangle , and we have

    \begin{eqnarray} \Pi & = &2\eta\langle v_{n}-s^*, B^{*}(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n}\rangle\\ & = &2\eta\langle B(v_{n}-s^*), (\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n}\rangle\\ & = &2\eta\langle B(v_{n}-s^*)+ (\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n}\\ && - \; (\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n}, (\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n}\rangle\\ & = &2\eta\Big\{\langle \digamma_{r_{n}}^{(f_{2}, \phi_{2})}Bv_{n}-Bs^*, (\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n} \rangle\\ && - \; \|(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n}\|^{2}\Big\}\\ &\leq&2\eta\Big\{ \frac{1}{2}\|(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n}\|^2-\|(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n}\|^2\Big\}\\ &\leq&-\eta \|(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n}\|^2. \end{eqnarray} (3.4)

    By (3.2)–(3.4), we get

    \begin{equation} \|\mathfrak{z}_{n}-s^*\|^2\leq \|v_{n}-s^*\|^2+\eta(L\eta-1)\|(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n}\|^2. \end{equation} (3.5)

    As \eta\in (0, \frac{1}{L}) , we have

    \begin{equation} \label{3e9}\nonumber \|\mathfrak{z}_{n}-s^*\|\leq \|v_{n}-s^*\|. \end{equation}

    We compute

    \begin{eqnarray} \|v_{n+1}-s^*\|& = & \|\beta_{n}h(v_{n})+(1-\beta_{n})P_{Q_{1}}s_{n}-s^*\|\\ &\leq& \beta_{n}\|h(v_{n})-s^*\|+(1-\beta_{n})\|P_{Q_{1}}s_{n}-s^*\|\\ &\leq& \beta_{n}\|h(v_{n})-s^*\|+(1-\beta_{n})\|s_{n}-s^*\|. \end{eqnarray} (3.6)

    Now,

    \begin{eqnarray} \|h(v_{n})-s^*\|&\leq& \|h(v_{n})-h(s^*)\|+\|h(s^*)-s^*\|\\ &\leq& \delta\|v_{n}-s^*\|+\|h(s^*)-s^*\|. \end{eqnarray} (3.7)

    Setting G_{n} = \sum\limits_{i = 1}^{\mathbb{N}}\xi_{i}^{n}S_{i} and using Lemma 2.7, we observe that the mapping G_{n}:Q_{1}\to Y_{1} is \epsilon -strictly pseudo-contractive with \epsilon = \max\limits_{1\leq i < \mathbb{N}}\epsilon_{i} and {\rm Fix}(G_{n}) = \cap_{i = 1}^{\mathbb{N}}{\rm Fix}(S_{i}) . Thus, by Lemma 2.6, we estimate

    \begin{eqnarray} \|s_{n}-s^*\|^{2}& = & \|\sigma_{n}v_{n}+\gamma_{n}T\varrho_{n}+\mu_{n}G_{n}v_{n}-s^*\|^{2}\\ & = & \|\sigma_{n}(v_{n}-s^*)+\gamma_{n}(T\varrho_{n}-s^*)+\mu_{n}(G_{n}v_{n}-s^*)\|^{2}\\ & = &\sigma_{n}\|v_{n}-s^*\|^{2}+\gamma_{n}\|T\varrho_{n}-s^*\|^{2} +\mu_{n}\|G_{n}v_{n}-s^*\|^{2}\\ && - \; \sigma_{n}\gamma_{n}\|(v_{n}-T\varrho_{n}\|^{2}-\gamma_{n}\mu_{n}\|T\varrho_{n}-G_{n}v_{n}\|^{2}-\sigma_{n}\mu_{n}\|v_{n}-G_{n}v_{n}\|^{2}\\ &\leq&\sigma_{n}\|v_{n}-s^*\|^{2}+\gamma_{n}\|\varrho_{n}-s^*\|^{2} +\mu_{n}(\|v_{n}-s^*\|^{2}+\epsilon \|v_{n}-G_{n}v_{n}\|^{2})\\ && - \; \sigma_{n}\gamma_{n}\|(v_{n}-T\varrho_{n}\|^{2}-\gamma_{n}\mu_{n}\|T\varrho_{n}-G_{n}v_{n}\|^{2}-\sigma_{n}\mu_{n}\|v_{n}-G_{n}v_{n}\|^{2} \end{eqnarray} (3.8)
    \begin{eqnarray} & = &(\sigma_{n}+\gamma_{n}+\mu_{n})\|v_{n}-s^*\|^{2}-\mu_{n}(\sigma_{n}-\epsilon) \|v_{n}-G_{n}v_{n}\|^{2}\\ && - \; \sigma_{n}\gamma_{n}\|v_{n}-T\varrho_{n}\|^{2}-\gamma_{n}\mu_{n}\|T\varrho_{n}-G_{n}v_{n}\|^{2}\\ & = &\|v_{n}-s^*\|^{2}-\mu_{n}(\sigma_{n}-\epsilon) \|v_{n}-G_{n}v_{n}\|^{2}\\ && - \; \sigma_{n}\gamma_{n}\|v_{n}-T\varrho_{n}\|^{2}-\gamma_{n}\mu_{n}\|T\varrho_{n}-G_{n}v_{n}\|^{2} \end{eqnarray} (3.9)

    that implies

    \begin{equation} \|s_{n}-s^*\|\leq \|v_{n}-s^*\|. \end{equation} (3.10)

    Thus, by (3.6), (3.7), and (3.10), we have

    \begin{eqnarray} \label{3e14} \|v_{n+1}-s^*\| &\leq& \beta_{n}[\delta\|v_{n}-s^*\|+\|h(s^*)-s^*\|]+(1-\beta_{n})\|v_{n}-s^*\|\\ &\leq& [1-\beta_{n}(1-\delta)]\|s_{n}-s^*\|+\beta_{n}\|h(s^*)-s^*\|. \end{eqnarray}

    By induction, we get

    \begin{equation} \nonumber \|v_{n+1}-s^*\|\leq \max\{\|v_{0}-s^*\|, \frac{1}{1-\delta}\|h(s^*)-s^*\|\}, \; \; \; \forall n\geq 1, \end{equation}

    which shows that \{v_{n}\} is bounded and hence, \{\mathfrak{z}_{n}\} and \{\varrho_{n}\} are also bounded.

    Lemma 3.2. For each n\geq 1 , prove that \lim\limits_{n\to \infty}\|v_{n+1}-v_{n}\| = 0 , \lim\limits_{n\to \infty}\|(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n}\| = 0 , \lim\limits_{n\to \infty}\|\mathfrak{z}_{n}-v_{n}\| = 0 , and \lim\limits_{n\to \infty}\|\varrho_{n}-\mathfrak{z}_{n}\| = 0 . Also, show that the sequence \{v_{n}\} strongly converges to s^* , where s^* = P_{\Omega}h(s^*) .

    Proof. As s^*\in \Omega , therefore we compute

    \begin{eqnarray} \|v_{n+1}-s^*\|^{2} & = & \|\beta_{n}(h(v_{n})-s^*)+(1-\beta_{n})(P_{Q_{1}}s_{n}-s^*)\|^{2}\\ &\leq& (1-\beta_{n})\|P_{Q_{1}}s_{n}-s^*\|^{2}+2\langle \beta_{n}(h(v_{n})-s^*), v_{n+1}-s^* \rangle\\ &\leq& (1-\beta_{n})\|s_{n}-s^*\|^{2}+2\beta_{n}\langle h(v_{n})-s^*, v_{n+1}-s^* \rangle. \end{eqnarray} (3.11)

    Also, we estimate

    \begin{eqnarray} \langle h(v_{n})-s^*, v_{n+1}-s^* \rangle & = & \langle h(v_{n})-s^*, v_{n}-s^* \rangle + \langle h(v_{n})-s^*, v_{n+1}-v_{n} \rangle\\ &\leq&\|h(v_{n})-h(s^*)\|\|v_{n}-s^*\|+\dfrac{M}{2}\|v_{n+1}-v_{n}\|+\langle h(v_{n})-s^*, v_{n}-s^* \rangle \\ &\leq& \delta\|v_{n}-s^*\|^{2}+\dfrac{M}{2}\|v_{n+1}-v_{n}\|+\langle h(v_{n})-s^*, v_{n}-s^* \rangle, \end{eqnarray} (3.12)

    where M = \sup\limits_{n}\|h(v_{n})-s^*\| . Using (3.9), (3.11), and (3.12), we have

    \begin{eqnarray} \|v_{n+1}-s^*\|^{2} &\leq& (1-\beta_{n}(1-2\delta))\|v_{n}-s^*\|^{2}+\beta_{n}M\|v_{n+1}-v_{n}\|+2\beta_{n}\langle h(v_{n})-s^*, v_{n}-s^* \rangle\\ &&-\; \mu_{n}(\sigma_{n}-\epsilon)(1-\beta_{n}) \|v_{n}-G_{n}v_{n}\|^{2}-(1-\beta_{n})\sigma_{n}\gamma_{n}\|v_{n}-T\varrho_{n}\|^{2}\\ && -\; (1-\beta_{n})\gamma_{n}\mu_{n}\|T\varrho_{n}-G_{n}v_{n}\|^{2} \end{eqnarray} (3.13)
    \begin{eqnarray} \|v_{n+1}-s^*\|^{2}&\leq&(1-\beta_{n}(1-2\delta))\|v_{n}-s^*\|^{2}+\beta_{n}M\|v_{n+1}-v_{n}\|\\ &&+\; 2\beta_{n}\langle h(v_{n})-s^*, v_{n}-s^* \rangle. \end{eqnarray} (3.14)

    Set q_{n} = \|v_{n}-s^*\|^{2} . Consider the two cases on \{q_{n}\} as:

    Case 1. For every n\geq m_{0} where m_{0}\in \mathbb{N} , consider the sequence \{q_{n}\} as decreasing, therefore it must be convergent. Applying the conditions in (3.13), we get

    \begin{equation} \lim\limits_{n\to \infty}\|v_{n}-T\varrho_{n}\| = 0, \; \; \lim\limits_{n\to \infty}\|T\varrho_{n}-G_{n}v_{n}\| = 0, \; \; {\rm and}\; \; \lim\limits_{n\to \infty}\|v_{n}-G_{n}v_{n}\| = 0. \end{equation} (3.15)

    Notice that \{v_{n}\} is bounded, therefore \exists a subsequence \{v_{n_{j}}\} of \{v_{n}\} with v_{n_{j}}\rightharpoonup p \in Q_{1} and satisfies

    \begin{equation} \limsup\limits_{n\to \infty}\langle h(s^*)-s^*, v_{n}-s^* \rangle = \lim\limits_{j\to \infty}\langle h(s^*)-s^*, v_{n_{j}}-s^* \rangle. \end{equation} (3.16)

    Define H_{n} = \kappa_{n}v+(1-\kappa_{n})G_{n}v, \; \; \forall v\in Q_{1} and \kappa_{n} \in [\delta, 1) . Applying Lemma 2.5, H_{n}:Q_{1}\to Y_{1} is nonexpansive and we have

    \begin{eqnarray} \label{3e20} \|v_{n}-H_{n}v_{n}\| & = & \|v_{n}-(\kappa_{n}v_{n}+(1-\kappa_{n})G_{n}v_{n})\|\\ & = &\|(\kappa_{n}+(1-(\kappa_{n})v_{n})-(\kappa_{n}v_{n}+(1-\kappa_{n})G_{n}v_{n})\|\\ & = &(1-\kappa_{n})\|v_{n}-G_{n}v_{n}\|. \end{eqnarray}

    Thus,

    \begin{equation} \lim\limits_{n\to \infty}\|v_{n}-H_{n}v_{n}\| = 0. \end{equation} (3.17)

    Applying the given conditions, we may consider that \xi_{i}^{n}\to \xi_{i}\; {\rm as}\; n\to \infty, \; \; \forall i . By Lemma 2.7, the map G:Q_{1}\to Y_{1} with Gv = (\sum\limits_{i = 1}^{\mathbb{N}}\xi_{i}S_{i})v, \; \forall v\in Q_{1} , is \epsilon -strict pseudo-contractive and {\rm Fix}(G) = \cap_{i = 1}^{\mathbb{N}}{\rm Fix}(S_{i}) . Applying Lemma 2.7, given the conditions and boundedness of v_{n} , we get

    \begin{eqnarray} \label{3e22} \|v_{n}-Gv_{n}\|&\leq& \|v_{n}-G_{n}v_{n}\|+\|G_{n}v_{n}-Gv_{n}\|\\ &\leq&\|v_{n}-G_{n}v_{n}\|+\sum\limits_{i = 1}^{\mathbb{N}}|\xi_{i}^{n}-\xi_{i}|\|S_{i}v_{n}\|, \end{eqnarray}

    and thus

    \begin{equation} \lim\limits_{n\to \infty}\|v_{n}-Gv_{n}\| = 0. \end{equation} (3.18)

    As

    \begin{equation} \label{3e24}\nonumber \|G_{n}v_{n}-Gv_{n}\| \leq \|G_{n}v_{n}-v_{n}\|+\|v_{n}-Gv_{n}\|, \end{equation}

    this yields by (3.14) and (3.18) that

    \begin{equation} \lim\limits_{n\to \infty}\|G_{n}v_{n}-Gv_{n}\| = 0. \end{equation} (3.19)

    Again, we notice that the map H = tv+(1-t)Gv, \; \; \forall v\in Q_{1} and t \in [\delta, 1) , and {\rm Fix} H = {\rm Fix}G . Thus, we obtain

    \begin{eqnarray} \label{3e26} \|v_{n}-Hv_{n}\|&\leq& \|v_{n}-H_{n}v_{n}\|+\|H_{n}v_{n}-Hv_{n}\|\\ &\leq&\|v_{n}-H_{n}v_{n}\|+\|\kappa_{n}v_{n}+(1-\kappa_{n})H_{n}v_{n}-tv-(1-t)Gv\|\\ &\leq&\|v_{n}-H_{n}v_{n}\|+|\kappa_{n}-t|\|v_{n}-Gv_{n}\|+(1-\kappa_{n})\|H_{n}v_{n}-Hv_{n}\|. \end{eqnarray}

    Applying (3.17)–(3.19), we have

    \begin{equation} \label{3e27}\nonumber \lim\limits_{n\to \infty}\|v_{n}-Hv_{n}\| = 0. \end{equation}

    As v_{n}\in Q_{1} , therefore

    \begin{equation} \nonumber \|v_{n+1}-v_{n}\| \leq \beta_{n} \|hv_{n}-v_{n}\|+(1-\beta_{n})[\sigma_{n}\|T\varrho_{n}-v_{n}\|+\mu_{n}\|v_{n}-G_{n}v_{n}\|]. \end{equation}

    Using the given conditions and (3.14), we get

    \begin{equation} \lim\limits_{n\to \infty}\|v_{n+1}-v_{n}\| = 0. \end{equation} (3.20)

    Applying (3.11) and (3.12), we estimate

    \begin{equation} \|v_{n+1}-s^*\|^{2} \leq (1-\beta_{n})\|s_{n}-s^*\|^{2} +2\beta_{n}[\delta \|v_{n}-s^*\|^{2}+\frac{M}{2}\|v_{n+1}-v_{n}\|]. \end{equation} (3.21)

    Using (3.1), (3.5), and (3.8), we compute

    \begin{eqnarray} \|s_{n}-s^*\|^{2}&\leq&(1-\gamma_{n})\|v_{n}-s^*\|^{2}+\gamma_{n}\|\mathfrak{z}_{n}-s^*\|^{2} \end{eqnarray} (3.22)
    \begin{eqnarray} &\leq&\|v_{n}-s^*\|^{2}+\eta(L\eta-1)\gamma_{n}\|(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n}\|^2 . \end{eqnarray} (3.23)

    By (3.21) and (3.23), we get

    \begin{eqnarray} \label{3e31} \|v_{n+1}-s^*\|^{2}&\leq&(1-\beta_{n})\|v_{n}-s^*\|^{2}+\eta(L\eta-1)(1-\beta_{n})\gamma_{n}\|(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n}\|^2\\ &&+\; 2\delta\beta_{n} \|v_{n}-s^*\|^{2}+M\beta_{n}\|v_{n+1}-v_{n}\|\\ \eta(1-L\eta)(1-\beta_{n})\gamma_{n}\|(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n}\|^2&\leq&\|v_{n}-s^*\|^{2}-\|v_{n+1}-s^*\|^{2}\\ &&+\; 2\delta\beta_{n} \|v_{n}-s^*\|^{2}+M\beta_{n}\|v_{n+1}-v_{n}\|\\ &\leq&(\|v_{n}-s^*\|+\|v_{n+1}-s^*\|)\|v_{n}-v_{n+1}\|\\ &&+\; 2\delta\beta_{n} \|v_{n}-s^*\|^{2}+M\beta_{n}\|v_{n+1}-v_{n}\|. \end{eqnarray}

    Applying the given condition and (3.20), we get

    \begin{equation} \lim\limits_{n\to \infty}\|(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n}\| = 0. \end{equation} (3.24)

    Next, we compute

    \begin{eqnarray} \|\mathfrak{z}_{n}-s^*\|^{2}& = &\|\digamma_{r_{n}}^{(f_{1}, \phi_{1})}(v_{n}+\eta B^{*}(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)B v_{n})-s^*\|^{2}\\ &\leq&\|\digamma_{r_{n}}^{(f_{1}, \phi_{1})}(v_{n}+\eta B^{*}(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)B v_{n})-\digamma_{r_{n}}^{(f_{1}, \phi_{1})}s^*\|^{2}\\ &\leq&\langle \mathfrak{z}_{n}-s^*, v_{n}+\eta B^{*}(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)B v_{n}-s^* \rangle\\ & = &\dfrac{1}{2}\Big\{\|\mathfrak{z}_{n}-s^*\|^{2}+\|v_{n}+\eta B^{*}(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)B v_{n}-s^*\|^{2}\\ &&-\; \|(\mathfrak{z}_{n}-s^*)-[v_{n}+\eta B^{*}(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)B v_{n}-s^*]\|^{2}\Big\}\\ & = &\dfrac{1}{2}\Big\{\|\mathfrak{z}_{n}-s^*\|^{2}+\|v_{n}-s^*\|^{2}\\ &&-\; \|\mathfrak{z}_{n}-v_{n}-\eta B^{*}(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)B v_{n}\|^{2}\Big\}\\ & = &\dfrac{1}{2}\Big\{\|\mathfrak{z}_{n}-s^*\|^{2}+\|v_{n}-s^*\|^{2}\\ &&-\; [\|\mathfrak{z}_{n}-v_{n}\|^{2}+\eta^{2} \|B^{*}(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)B v_{n}\|^{2}\\ &&-\; 2\eta\langle \mathfrak{z}_{n}-v_{n}, B^{*}(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)B v_{n} \rangle] \Big\}. \end{eqnarray}

    Thus,

    \begin{equation} \|\mathfrak{z}_{n}-s^*\|^2\leq\|v_{n}-s^*\|^2-\|\mathfrak{z}_{n}-v_{n}\|^2+2\eta \|B(z_n-v_n)\|\|(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_n\|. \end{equation} (3.25)

    Using (3.22) and (3.25) in (3.21), we get

    \begin{eqnarray} \|v_{n+1}-s^*\|^{2} &\leq& (1-\beta_{n})\|s_{n}-s^*\|^{2} +2\beta_{n}[\delta \|v_{n}-s^*\|^{2}+\frac{M}{2}\|v_{n+1}-v_{n}\|]\\ &\leq& (1-\beta_{n})(1-\gamma_{n})\|v_{n}-s^*\|^{2}+(1-\beta_{n})\gamma_{n}\|v_{n}-s^*\|^{2}\\ &&-\; \gamma_{n}(1-\beta_{n})\|\mathfrak{z}_{n}-v_{n}\|^{2} \\ &&+\; 2\eta (1-\beta_{n})\gamma_{n}\|B(z_n-v_n)\|\|(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_n\|\\ &&+\; 2\beta_{n}[\delta \|v_{n}-s^*\|^{2}+\frac{M}{2}\|v_{n+1}-v_{n}\|]\\ \implies\; \; \; \; \gamma_{n}(1-\beta_{n})\|\mathfrak{z}_{n}-v_{n}\|^{2}&\leq& \|v_{n}-s^*\|^{2}-\|v_{n+1}-s^*\|^{2}\\ &&+\; 2\eta (1-\beta_{n})\gamma_{n}\|B(z_n-v_n)\|\|(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_n\|\\ &&+\; 2\beta_{n}[\delta \|v_{n}-s^*\|^{2}+\frac{M}{2}\|v_{n+1}-v_{n}\|]\\ &\leq&(\|v_{n}-s^*\|+\|v_{n+1}-s^*\|)\|v_{n}-v_{n+1}\|\\ &&+\; 2\eta (1-\beta_{n})\gamma_{n}\|B(z_n-v_n)\|\|(\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_n\|\\ &&+\; 2\beta_{n}[\delta \|v_{n}-s^*\|^{2}+\frac{M}{2}\|v_{n+1}-v_{n}\|]. \end{eqnarray} (3.26)

    Applying the given conditions, (3.20) and (3.24) in (3.26), we get

    \begin{equation} \lim\limits_{n\to \infty}\|\mathfrak{z}_{n}-v_{n}\| = 0. \end{equation} (3.27)

    Further, we estimate

    \begin{eqnarray} \|\varrho_{n}-s^*\|^{2}& = &\|P_{Q_{1}}(\mathfrak{z}_{n}-\alpha_{n}A\mathfrak{z}_{n})-P_{Q_{1}}(s^*-\alpha_{n}As^*)\|^{2}\\ &\leq&\langle \varrho_{n}-s^*, (\mathfrak{z}_{n}-\alpha_{n}A\mathfrak{z}_{n})-(s^*-\alpha_{n}As^*) \rangle\\ &\leq&\frac{1}{2}\{\|\varrho_{n}-s^*\|^{2}+\|(\mathfrak{z}_{n}-\alpha_{n}A\mathfrak{z}_{n})\\ &&-\; (s^*-\alpha_{n}As^*)\|^{2}-\|(\varrho_{n}-\mathfrak{z}_{n})+\alpha_{n}(A\mathfrak{z}_{n}-As^*)\|^{2}\}\\ &\leq&\frac{1}{2}\{\|\varrho_{n}-s^*\|^{2}+\|\mathfrak{z}_{n}-s^*\|^{2}-\|(\varrho_{n}-\mathfrak{z}_{n})+\alpha_{n}(A\mathfrak{z}_{n}-As^*)\|^{2}\}\\ &\leq&\|\mathfrak{z}_{n}-s^*\|^{2}-\|\varrho_{n}-\mathfrak{z}_{n}\|^{2}-\alpha_{n}^{2}\|A\mathfrak{z}_{n}-As^*\|^{2}\\ &&+\; 2\alpha_{n}\langle \varrho_{n}-\mathfrak{z}_{n}, A\mathfrak{z}_{n}-As^* \rangle\\ &\leq&\|\mathfrak{z}_{n}-s^*\|^{2}-\|\varrho_{n}-\mathfrak{z}_{n}\|^{2}+2\alpha_{n}\|\varrho_{n}-\mathfrak{z}_{n}\|\|A\mathfrak{z}_{n}-As^*\|\\ &\leq&\|v_{n}-s^*\|^{2}-\|\varrho_{n}-\mathfrak{z}_{n}\|^{2}+2\alpha_{n}\|\varrho_{n}-\mathfrak{z}_{n}\|\|A\mathfrak{z}_{n}-As^*\|. \end{eqnarray} (3.28)

    From (3.8), we obtain

    \begin{eqnarray} \|s_{n}-s^*\|^{2}&\leq&\sigma_{n}\|v_{n}-s^*\|^{2}+\gamma_{n}\|\varrho_{n}-s^*\|^{2} +\mu_{n}\|v_{n}-s^*\|^{2}+\mu_{n}\epsilon \|v_{n}-G_{n}v_{n}\|^{2}\\ &\leq&(1-\gamma_{n})\|v_{n}-s^*\|^{2}+\gamma_{n}\|\varrho_{n}-s^*\|^{2}-\mu_{n}(\sigma_{n}-\epsilon) \|v_{n}-G_{n}v_{n}\|^{2}. \end{eqnarray} (3.29)

    From (3.21) and (3.29), we estimate

    \begin{eqnarray} \label{3e12**FF} \|v_{n+1}-s^*\|^{2} &\leq&(1-\beta_{n})[(1-\gamma_{n})\|v_{n}-s^*\|^{2}+\gamma_{n}\|\varrho_{n}-s^*\|^{2}-\mu_{n}(\sigma_{n}-\epsilon) \|v_{n}-G_{n}v_{n}\|^{2}] \\ && +\; 2\beta_{n}[\delta \|v_{n}-s^*\|^{2}+\frac{M}{2}\|v_{n+1}-v_{n}\|]\\ &\leq& (1-\beta_{n})(1-\gamma_{n})\|v_{n}-s^*\|^{2}+(1-\beta_{n})\gamma_{n}[P_{Q_{1}}(\mathfrak{z}_{n}-\alpha_{n}A\mathfrak{z}_{n})-P_{Q_{1}}(s^*-\alpha_{n}As^*)]\\ &&-\; (1-\beta_{n})\mu_{n}(\sigma_{n}-\epsilon) \|v_{n}-G_{n}v_{n}\|^{2}+2\beta_{n}[\delta \|v_{n}-s^*\|^{2}+\frac{M}{2}\|v_{n+1}-v_{n}\|]\\ &\leq&(1-\beta_{n})(1-\gamma_{n})\|v_{n}-s^*\|^{2}+(1-\beta_{n})\gamma_{n}[\|\mathfrak{z}_{n}-s^*\|^{2}+\alpha_{n}(\alpha_{n}-2\sigma)\|A\mathfrak{z}_{n}-As^*\|^{2}]\\ &&-\; (1-\beta_{n})\mu_{n}(\sigma_{n}-\epsilon) \|v_{n}-G_{n}v_{n}\|^{2}+2\beta_{n}[\delta \|v_{n}-s^*\|^{2}+\frac{M}{2}\|v_{n+1}-v_{n}\|]\\ &\leq&(1-\beta_{n})(1-\gamma_{n})\|v_{n}-s^*\|^{2}+(1-\beta_{n})\gamma_{n}[\|v_{n}-s^*\|^{2}+\alpha_{n}(\alpha_{n}-2\sigma)\|A\mathfrak{z}_{n}-As^*\|^{2}]\\ &&-\; (1-\beta_{n})\mu_{n}(\sigma_{n}-\epsilon) \|v_{n}-G_{n}v_{n}\|^{2}+2\beta_{n}[\delta \|v_{n}-s^*\|^{2}+\frac{M}{2}\|v_{n+1}-v_{n}\|]\\ &\leq&\|v_{n}-s^*\|^{2}+(1-\beta_{n})\gamma_{n}\alpha_{n}(\alpha_{n}-2\sigma)\|A\mathfrak{z}_{n}-As^*\|^{2}\\ &&\; -(1-\beta_{n})\mu_{n}(\sigma_{n}-\epsilon) \|v_{n}-G_{n}v_{n}\|^{2}+2\beta_{n}[\delta \|v_{n}-s^*\|^{2}+\frac{M}{2}\|v_{n+1}-v_{n}\|], \end{eqnarray}

    which implies

    \begin{eqnarray} (1-\beta_{n})\gamma_{n}\alpha_{n}(2\sigma-\alpha_{n})\|A\mathfrak{z}_{n}-As^*\|^{2}&\leq&\|v_{n}-s^*\|^{2}-\|v_{n+1}-s^*\|^{2}-(1-\beta_{n})\mu_{n}(\sigma_{n}-\epsilon) \|v_{n}-G_{n}v_{n}\|^{2}\\ &&+\; 2\beta_{n}[\delta \|v_{n}-s^*\|^{2}+\frac{M}{2}\|v_{n+1}-v_{n}\|]\\ &\leq&(\|v_{n}-s^*\|+\|v_{n+1}-s^*\|)\|v_{n}-v_{n+1}\|\\ &&-\; (1-\beta_{n})\mu_{n}(\sigma_{n}-\epsilon) \|v_{n}-G_{n}v_{n}\|^{2}\\ &&+\; 2\beta_{n}[\delta \|v_{n}-s^*\|^{2}+\frac{M}{2}\|v_{n+1}-v_{n}\|]. \end{eqnarray} (3.30)

    Applying the given conditions, (3.15) and (3.20) in (3.30), we obtain

    \begin{equation} \lim\limits_{n\to \infty}\|A\mathfrak{z}_{n}-As^*\| = 0. \end{equation} (3.31)

    Using (3.11), (3.12), (3.28), and (3.29), we compute

    \begin{eqnarray} \label{3e12*F} \|v_{n+1}-s^*\|^{2} &\leq& (1-\beta_{n})(1-\gamma_{n})\|v_{n}-s^*\|^{2}+(1-\beta_{n})\gamma_{n}[\|v_{n}-s^*\|^{2}-\|\varrho_{n}-\mathfrak{z}_{n}\|^{2}\\ &&+\; 2\alpha_{n}\|\varrho_{n}-\mathfrak{z}_{n}\|\|A\mathfrak{z}_{n}-As^*\|]+(1-\beta_{n})\mu_{n}\epsilon\|v_{n}-G_{n}v_{n}\|^{2}\\ &&+\; 2\beta_{n}\delta \|v_{n}-s^*\|^{2}+\beta_{n} M\|v_{n+1}-v_{n}\|+2\beta_{n}\langle h(v_{n})-s^*, v_{n}-s^* \rangle\\ \implies\; \; (1-\beta_{n})\gamma_{n}\|\varrho_{n}-\mathfrak{z}_{n}\|^{2}&\leq&\|v_{n}-s^*\|^{2}-\|v_{n+1}-s^*\|^{2}\\ &&+\; 2(1-\beta_{n})\gamma_{n}\alpha_{n}\|\varrho_{n}-\mathfrak{z}_{n}\|\|A\mathfrak{z}_{n}-As^*\|+(1-\beta_{n})\mu_{n}\epsilon\|v_{n}-G_{n}v_{n}\|^{2}\\ &&+\; 2\beta_{n}\delta \|v_{n}-s^*\|^{2}+\beta_{n} M\|v_{n+1}-v_{n}\| +2\beta_{n}\langle h(v_{n})-s^*, v_{n}-s^* \rangle\\ &\leq&(\|v_{n}-s^*\|+\|v_{n+1}-s^*\|)\|v_{n}-v_{n+1}\|\\ &&+\; 2(1-\beta_{n})\gamma_{n}\alpha_{n}\|\varrho_{n}-\mathfrak{z}_{n}\|\|A\mathfrak{z}_{n}-As^*\|+(1-\beta_{n})\mu_{n}\epsilon\|v_{n}-G_{n}v_{n}\|^{2}\\ &&+\; 2\beta_{n}\delta \|v_{n}-s^*\|^{2}+\beta_{n} M\|v_{n+1}-v_{n}\|\\ &&+\; 2\beta_{n}\langle h(v_{n})-s^*, v_{n}-s^* \rangle. \end{eqnarray}

    Applying the given conditions, (3.14), (3.20), and (3.31), we get

    \begin{equation} \label{3e12*FFFF}\nonumber \lim\limits_{n\to \infty}\|\varrho_{n}-\mathfrak{z}_{n}\| = 0. \end{equation}

    Now, we show that s^*\in {\rm Fix}(H) = {\rm Fix}(G) = {\rm Fix}(G_{n}) = \cap_{i = 1}^{\mathbb{N}}{\rm Fix}(S_{i}) . Let s^*\notin {\rm Fix}(H) . As v_{n_{j}}\rightharpoonup s^* and s^*\neq Hs^* , then by the Opial condition, we obtain

    \begin{eqnarray} \liminf\limits_{j\to \infty}\|v_{n_{j}}-s^*\| & < & \liminf\limits_{j\to \infty}\|v_{n_{j}}-Hs^*\|\\ &\leq&\liminf\limits_{j\to \infty}[\|v_{n_{j}}-Hv_{n_{j}}\|+\|Hv_{n_{j}}-Hs^*\|]\\ &\leq&\liminf\limits_{j\to \infty}\|v_{n_{j}}-s^*\|, \end{eqnarray} (3.32)

    which contradicts to our supposition. Hence, s^*\in {\rm Fix}(H) = {\rm Fix}(G) = {\rm Fix}(G_{n}) = \cap_{i = 1}^{\mathbb{N}}{\rm Fix}(S_{i}) . By (3.14), we observe that \{v_{n}\} and \{\varrho_{n}\} have the same asymptotic behavior, and therefore \exists a subsequence \{\varrho_{n_{j}}\} of \{\varrho_{n}\} with \varrho_{n_{j}}\rightharpoonup s^* . Again from (3.14) and the opial condition we have that s^*\in {\rm Fix}(T) . Next, we prove that s^*\in {\rm{Sol(SGEP(1.3-1.4))}} . Set \tau_{n}: = v_{n}+\eta B^{*}((\digamma_{r_{n}}^{(f_{2}, \phi_{2})}-I)Bv_{n} . Then, \mathfrak{z}_{n} = \digamma_{r_{n}}^{(f_{1}, \phi_{1})}\tau_{n} . For any v\in Q_{1} , we get

    \begin{eqnarray} f_{1}(\mathfrak{z}_{n}, v)+\phi_{1}(v, \mathfrak{z}_{n})-\phi_{1}(\mathfrak{z}_{n}, \mathfrak{z}_{n})+\frac{1}{r_{n}}\langle v-\mathfrak{z}_{n}, \mathfrak{z}_{n}-\tau_{n} \rangle &\geq& 0\\ \phi_{1}(v, \mathfrak{z}_{n})-\phi_{1}(\mathfrak{z}_{n}, \mathfrak{z}_{n})+\frac{1}{r_{n}}\langle v-\mathfrak{z}_{n}, \mathfrak{z}_{n}-\tau_{n} \rangle &\geq& f_{1}(v, \mathfrak{z}_{n})\\ \implies \; \; \phi_{1}(v, \mathfrak{z}_{n_{j}})-\phi_{1}(\mathfrak{z}_{n_{j}}, \mathfrak{z}_{n_{j}})+\langle v-\mathfrak{z}_{n_{j}}, \frac{\mathfrak{z}_{n_{j}}-\tau_{n_{j}}}{r_{n_{j}}} \rangle &\geq& f_{1}(v, \mathfrak{z}_{n_{j}}). \end{eqnarray} (3.33)

    Assume \omega_{\varsigma}: = (1-\varsigma)s^*+\varsigma v, \; \; \forall \varsigma\in (0, 1] . As v, s^*\in Q_{1} , therefore \omega_{\varsigma}\in Q_{1} . Hence, by (3.33)

    \begin{eqnarray} 0 &\leq& f_{1}(\omega_{\varsigma}, \mathfrak{z}_{n_{j}})-\phi_{1}(\omega_{\varsigma}, \mathfrak{z}_{n_{j}})+\phi_{1}(\mathfrak{z}_{n_{j}}, \mathfrak{z}_{n_{j}})\\ && -\; \langle \omega_{\varsigma}-\mathfrak{z}_{n_{j}}, \frac{\mathfrak{z}_{n_{j}}-v_{n_{j}}}{r_{n_{j}}}+\eta B^{*}\frac{((\digamma_{r_{n_{j}}}^{(f_{2}, \phi_{2})}-I)Bv_{n_{j}}}{r_{n_{j}}} \rangle. \end{eqnarray}

    Using the given conditions (3.24) and (3.27), we get

    \begin{equation} \nonumber \phi_{1}(\omega_{\varsigma}, s^*)-\phi_{1}(s^*, s^*)\leq f_{1}(\omega_{\varsigma}, s^*). \end{equation}

    Thus,

    \begin{array}{lll} 0& = &f_{1}(\omega_{\varsigma}, \omega_{\varsigma})\\ & = & \varsigma f_{1}(\omega_{\varsigma}, v)+(1-\varsigma)f_{1}(\omega_{\varsigma}, s^*)\\ &\geq& \varsigma f_{1}(\omega_{\varsigma}, v)+(1-\varsigma)[\phi_1(\omega_{\varsigma}, s^*)-\phi_1(s^*, s^*)]\\ &\geq& \varsigma f_{1}(\omega_{\varsigma}, v)+(1-\varsigma)\varsigma[\phi_1(v, s^*)-\phi_1(s^*, s^*)]\\ &\geq& f_{1}(\omega_{\varsigma}, v)+(1-\varsigma)[\phi_1(v, s^*)-\phi_1(s^*, s^*)]. \end{array}

    Assuming \varsigma\to 0 , we obtain

    \begin{equation} \nonumber f_{1}(s^*, v)+\phi_1(v, s^*)-\phi_1(s^*, s^*)\geq 0, \; \; \forall v\in Q_{1}. \end{equation}

    This implies that s^*\in {\rm{Sol(GEP(1.3))}} . Further, we prove that Bs^*\in {\rm Sol(GEP(1.4))} . As \|z_n-v_n\| \to 0, \; z_n \rightharpoonup s^* as n \to \infty and \{v_n\} is bounded and, \exists a subsequence \{v_{n_{j}}\} of \{v_n\} with v_{n_{j}}\rightharpoonup s^* and Bv_{n_{j}} \rightharpoonup Bs^* because B is a bounded linear operator.

    Set q_{n_{j}} = Bv_{n_{j}}-\digamma_{r_{n}}^{(f_{2}, \phi_{2})}Bv_{n_{j}} . Using (3.24), we get \lim\limits_{j\to\infty}q_{n_{j}} = 0 and Bv_{n_{j}}-q_{n_{j}} = \digamma_{r_{n}}^{(f_{2}, \phi_{2})}Bv_{n_{j}} . Applying Lemma 2.3, we get

    \begin{eqnarray} f_{2}(Bv_{n_{j}}-q_{n_{j}}, v)&+&\phi_1(v, \mathfrak{z}_{n_{j}})-\phi_1(\mathfrak{z}_{n_{j}}, \mathfrak{z}_{n_{j}})\\ &+& \frac{1}{r_{n_{j}}}\langle v-(Bv_{n_{j}}-q_{n_{j}}), (Bv_{n_{j}}-q_{n_{j}})-Bv_{n_{j}}\rangle \geq 0, \; \; \forall v\in Q_{1}. \end{eqnarray} (3.34)

    Taking the limit superior in (3.34) as j \to \infty , using the concept of upper semicontinuity in the first argument of f_{2} , and applying the given conditions, we get

    \begin{equation} \nonumber f_{2}(Bs^*, v)+\phi_1(v, s^*)-\phi_1(s^*, s^*)\geq 0 , \; \; \forall v\in Q_{1}, \end{equation}

    which implies Bs^*\in {\rm{Sol(GEP(1.3))}} . Thus, s^*\in {\rm{Sol(SGEP(1.3-1.4))}} .

    Next, we show that s^*\in {\rm{Sol(VIP(1.1))}} . As \lim_{n\to \infty}\|\mathfrak{z}_{n}-\varrho_{n}\| = 0 , \exists \{\mathfrak{z}_{n_{j}}\} and \{\varrho_{n_{j}}\} subsequences of \{\mathfrak{z}_{n}\} and \{\varrho_{n}\} with \mathfrak{z}_{n_{j}}\rightharpoonup s^* and \varrho_{n_{j}}\rightharpoonup s^* .

    Let

    \begin{eqnarray} \Delta(s) = \left\{\begin{array}{ll} A(s)+N_{Q_{1}}(s^*), \; \; \; \mbox{if}\; s^* \in Q_{1} , &\\ \emptyset, \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \mbox{if}\; s^*\notin Q_{1}, \\ \end{array} \right. \end{eqnarray}

    where N_{Q_{1}}(s^*): = \{t\in Y_{1}:\langle s^*-v, t\rangle\geq 0, \; \forall t\in Q_{1}\} is the normal cone to Q_{1} at s^* \in Y_{1} . Hence, \Delta is maximal monotone and 0\in \Delta s^* \Leftrightarrow s^*\in {\rm{Sol(VIP}}(1.1)) . Let (s^*, w)\in {\rm graph}(\Delta) . Then, w\in \Delta s^* = As^*+N_{Q_{1}}(s^*) and hence w-As^*\in N_{Q_{1}}(s^*) . Thus, \langle s^*-t, w-As^*\rangle\geq 0, \; \; \forall t\in Q_{1} . Since, \varrho_{n} = P_{Q_{1}}(\mathfrak{z}_{n}-\alpha_{n}A\mathfrak{z}_{n}) and s^*\in Q_{1} , therefore

    \begin{eqnarray} \langle (\mathfrak{z}_{n}-\alpha_{n}A\mathfrak{z}_{n})-\varrho_{n}, \varrho_{n}-s^*\rangle&\geq& 0\\ \implies\; \; \; \langle t-\varrho_{n}, \frac{\varrho_{n}-\mathfrak{z}_{n}}{\alpha_{n}}+A\mathfrak{z}_{n} \rangle&\geq& 0, \; \; \forall p\in Q_{1}. \end{eqnarray}

    As \langle p-t, w-Ap\rangle\geq 0 , for all p\in Q_{1} and \varrho_{n_{j}}\in Q_{1} , monotonicity of A , we obtain

    \begin{eqnarray} \langle p-\varrho_{n_{j}}, w\rangle&\geq&\langle p-\varrho_{n_{j}}, As^*\rangle\\ &\geq&\langle p-\varrho_{n_{j}}, Ap \rangle - \langle p-\varrho_{n_{j}}, \frac{\varrho_{n_{j}}-\mathfrak{z}_{n_{j}}}{\alpha_{n_{j}}}+A\mathfrak{z}_{n_{j}} \rangle\\ & = &\langle p-\varrho_{n_{j}}, Ap-A\mathfrak{z}_{n_{j}}\rangle+\langle p-\varrho_{n_{j}}, A\varrho_{n_{j}}-A\mathfrak{z}_{n_{j}} \rangle\\ &&-\; \langle p-\varrho_{n_{j}}, \frac{\varrho_{n_{j}}-\mathfrak{z}_{n_{j}}}{\alpha_{n_{j}}} \rangle\\ &\geq&\langle p-\varrho_{n_{j}}, A\varrho_{n_{j}}-A\mathfrak{z}_{n_{j}} \rangle-\langle p-\varrho_{n_{j}}, \frac{\varrho_{n_{j}}-\mathfrak{z}_{n_{j}}}{\alpha_{n_{j}}} \rangle. \end{eqnarray}

    Taking j\to \infty and by the continuity of A , we get \langle p-s^*, w \rangle \geq 0 . As \Delta is maximal monotone, s^*\in \Delta^{-1}(0) and hence s^*\in {\rm{Sol(VIP}}(1.1)) . Hence, s^*\in \Omega .

    As s^* = P_{\Omega}h(s^*) , therefore by (3.16)

    \begin{equation} \limsup\limits_{n\to \infty}\langle h(s^*)-s^*, v_{n}-s^* \rangle = \lim\limits_{j\to \infty}\langle h(s^*)-s^*, v_{n_{j}}-s^* \rangle\leq 0. \end{equation} (3.35)

    Applying the given conditions, (3.13), (3.20), (3.35), and Lemma 2.8, we obtain q_{n}\to 0\; \; {\rm as}\; n\to \infty . Hence, \{v_{n}\} strongly converges to s^* = P_{\Omega}h(s^*) .

    Case 2. Consider \{q_{t_{j}}\} to be a subsequence of \{q_{t}\} with q_{t_{j}} < q_{t_{j+1}}, \; \; \forall j\geq 0 . Then followed by Lemma 2.1, construct a nondecreasing sequence \{m_{t}\}\subset \mathbb{N} with m_{t}\to \infty, \; \; {\rm as}\; t\to \infty and \max \{ q_{m_{t}}, q_{t}\}\leq q_{m_{t+1}}, \; \forall t . As r_{t}\in [c, d]\subset (0, \sigma^{-1}), \; t\geq 0 , \sigma_{t}, \gamma_{t}, \mu_{t}\in (0, 1) with the given condition and (3.13), and we get

    \begin{equation} \label{3e18FF}\nonumber \lim\limits_{t\to \infty}\|v_{m_{t}}-Ty_{m_{t}}\| = 0, \; \; \lim\limits_{t\to \infty}\|Ty_{m_{t}}-G_{m_{t}}v_{m_{t}}\| = 0, \; \; {\rm and}\; \; \lim\limits_{t\to \infty}\|v_{m_{t}}-G_{m_{t}}v_{m_{t}}\| = 0. \end{equation}

    By applying the same steps as in Case 1, we get

    \begin{equation} \nonumber \limsup\limits_{t\to \infty}\langle h(s^*)-s^*, v_{m_{t}}-s^* \rangle \leq 0. \end{equation}

    As \{v_{t}\} is bounded and \lim\limits_{t\to \infty}\beta_{t} = 0 , we obtain from (3.15), (3.17), and (3.20) that

    \begin{equation} \nonumber \lim\limits_{t\to \infty}\|v_{m_{t+1}}-v_{m_{t}}\| = 0. \end{equation}

    As q_{m_{t}}\leq q_{m_{t+1}}, \; \forall t , we obtain from (3.14) that

    \begin{equation} \nonumber (1-2\delta)q_{m_{t+1}}\leq M\|v_{m_{t+1}}-v_{m_{t}}\|+2\langle h(s^*)-s^*, v_{m_{t}}-s^* \rangle. \end{equation}

    Taking t\to \infty , we get q_{m_{t+1}} \to 0 . As q_{m_{t}}\leq q_{m_{t+1}}, \; \forall t , therefore q_{t} \to 0\; \; {\rm as}\; t\to \infty . Thus, v_{t} \to 0\; \; {\rm as}\; t\to \infty . Hence, we have proved that the sequence \{v_{n}\} strongly converges to s^* = P_{\Omega}h(s^*) .

    Following this approach, we present several remarks that stem from the conclusions of Theorem 3.1. These remarks provide a concise overview of the theoretical results and pave the way for broader exploration and application of the proposed iterative scheme across various mathematical and computational settings.

    Remark 3.1. Let T = I , where I is the identity mapping and \epsilon_{i} = 0 , that is, S_{i} is a finite family of nonexpansive mappings in Theorem 3.1. Then, \Omega: = {\rm Fix}(S_{i})\cap{\rm{Sol(SGEP(1.3-1.4))}}\cap {\rm{Sol(VIP(1.1))}} \neq\emptyset .

    Remark 3.2. Let B = I , where I is the identity mapping, Y_{1} = Y_{2}, \; Q_{1} = Q_{2}, \; f_{1} = f_{2} , and \phi_{1} = \phi_{2} in Theorem 3.1. Then, \Omega: = \cap_{i = 1}^{\mathbb{N}}{\rm Fix}(S_{i})\cap{\rm Fix}(T) \cap{\rm{Sol(GEP(1.3))}}\cap {\rm{Sol(VIP(1.1))}} \neq\emptyset .

    We now provide examples to illustrate the main theorem.

    Example 4.1. Let Y_{1} = Y_{2} = \mathbb R and Q_{1} = Q_{2} = [0, +\infty) . Define the mappings: f_{1}(v_{1}, v_{2}) = v_{1}(v_{2}-v_{1}), \; \forall v_{1}, v_{2}\in Q_{1} ; f_{2}(t_{1}, t_{2}) = t_{1}(t_{2}-t_{1}), \; \forall t_{1}, t_{2}\in Q_{2} , and \phi_{1}(v_{1}, v_{2}) = \phi_{2}(v_{1}, v_{2}) = v_{1}v_{2}, \; \forall v_{1}, v_{2}\in Q_{1} . It is straightforward to verify that the functions f_{1}, f_{2}, \phi_{1} , and \phi_{2} satisfy the conditions of Assumption 2.1. Now, consider the additional mappings: h(v) = \frac{v}{5}, \; Av = 3v, \; v\in Q_{1} ; B(s) = \frac{1}{2}s, \; s\in Y_{1} ; T(v) = \frac{v}{4}, \; v\in Q_{1} , and S_{i}(v) = -(1+i)v, \; v\in Q_{1}, \; i = 1, 2, 3 . These mappings can also be easily checked to satisfy the requirements of Theorem 3.1. The execution of the algorithms involves specific parameter settings. Let r_{n} = 1 , \alpha_{n} = \{\frac{1}{5}\}, \; \eta = \frac{1}{6} , \beta_{n} = \{\frac{1}{10n}\} , \sigma_{n} = 0.7+\frac{0.1}{n^{2}}, \; \gamma_{n} = 0.2-\frac{0.2}{n^{2}}, \; \mu_{n} = 0.1+\frac{0.1}{n^{2}} , and \{\xi_{i}^{n}\} = \{\frac{1}{3}\} . Under these configurations, the sequence produced by Algorithm 3.1 converges to q = \{0\}\in \Omega .

    The computations and graphical visualizations for this algorithm were carried out using MATLAB R2015a on a standard HP laptop featuring an Intel Core i7 processor and 8 GB of RAM. The stopping criterion is set as \|v_{n+1}-v_{n}\| < 10^{-10} . Various initial points v_{1} are tested, and the results are summarized in Tables 1 and 2, where we also compare our findings with those in [16,21]. Additionally, the convergence behavior is illustrated in Figures 1 and 2. Upon analyzing the figures and the table, on taking distinct initial points, we observe that our proposed algorithm tends to complete tasks more quickly, typically measured in seconds, compared to other methods. However, it is challenging to identify a clear trend from these results.

    Table 1.  Comparison of our main results for initial point v_{1} = 0.9 .
    No. of iterations Main Theorem cpu time (in seconds) Korpelevich [16] cpu time (in seconds) Nadezkhina et al. [21] cpu time (in seconds)
    1 0.180000 0.684000 0.705600
    2 0.062481 0.519840 0.544723
    3 0.023582 0.395078 0.418347
    4 0.009167 0.300260 0.320454
    5 0.003614 0.228197 0.245083
    6 0.001436 0.173430 0.187244
    7 0.000574 0.131807 0.142947
    8 0.000230 0.100173 0.109069
    9 0.000092 0.076132 0.083183
    10 0.000037 0.057860 0.063419
    11 0.000015 0.043974 0.048337
    12 0.000006 0.033420 0.036833
    13 0.000002 0.025399 0.028061
    14 0.000001 0.019303 0.021374
    15 0.000000 0.014671 0.016279

     | Show Table
    DownLoad: CSV
    Table 2.  Comparison of our main results for initial point v_{1} = 2.1 .
    No. of iterations Main Theorem cpu time (in seconds) Korpelevich [16] cpu time (in seconds) Nadezkhina et al. [21] cpu time (in seconds)
    1 0.420000 1.500000 1.560000
    2 0.145790 0.900000 0.990000
    3 0.055024 0.684000 0.760320
    4 0.021390 0.519840 0.582405
    5 0.008433 0.395078 0.445423
    6 0.003351 0.300260 0.340304
    7 0.001338 0.228197 0.259797
    8 0.000536 0.173430 0.198225
    9 0.000215 0.131807 0.151180
    10 0.000087 0.100173 0.115260
    11 0.000035 0.076132 0.087849
    12 0.000014 0.057860 0.066941
    13 0.000006 0.043974 0.050999
    14 0.000002 0.033420 0.038846
    15 0.000001 0.025399 0.029585
    16 0.000000 0.019303 0.022529

     | Show Table
    DownLoad: CSV
    Figure 1.  Convergence of \{v_{n}\}\; {\rm at}\; v_{1} = 0.9 .
    Figure 2.  Convergence of \{v_{n}\}\; {\rm at}\; v_{1} = 2.1 .

    Example 4.2. Let Y_{1} = Y_{2} = l_{2} be real Hilbert spaces, where l_{2} consists of square-summable infinite sequences of real numbers. Define Q_{1} = Q_{2} = \{w\in l_{2}: \|w\|\leq 3 \} . The mappings are defined as follows: f_{1}(u, v) = (4v+5u)(v-u), \; f_{2}(u, v) = (2v+3u)(v-u) , where \forall u = \{ u_{1}, u_{2}, ..., u_{n}, ...\}, v = \{ v_{1}, v_{2}, ..., v_{n}, ...\} . The norm and inner product on l_{2} are defined by: \|u \| = (\sum\limits_{j = 1}^{\infty}|u_{j}|^{2})^{\frac{1}{2}} , \langle u, v \rangle = \sum\limits_{j = 1}^{\infty}u_{j}v_{j} . Additional mappings are given as: \phi_{1}(u, v) = (5v-4u)u, \; \phi_{2}(u, v) = (3v-2u)u . It is straightforward to verify that the functions f_{1}, f_{2}, \phi_{1} , and \phi_{2} satisfy the conditions of Assumption 2.1. Now, consider the additional mappings: h(u) = \frac{1}{2}u, \; Au = 10u, \; u\in Q_{1} ; B(s) = \frac{1}{5}s, \; s\in Y_{1} ; T(u) = \frac{1}{100}u, \; u\in Q_{1} , and S_{i}(v) = \frac{1}{2(i+1)}u, \; u\in Q_{1}, \; i = 1, 2, 3 . These mappings can also be verified to satisfy the requirements of Theorem 3.1. The execution of the algorithms involves specific parameter settings. Let r_{n} = 1 , \alpha_{n} = \{\frac{1}{13}\}, \; \eta = \frac{1}{7} , \beta_{n} = \{\frac{1}{10n}\} , \sigma_{n} = 0.7+\frac{0.1}{n^{2}}, \; \gamma_{n} = 0.2-\frac{0.2}{n^{2}}, \; \mu_{n} = 0.1+\frac{0.1}{n^{2}} , and \{\xi_{i}^{n}\} = \{\frac{1}{3}\} . Under these configurations, the sequence produced by Algorithm 3.1 converges to q = \{0\}\in \Omega .

    The computations and graphical visualizations for this algorithm were carried out using MATLAB R2015a on a standard HP laptop featuring an Intel Core i7 processor and 8 GB of RAM. The stopping criterion is set to \|v_{n+1}-v_{n}\| < 10^{-10} . Several initial points v_{1} are tested, and the convergence behavior is illustrated in Figures 3 and 4.

    Figure 3.  Convergence of \{v_{n}\}\; {\rm at\; initial\; point}\; v_{1} = \{ 0.7, 0.7, ..., 0.7, ...\} .
    Figure 4.  Convergence of \{v_{n}\}\; {\rm at\; initial\; point}\; v_{1} = \{ 0.4, 0.4, ..., 0.4, ...\} .

    Application in optimization problems: We explore the application of our algorithms to optimization problems. Let M_{1}:Q_{1}\to \mathbb{R} and M_{2}:Q_{2}\to \mathbb{R} be two functions. Define f_{1}(u_{1}, v_{1}) = M_{1}(v_{1})-M_{1}(u_{1}), \; \forall u_{1}, v_{1}\in Q1 , and f_{2}(u_{2}, v_{2}) = M_{2}(v_{2})-M_{2}(u_{2}), \; \forall u_{2}, v_{2}\in Q2 . The objective is to determine u\in Q1 such that

    \begin{equation} F_{1}(u)\leq F_{1}(u^{*}), \; \; \forall u^{*}\in Q1 \end{equation} (4.1)

    and ensure that

    \begin{equation} v = Bu\in Q_{2}\; \; {\rm solves}\; F_{2}(v)\leq F_{2}(v^{*}), \; \; \forall v^{*} \in Q_{2}. \end{equation} (4.2)

    Denote the solution set of these optimization problems (4.1) and (4.2) by \Gamma and assume that \Gamma \neq \emptyset . It is straightforward to verify that Assumption 2.1, 1-4 , hold. Consequently, we have \Gamma = \Omega .

    In this paper, we proposed a viscosity-based extragradient iterative algorithm for solving the split generalized equilibrium problem, the variational inequality problem, and the fixed point problem for a finite family of \epsilon -strict pseudo-contractive and a nonexpansive mapping in Hilbert space. The strong convergence of the algorithm was established under appropriate assumptions. To demonstrate the practical applicability of the proposed algorithm, we presented results in the form of two comprehensive tables and four illustrative figures. These include comparisons with existing methods and a detailed analysis of convergence behavior, highlighting the effectiveness and efficiency of our approach.

    This study extends and unifies various well-known results in the literature, offering a versatile tool for tackling a range of problems in optimization and computational mathematics.

    However, the algorithm has certain limitations. Its convergence heavily depends on precise parameter tuning, which may pose challenges in practical applications. Additionally, the framework is currently restricted to Hilbert spaces, limiting its generalization to Banach spaces or other settings. Despite these limitations, the results presented in this paper extend and unify numerous previously established outcomes in this particular research domain.

    Mohammad Farid: Writing - Original Draft, Software; Saud Fahad Aldosary: Review and Editing. All authors have read and agreed to the published version of the manuscript.

    The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The Researchers would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support (QU-APC-2025).

    The authors declare that they have no competing interests.



    [1] S. Ant \acute{\rm{o}} n, Fixed points of automorphisms of the vector bundle moduli space over a compact Riemann surface, Mediterr. J. Math., 21 (2024), 20. https://doi.org/10.1007/s00009-023-02559-z doi: 10.1007/s00009-023-02559-z
    [2] S. Banach, Sur les op \acute{\rm{e}} rations dans les ensembles abstraits et leur application aux \acute{\rm{e}} quations int \acute{\rm{e}} grales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181
    [3] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 123–145.
    [4] F. E. Browder, W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl., 20 (1967), 197–228. https://doi.org/10.1016/0022-247X(67)90085-6 doi: 10.1016/0022-247X(67)90085-6
    [5] C. Byrne, Y. Censor, A. Gibali, S. Reich, Weak and strong convergence of algorithms for the split common null point problem, 2011.
    [6] L. C. Ceng, N. Hadjisavvas, N. C. Wong, Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems, J. Glob. Optim., 46 (2010), 635–646. https://doi.org/10.1007/s10898-009-9454-7 doi: 10.1007/s10898-009-9454-7
    [7] Y. Censor, T. Elfving, A multiprojection algorithms using Bragman prtojection in a product space, Numer. Algor., 8 (1994), 221–239. https://doi.org/10.1007/BF02142692 doi: 10.1007/BF02142692
    [8] Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach for inversion problems in intensity modulated radiation therapy, Phys. Med. Biol., 51 (2006), 2353. https://doi.org/10.1088/0031-9155/51/10/001 doi: 10.1088/0031-9155/51/10/001
    [9] P. L. Combettes, S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6 (2005), 117–136.
    [10] M. Farid, The subgradient extragradient method for solving mixed equilibrium problems and fixed point problems in Hilbert spaces, J. Appl. Numer. Optim., 1 (2019), 335–345. https://doi.org/10.23952/jano.1.2019.3.10 doi: 10.23952/jano.1.2019.3.10
    [11] M. Farid, K. R. Kazmi, A new mapping for finding a common solution of split generalized equilibrium problem, variational inequality problem and fixed point problem, Korean J. Math., 27 (2019), 295–325. https://doi.org/10.11568/kjm.2019.27.2.297 doi: 10.11568/kjm.2019.27.2.297
    [12] M. Farid, W. Cholamjiak, R. Ali, K. R. Kazmi, A new shrinking projection algorithm for a generalized mixed variational-like inequality problem and asymptotically quasi-\phi-nonexpansive mapping in a Banach space, RACSAM, 115 (2021), 114. https://doi.org/10.1007/s13398-021-01049-9 doi: 10.1007/s13398-021-01049-9
    [13] P. Hartman, G. Stampacchia, On some non-linear elliptic differential-functional equation, Acta Math., 115 (1966), 271–310. https://doi.org/10.1007/BF02392210 doi: 10.1007/BF02392210
    [14] N. Hitchin, Stable bundles and integrable systems, Duke Math. J., 54 (1987), 91–114. https://doi.org/10.1215/S0012-7094-87-05408-1 doi: 10.1215/S0012-7094-87-05408-1
    [15] K. R. Kazmi, S. H. Rizvi, M. Farid, A viscosity Ces\grave{a}ro mean approximation method for split generalized vector equilibrium problem and fixed point problem, J. Egypt. Math. Soc., 23 (2015), 362–370. https://doi.org/10.1016/j.joems.2014.05.001 doi: 10.1016/j.joems.2014.05.001
    [16] G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Matecon, 12 (1976), 747–756.
    [17] D. Kundur, D. Hatzinakos, Blind image deconvolution, IEEE Signal Proc. Mag., 13 (1996), 43–64. https://doi.org/10.1109/79.489268 doi: 10.1109/79.489268
    [18] P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899–912. https://doi.org/10.1007/s11228-008-0102-z doi: 10.1007/s11228-008-0102-z
    [19] G. Marino, H. K. Xu, Weak and strong convergence theorems for k-strict pseudo-contractive in Hilbert spaces, J. Math. Anal. Appl., 329 (2007), 336–346. https://doi.org/10.1016/j.jmaa.2006.06.055 doi: 10.1016/j.jmaa.2006.06.055
    [20] A. Moudafi, The split common fixed point problem for demicontractive mappings, Inverse Probl., 26 (2010), 5. https://doi.org/10.1088/0266-5611/26/5/055007 doi: 10.1088/0266-5611/26/5/055007
    [21] N. Nadezhkina, W. Takahashi, Strong convergence theorem by a hybrid method for nonexpansive mapping and Lipschitz continuous monotone mappings, SIAM J. Optim., 16 (2006), 1230–1241. https://doi.org/10.1137/050624315 doi: 10.1137/050624315
    [22] N. Nadezhkina, W. Takahashi, Weak convergence theorem by a extragradient method for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 128 (2006), 191–201. https://doi.org/10.1007/s10957-005-7564-z doi: 10.1007/s10957-005-7564-z
    [23] K. Nakajo, W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., 279 (2003), 372–379. https://doi.org/10.1016/S0022-247X(02)00458-4 doi: 10.1016/S0022-247X(02)00458-4
    [24] J. Nash, Equilibrium points in n-person games, Proc. Natl. Acad. Sci. USA, 36 (1950), 48–49. https://doi.org/10.1073/pnas.36.1.48 doi: 10.1073/pnas.36.1.48
    [25] J. Nash, Non-Cooperative Games, Ann. Math., 54 (1951), 286–295. https://doi.org/10.2307/1969529 doi: 10.2307/1969529
    [26] M. O. Osilike, D. I. Igbokewe, Weak and strong convergence theorems for fixed points of pseudo-contractive and solutions of monotone type operator equations, Comput. Math. Appl., 40 (2000), 559–567. https://doi.org/10.1016/S0898-1221(00)00179-6 doi: 10.1016/S0898-1221(00)00179-6
    [27] M. Patriksson, The traffic assignment problem: Models and methods, Courier Dover Publications, 2015.
    [28] B. D. Rouhani, K. R. Kazmi, M. Farid, Common solutions to some systems of variational inequalities and fixed point problems, Fixed Point Theor., 18 (2017), 167–190. https://doi.org/10.24193/fpt-ro.2017.1.14 doi: 10.24193/fpt-ro.2017.1.14
    [29] S. Reich, S. Sabach, Three strong convergence theorems regarding iterative methods for solving equilibrium problems in reflexive Banach spaces, Contemp. Math., 568 (2012), 225–240.
    [30] O. Scherzer, Convergence criteria of iterative methods based on Landweber iteration for solving nonlinear problems, J. Math. Anal. Appl., 194 (1991), 911–933. https://doi.org/10.1006/jmaa.1995.1335 doi: 10.1006/jmaa.1995.1335
    [31] S. Takahashi, W. Takahashi, Viscosity approximation method for equilibrium problems and fixed point problems in Hilbert space, J. Math. Anal. Appl., 331 (2007), 506–515. https://doi.org/10.1016/j.jmaa.2006.08.036 doi: 10.1016/j.jmaa.2006.08.036
    [32] H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66 (2002), 240–256. https://doi.org/10.1112/S0024610702003332 doi: 10.1112/S0024610702003332
    [33] G. L. Acedo, H. K. Xu, Iterative methods for strict pseudo-contractive in Hilbert spaces, Nonlinear Anal. Theor., 67 (2007), 2258–2271. https://doi.org/10.1016/j.na.2006.08.036 doi: 10.1016/j.na.2006.08.036
    [34] M. Younis, L. Chen, D. Singh, Recent developments in fixed point theory: Theoretical foundations and real-world applications, Singapore: Springer, 2024. https://doi.org/10.1007/978-981-99-9546-2
    [35] H. Y. Zhou, Convergence theorems of fixed points for k-strict pseudo-contractive in Hilbert space, Nonlinear Anal. Theor., 69 (2008), 456–462. https://doi.org/10.1016/j.na.2007.05.032 doi: 10.1016/j.na.2007.05.032
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(299) PDF downloads(55) Cited by(0)

Figures and Tables

Figures(4)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog