We consider transient nearest-neighbor random walks $ X: = \{X_{n}\}_{n\geq0} $ on the half-line, whose transition probabilities are state-dependent with certain asymptotic perturbations. This is a specific case of Lamperti's random walks. Let $ M_{t}: = \max\{X_{i}, \; 0\leq i\leq t\} $ be the maximum process of $ X $, and $ T_{n}: = \inf\{t\geq0, X_{t} = n\} $ be its inverse process. Hong&Yang (2019) provided the law of large numbers for $ T_{n} $. In this paper, we study the large deviations for $ M_{t} $ and $ T_{n} $ with speeds less than $ n $. This indicates that the perturbations slow down the random walk.
Citation: Hui Yang. Large deviations for transient random walks with asymptotically zero drifts[J]. AIMS Mathematics, 2025, 10(4): 8777-8793. doi: 10.3934/math.2025402
We consider transient nearest-neighbor random walks $ X: = \{X_{n}\}_{n\geq0} $ on the half-line, whose transition probabilities are state-dependent with certain asymptotic perturbations. This is a specific case of Lamperti's random walks. Let $ M_{t}: = \max\{X_{i}, \; 0\leq i\leq t\} $ be the maximum process of $ X $, and $ T_{n}: = \inf\{t\geq0, X_{t} = n\} $ be its inverse process. Hong&Yang (2019) provided the law of large numbers for $ T_{n} $. In this paper, we study the large deviations for $ M_{t} $ and $ T_{n} $ with speeds less than $ n $. This indicates that the perturbations slow down the random walk.
| [1] |
H. Brezis, W. Rosenkrantz, B. Singer, An extension of khintchine's estimate for large deviations to a class of markov chains converging to a singular diffusion, B. Am. Math. Soc., 77 (1971) 980–982. http://dx.doi.org/10.1002/cpa.3160240506 doi: 10.1002/cpa.3160240506
|
| [2] |
P. N. Chen, Generalization of gartner-ellis theorem, IEEE T. Inform. Theory, 46 (2000), 2752–2760. http://dx.doi.org/10.1109/18.887893 doi: 10.1109/18.887893
|
| [3] | K. L. Chung, Markov chains with stationary transition probabilities, 2 Eds., New York: Springer, 1967. http://dx.doi.org/10.1002/bimj.19660080419 |
| [4] |
E. Csaki, A. Foldes, P. Revesz, Transient nearest neighbor random walk on the line, J. Theor. Prob., 22 (2009), 100–122. http://dx.doi.org/10.1007/s10959-007-0137-3 doi: 10.1007/s10959-007-0137-3
|
| [5] | A. Dembo, O. Zeitouni, Large deviations techniques and applications, 2 Eds., Springer, 2009. http://dx.doi.org/10.1007/978-3-642-03311-7 |
| [6] |
W. M. Hong, H. Yang, Cutoff phenomenon for nearest Lamperti's random walk, Methodology and Computing in Applied Probability, 21 (2019), 1215–1228. http://dx.doi.org/10.1007/s11009-018-9666-8 doi: 10.1007/s11009-018-9666-8
|
| [7] |
J. Lamperti, Criteria for the recurrence or transience of stochastic process. Ⅰ, J. Math. Anal. Appl., 1 (1960), 314–330. http://dx.doi.org/10.1016/0022-247X(60)90005-6 doi: 10.1016/0022-247X(60)90005-6
|
| [8] |
J. Lamperti, A new class of probability limit theorems, B. Am. Math. Soc., 67 (1961), 267–269. http://dx.doi.org/10.1090/S0002-9904-1961-10575-2 doi: 10.1090/S0002-9904-1961-10575-2
|
| [9] |
J. Lamperti, Criteria for stochastic processes Ⅱ: Passage-time moments, J. Math. Anal. Appl., 7 (1963), 127–145. http://dx.doi.org/10.1016/0022-247X(63)90083-0 doi: 10.1016/0022-247X(63)90083-0
|
| [10] |
P. W. Glynn, W. Whitt, Large deviations behavior of counting processes and their inverses, Queueing Syst., 17 (1994), 107–-128. http://dx.doi.org/10.1007/BF01158691 doi: 10.1007/BF01158691
|
| [11] |
P. Seignourel, Discrete schemes for processes in random media, Probab. Theory Rel., 118 (2000), 293–322. http://dx.doi.org/10.1007/PL00008743 doi: 10.1007/PL00008743
|
| [12] |
M. Voit, A law of the iterated logarithm for a class of polynomial hypergroups, Monatsh. Math., 109 (1990), 311–326. http://dx.doi.org/10.1007/BF01320696 doi: 10.1007/BF01320696
|
| [13] |
M. Voit, Strong laws of large numbers for random walks associated with a class of one-dimensional convolution structures, Monatsh. Math., 113 (1992), 59–74. http://dx.doi.org/10.1007/BF01299306 doi: 10.1007/BF01299306
|
| [14] |
K. Zhou, Hitting time distribution for skip-free markov chains: a simple proof, Stat. Probabil. Lett., 83 (2013), 1782–1786. http://dx.doi.org/10.1016/j.spl.2013.04.008 doi: 10.1016/j.spl.2013.04.008
|