Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Kink soliton solution of integrable Kairat-X equation via two integration algorithms

  • In order to establish and assess the dynamics of kink solitons in the integrable Kairat-X equation, which explains the differential geometry of curves and equivalence aspects, the present investigation put forward two variants of a unique transformation-based analytical technique. These modifications were referred to as the generalized (r+GG)-expansion method and the simple (GG)-expansion approach. The proposed methods spilled over the aimed Kairat-X equation into a nonlinear ordinary differential equation by means of a variable transformation. Immediately following that, it was presumed that the resultant nonlinear ordinary differential equation had a closed form solution, which turned it into a system of algebraic equations. The resultant set of algebraic equations was solved to find new families of soliton solutions which took the forms of hyperbolic, rational and periodic functions. An assortment of contour, 2D and 3D graphs were used to visually show the dynamics of certain generated soliton solutions. This indicated that these soliton solutions likely took the structures of kink solitons prominently. Moreover, our proposed methods demonstrated their use by constructing a multiplicity of soliton solutions, offering significant understanding into the evolution of the focused model, and suggesting possible applications in dealing with related nonlinear phenomena.

    Citation: Raed Qahiti, Naher Mohammed A. Alsafri, Hamad Zogan, Abdullah A. Faqihi. Kink soliton solution of integrable Kairat-X equation via two integration algorithms[J]. AIMS Mathematics, 2024, 9(11): 30153-30173. doi: 10.3934/math.20241456

    Related Papers:

    [1] Xiuzhi Yang, G. Farid, Waqas Nazeer, Muhammad Yussouf, Yu-Ming Chu, Chunfa Dong . Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions. AIMS Mathematics, 2020, 5(6): 6325-6340. doi: 10.3934/math.2020407
    [2] Maryam Saddiqa, Ghulam Farid, Saleem Ullah, Chahn Yong Jung, Soo Hak Shim . On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. AIMS Mathematics, 2021, 6(6): 6454-6468. doi: 10.3934/math.2021379
    [3] Ye Yue, Ghulam Farid, Ayșe Kübra Demirel, Waqas Nazeer, Yinghui Zhao . Hadamard and Fejér-Hadamard inequalities for generalized k-fractional integrals involving further extension of Mittag-Leffler function. AIMS Mathematics, 2022, 7(1): 681-703. doi: 10.3934/math.2022043
    [4] Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386
    [5] Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283
    [6] Hari M. Srivastava, Artion Kashuri, Pshtiwan Othman Mohammed, Abdullah M. Alsharif, Juan L. G. Guirao . New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel. AIMS Mathematics, 2021, 6(10): 11167-11186. doi: 10.3934/math.2021648
    [7] Erhan Set, M. Emin Özdemir, Sevdenur Demirbaş . Chebyshev type inequalities involving extended generalized fractional integral operators. AIMS Mathematics, 2020, 5(4): 3573-3583. doi: 10.3934/math.2020232
    [8] Ghulam Farid, Maja Andrić, Maryam Saddiqa, Josip Pečarić, Chahn Yong Jung . Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions. AIMS Mathematics, 2020, 5(6): 7332-7349. doi: 10.3934/math.2020469
    [9] Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814
    [10] Maryam Saddiqa, Saleem Ullah, Ferdous M. O. Tawfiq, Jong-Suk Ro, Ghulam Farid, Saira Zainab . k-Fractional inequalities associated with a generalized convexity. AIMS Mathematics, 2023, 8(12): 28540-28557. doi: 10.3934/math.20231460
  • In order to establish and assess the dynamics of kink solitons in the integrable Kairat-X equation, which explains the differential geometry of curves and equivalence aspects, the present investigation put forward two variants of a unique transformation-based analytical technique. These modifications were referred to as the generalized (r+GG)-expansion method and the simple (GG)-expansion approach. The proposed methods spilled over the aimed Kairat-X equation into a nonlinear ordinary differential equation by means of a variable transformation. Immediately following that, it was presumed that the resultant nonlinear ordinary differential equation had a closed form solution, which turned it into a system of algebraic equations. The resultant set of algebraic equations was solved to find new families of soliton solutions which took the forms of hyperbolic, rational and periodic functions. An assortment of contour, 2D and 3D graphs were used to visually show the dynamics of certain generated soliton solutions. This indicated that these soliton solutions likely took the structures of kink solitons prominently. Moreover, our proposed methods demonstrated their use by constructing a multiplicity of soliton solutions, offering significant understanding into the evolution of the focused model, and suggesting possible applications in dealing with related nonlinear phenomena.



    The Mittag-Leffler function (MLF) is an important special function in mathematics with applications in many different fields. Complex differential equations are solved and the exponential function is expanded. It is illustrated by the analysis of stochastic processes and the resolution of some forms of Lévy and random walk processes. It can also be used to characterize the asymptotic behavior of solutions to particular types of differential equations. It is used to model a variety of physical processes, including viscoelastic materials and anomalous diffusion. It is particularly useful for elucidating memory-effect mechanisms and nonlocal interactions. The importance of the MLF is raised in fractional calculus because it actually occurs naturally in the solution of fractional differential equations and fractional integrals.

    In the 19th century, M. G. Mittag-Leffler started to find out the answer to a classical question of complex analysis: How to explain the process of power series analytic continuation outside the disc of their convergence? The answer was given in the form of the MLF with one parameter

    Em1(ω)=k=0ωkΓ(km1+1),   ωC; R(m1)>0,

    where

    Γ(ω)=0ϖω1eϖdϖ,   R(ω)>0.

    The MLF with two parameters was proposed by Wiman [1]

    Em1,m2(ω)=k=0ωkΓ(km1+m2),   ωC; R(m1),R(m2)>0.

    The extension of the MLF with two parameters was introduced by Wright [2]

    Em1,m2(ω)=k=0ωkΓ(km1+m2)k!,   ωC; R(m1),R(m2)>0.

    The MLF with three parameters was introduced by Prabhakar [3]

    Eem1,m2(ω)=k=0(e)kk!Γ(km1+m2)ωk,  ωC; R(m1),R(m2),R(e)>0,

    with Pochhammer symbol (e)k=Γ(e+k)Γ(e). The next period in the development of the theory of the MLF is connected with increasing the number of parameters. Shukla and Prajapati [4] (see also Srivastava and Tomovski [5]) generalized the MLF as

    Ee,qm1,m2(ω)=k=0(e)kqk!Γ(km1+m2)ωk,  ωC; R(m1),R(m2),R(e)>0; q(0,1)N.

    Salim and Faraj [6] introduced the MLF as

    Ee,ϰ,qm1,m2,v(ω)=k=0(e)qkΓ(km1+m2)ωk(ϰ)kv,  ωC; min{R(m1),R(m2),R(e),R(ϰ)}>0; v,q>0;qv+R(m1).

    Andric et al. [7] defined the MLF as

    Eb,v,q,em1,m2,ϰ(ω;p)=k=0Bp(b+qk,eb)B(b,eb)(e)kqΓ(km1+m2)ωk(ϰ)kv,

    where ωC;min{R(m1),R(m2),R(ϰ)}>0;R(e)>R(b)>0;p0;v>0;0<qv+R(m1), with beta function B(ς,φ)=Γ(ς)Γ(φ)Γ(ς+φ)=10ϖς1(1ϖ)φ1dϖ;  ς,φ>0, and its extension

    Bp(ς,φ)=10ϖς1(1ϖ)φ1epϖ(1ϖ)dϖ;  R(ς),R(φ)>0; p0.

    Bansal and Mehrez [8] defined the MLF as

    Em1,m2(ω;μ)=k=0ωkΓ(km1+m2)(μk!+(1μ)),   ωC; R(m1),R(m2)>0; 0μ1.

    Raina [9] generalized the MLF by involving the bounded sequence σ(k) of real numbers as

    Em2,σm1(ω)=k=0σ(k)Γ(km1+m2)ωk,   ωC; R(m1),R(m2)>0.

    Here, we did not give another multiparameter generalized Mittag-Leffler function or associated fractional integral operators; for details, the readers are suggested the references therein [10,11,12]. The multiparameter Mittag-Leffler function (MPMLF) was introduced for a number of reasons. It is used to describe fractional dynamics in multidimensional systems, which are common in advanced physics, such as quantum mechanics and multi-agent systems. In materials science, materials that behave fractionally in several dimensions or under different constraints can be modeled using the multi-parameter version. In order to create controllers for systems with numerous fractional orders, control theory uses the MPMLF, which enables more complex control techniques. It can be used in financial modeling to explain the asset returns and hazards in markets with non-Gaussian behaviors, improving comprehension of how prices change over time. In short, the MPMLF offers a more flexible framework for complex systems, especially those with interactions and dynamics that span multiple dimensions. For precise modeling and analysis, the MPMLF is helpful when different processes or dimensions display distinct fractional behaviors. The aforementioned MPMLFs have garnered significant attention in a number of recent studies, primarily because of their potential application to certain reaction-diffusion problems and the different generalizations that they exhibit in the solutions of fractional-order differential and integral equations [13,14,15].

    On the other hand, fractional integral inequalities play a significant role in analyzing the solution of fractional differential equations, especially in the uniqueness of initial value problems. One effective method for establishing integral inequalities is to use a function's convexity property. The most renowned and glittering result for the convex function is the Hermite-Hadamard integral inequality. The classical Hermite-Hadamard inequality provides us an estimation of the mean value of a convex function f:[a1,a2]R and a1,a2R with a1<a2,

    f(a1+a22)1a2a1a2a1f(x)dxf(a1)+f(a2)2.

    Another well-known inequality for the integral mean of a convex function is Fejér, which is the weighted version of the Hermite-Hadamard inequality

    f(a1+a22)a2a1w(x)dx1a2a1a2a1f(x)w(x)dxf(a1)+f(a2)2a2a1w(x)dx,

    where w:[a1,a2]R is nonnegative, integrable, and symmetric to a+b2.

    A lot of integral inequalities have been produced by researchers utilizing different fractional integrals because numerical integration estimation is a fundamental component of applied science. Although there are several fractional integral operators, the Riemann-Liouville fractional integral is the most well-known because it offers a tangible way to extend integration to non-integer orders, which is crucial for modeling systems with memory and nonlocal interactions. It provides a strong framework for researching physical systems that display behaviors that are outside the scope of classical calculus and makes it possible to generate fractional derivatives.

    Although there are numerous extended generalized forms of Riemann-Liouville fractional integrals that have been studied to establish various fractional integral inequalities, our focus here is on the generalizations of Riemann-Liouville fractional integrals that involve the MLF in their kernel. In this regard, Srivastava and Tomovski introduced the fractional integral, discussed its composition and bounding, and applied it to determine the fractional integral inequality's estimation [5]. Salim and Faraj also introduced a fractional integral and discussed its different properties [6]. Abbas and Farid used the Salim-Faraj fractional integral to obtain Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for m-convex functions [16]. Andric et al. further extended the integral and used it to obtain Opial-type inequalities [7]. Using the same integral, Andric derived Hermite-Hadamard type inequalities for the (h,g,m)-convex function [17]. Raina defined the fractional integral in a novel way using bound sequences and then employed it to generalize Wright's function [9]. For a generalized class of m-convex functions, Vivas-Cortez et al. derived Hermite-Hadamard-Fejér type inequalities using the Raina fractional integral [18]. Khan et al. [19] applied the Laplace transform to the generalized pathway fractional integral and discussed some interesting results. Recently, Du and Long used Riemann-Liouville fractional integrals to present Hermite-Hadamard-type inequalities for multiplicative convex functions [20]. For more details regarding fractional integrals and integral inequalities, the readers are suggested to refer to [21,22,23] and the references therein.

    Inspired and motivated by the aforementioned works, as well as the success of the MPMLF and its associated integral's applications in many scientific and engineering domains, we present a new extended and generalized MPMLF and its corresponding fractional integral operator, which we use to derive some Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities. Furthermore, we illustrate the accuracy of our findings with graphical and numerical examples and provide applications in modified Bessel functions and matrix theory.

    This paper is organized as follows: After this introduction, in Section 2, some preliminary topics are discussed; Sections 3 and 4 are related to the results; in Section 5, numerical and graphical analysis have been discussed; in Section 6, some applications to matrix theory and to some special functions are given; and in Section 7, the paper's conclusion is discussed.

    Definition 1. [24] The function :IRR, is said to be convex, if

    (ηx+(1η)y)η(x)+(1η)(y);  x,yI, η[0,1].

    Definition 2. [25] Let L1([ξ,ϱ]). The Riemann-Liouville integrals JΦξ+ and JΦϱ of order Φ>0 with ξ0 are defined as:

    JΦξ+(ϑ):=1Γ(Φ)ϑξ(ϑϖ)Φ1(ϖ)dϖ;       ϑ>ξ>0,

    and

    JΦϱ(ϑ):=1Γ(Φ)ϱϑ(ϖϑ)Φ1(ϖ)dϖ;       0<ϑ<ϱ,

    respectively, provided that Γ(Φ)=0euuΦ1du.

    Definition 3. [26] Let α,β,γ,p,ς,φC be such that R(α),R(β),R(γ),R(ς), R(φ)>0, and R(p)0, then the extended beta function is defined as:

    Bα,β,γp(ς,φ):=10ϖς1(1ϖ)φ1Eγα,β(pϖ(1ϖ))dϖ. (2.1)

    Here, we provide the following definition of the generalized MLF in the form of Eq (2.1).

    Definition 4. Let ω,α,β,γ,p,ρ,δ,τ,ϰ,b,eC such that

    min{R(α),R(β),R(γ),R(ρ),R(δ),R(τ),R(ϰ)}>0,R(p)0,R(e)>R(b)>0,

    0μ1, r,s,v>0, and 0<qr+v+R(ρ). Then, the extended generalized MLF Eα,β,γ,τ,ϰ,s,σp,q,r,v,μ,ρ,δ(b,e;ω) is defined as:

    Eα,β,γ,τ,ϰ,s,σp,q,r,v,μ,ρ,δ(b,e;ω):=k=0σ(k)Bα,β,γp(b+sk,eb)(e)kqB(b,eb)[μ(τ)kr+(1μ)](ϰ)kvωkΓ(kρ+δ), (2.2)

    provided that σ(k) (kN0:=N{0}) is a bounded sequence of positive real numbers.

    Instead of employing a laborious manuscript form, we shall make use of a simpler notation:

    E(b,e;ω):=Eα,β,γ,τ,ϰ,s,σp,q,r,v,μ,ρ,δ(b,e;ω).

    Remark 1. Several generalizations of the MLF can be obtained for different choices of parameters and form the function defined by Eq (2.2)

    1. the Wright function for σ(k)=β=τ=μ=r=1, e=ϰ, q=v, and p=s=0 [2],

    2. the Shukla-Prajapati function for σ(k)=β=ϰ=v=1, and p=s=r=0 [4],

    3. the Salim-Faraj function for σ(k)=β=1, and p=s=r=0 [6],

    4. Andric et al. function for σ(k)=α=β=γ=μ=1, s=q, and v=0 [7],

    5. the Bansal-Mehrez function for σ(k)=β=τ=r=1, e=ϰ, q=v, and p=s=0 [8],

    6. the Raina function for β=1, e=ϰ, q=v, and p=s=r=0 [9],

    7. the generalized Wright function for σ(k)=β=q=ϰ=μ=r=v=1, and p=s=0 [10],

    8. the Pochhammer-Barnes confluent hypergeometric function for σ(k)=β=q=v=ρ=δ=1, and p=s=r=0 [27].

    Here, we define the left and right-sided generalized fractional integral operators involving the generalized MLF defined by (2.2).

    Definition 5. Let χ,α,β,γ,p,ρ,δ,τ,ϰ,b,eC such that

    min{R(α),R(β),R(γ),R(ρ),R(δ),R(τ),R(ϰ)}>0,R(p)0,R(e)>R(b)>0,

    0μ1, r,s,v>0, and 0<qr+v+R(ρ), and let L1([ξ,ϱ]) with ξ0. Then, the generalized fractional integral operators εα,β,γ,τ,ϰ,s,σp,q,r,v,μ,ρ,δ,ξ+;χ and εα,β,γ,τ,ϰ,s,σp,q,r,v,μ,ρ,δ,ϱ;χ satisfying all the convergence conditions of the extended MLF are defined as:

    (εα,β,γ,τ,ϰ,s,σp,q,r,v,μ,ρ,δ,ξ+;χ)(b,e;ϑ)=ϑξ(ϑϖ)δ1E(b,e;χ(ϑϖ)ρ)(ϖ)dϖ; ϑ>ξ>0, (2.3)
    (εα,β,γ,τ,ϰ,s,σp,q,r,v,μ,ρ,δ,ϱ;χ)(b,e;ϑ)=ϱϑ(ϖϑ)δ1E(b,e;χ(ϖϑ)ρ)(ϖ)dϖ; 0<ϑ<ϱ. (2.4)

    Instead of employing a laborious manuscript form, we shall make use of a simpler notation:

    (εχξ+)(ϑ):=(εα,β,γ,τ,ϰ,s,σp,q,r,v,μ,ρ,δ,ξ+;χ)(b,e;ϑ),
    (εχϱ)(ϑ):=(εα,β,γ,τ,ϰ,s,σp,q,r,v,μ,ρ,δ,ϱ;χ)(b,e;ϑ).

    Remark 2. For different choices of parameters, several known fractional integral operators can be deduced from the operators (2.3) and (2.4). Indeed, we have

    1. the Prabhakar fractional integral operator for σ(k)=β=q=ϰ=v=1, and p=s=r=0 [3],

    2. the Srivastava-Tomovski fractional integral operator for σ(k)=β=ϰ=v=1, and p=s=r =0 [5],

    3. the Salim-Faraj fractional integral operator for σ(k)=β=1, and p=s=r=0 [6],

    4. Andric et al. fractional integral operator for σ(k)=α=β=γ=μ=1, s=q, and v=0 [7],

    5. the Raina fractional integral operator for β=1, e=ϰ, q=v, and p=s=r=0 [9],

    6. the Riemann-Liouville fractional integral for σ(0)=β=1 and p=χ=0, that is, Definition 2.

    Theorem 1. Let L1[a,m] be a nonnegative convex function with 0a<m and a<e1+1<e2<m, φ1R, p0, δ1, e>b>0, 0μ1, α,β,γ,ρ,Ω,τ,ϰ,r,s,v>0 such that 0<qr+v+ρ, then

    ((2e22e11)a+(2e1+1)m2e2)(εφ1(e2e1)a+e1me2+)((e2e11)a+(e1+1)me2)+(εφ1(e2e11)a+(e1+1)me2)((e2e1)a+e1me2)2(εφ1(e2e1)a+e1me2+1)((e2e11)a+(e1+1)me2)((e2e1)a+e1me2)+((e2e11)a+(e1+1)me2)2. (3.1)

    Proof. Let η[0,1]. Since is a convex function on [a,m], for x1,y1[a,m],

    (x1+y12)(x1)+(y1)2, (3.2)

    setting

    x1=η{(e2e1)a+e1m}+(1η){(e2e11)a+(e1+1)m}e2, (3.3)

    and

    y1=(1η){(e2e1)a+e1m}+η{(e2e11)a+(e1+1)m}e2. (3.4)

    In this case (3.2) reduces to

    2((2e22e11)a+(2e1+1)m2e2)(η{(e2e1)a+e1m}+(1η){(e2e11)a+(e1+1)m}e2)+((1η){(e2e1)a+e1m}+η{(e2e11)a+(e1+1)m}e2). (3.5)

    Multiplying both sides of (3.5) by ηΩ1E(b,e;χηρ) and integrating over η[0,1] yields

    2((2e22e11)a+(2e1+1)m2e2)10ηΩ1E(b,e;χηρ)dη10ηΩ1E(b,e;χηρ)(η{(e2e1)a+e1m}+(1η){(e2e11)a+(e1+1)m}e2)dη+10ηΩ1E(b,e;χηρ)((1η){(e2e1)a+e1m}+η{(e2e11)a+(e1+1)m}e2)dη.

    Equivalently,

    I1I2+I3, (3.6)

    provided that

    I1:=2((2e22e11)a+(2e1+1)m2e2)10ηΩ1E(b,e;χηρ)dη,I2:=10ηΩ1E(b,e;χηρ)(η{(e2e1)a+e1m}+(1η){(e2e11)a+(e1+1)m}e2)dη,I3:=10ηΩ1E(b,e;χηρ)((1η){(e2e1)a+e1m}+η{(e2e11)a+(e1+1)m}e2)dη.

    Now,

    I1=2((2e22e11)a+(2e1+1)m2e2)10E(b,e;χηρ)dηη1Ω.

    From (3.3), we have η=(e2e11)a+(e1+1)me2x1ma, and letting φ1=(e2)ρχ(ma)ρ,

    I1=2((2e22e11)a+(2e1+1)m2e2)(e2e11)a+(e1+1)me2(e2e1)a+e1me2(e2(e2e11)a+(e1+1)me2x1ma)Ω1×E(b,e;φ1((e2e11)a+(e1+1)me2x1)ρ)e2dx1ma=2(e2)Ω(ma)Ω((2e22e11)a+(2e1+1)m2e2)(εφ1(e2e1)a+e1me2+1)((e2e11)a+(e1+1)me2), (3.7)
    I2=10E(b,e;χηρ)(η{(e2e1)a+e1m}+(1η){(e2e11)a+(e1+1)m}e2)dηη1Ω=(e2ma)Ω(e2e11)a+(e1+1)me2(e2e1)a+e1me2((e2e11)a+(e1+1)me2x1)Ω1×E(b,e;φ1((e2e11)a+(e1+1)me2x1)ρ)(x1)dx1=(e2ma)Ω(εφ1(e2e1)a+e1me2+)((e2e11)a+(e1+1)me2), (3.8)
    I3=10E(b,e;χηρ)((1η){(e2e1)a+e1m}+η{(e2e11)a+(e1+1)m}e2)dηη1Ω.

    By (3.4), we have

    η=e2y1(e2e1)ae1mma,
    I3=(e2ma)Ω(e2e11)a+(e1+1)me2(e2e1)a+e1me2(y1(e2e1)a+e1me2)Ω1E(b,e;φ1(y1(e2e1)a+e1me2)ρ)(y1)dy1=(e2ma)Ω(εφ1(e2e11)a+(e1+1)me2)((e2e1)a+e1me2). (3.9)

    Putting (3.7)(3.9) in (3.6),

    2((2e22e11)a+(2e1+1)m2e2)(εφ1(e2e1)a+e1me2+1)((e2e11)a+(e1+1)me2)(εφ1(e2e1)a+e1me2+)((e2e11)a+(e1+1)me2)+(εφ1(e2e11)a+(e1+1)me2)((e2e1)a+e1me2). (3.10)

    Again, we note by the convexity of that

    (η{(e2e1)a+e1m}+(1η){(e2e11)a+(e1+1)m}e2)η ((e2e1)a+e1me2)+(1η)((e2e11)a+(e1+1)me2), (3.11)
    ((1η){(e2e1)a+e1m}+η{(e2e11)a+(e1+1)m}e2)(1η)((e2e1)a+e1m}e2)+η ((e2e11)a+(e1+1)me2). (3.12)

    By addition of (3.11) and (3.12),

    (η{(e2e1)a+e1m}+(1η){(e2e11)a+(e1+1)m}e2)+((1η){(e2e1)a+e1m}+η{(e2e11)a+(e1+1)m}e2)((e2e1)a+e1me2)+((e2e11)a+(e1+1)me2). (3.13)

    Multiplying both sides of (3.13) by ηΩ1E(b,e;χηρ) and integrating over

    η[0,1] yields

    10ηΩ1E(b,e;χηρ)(η{(e2e1)a+e1m}+(1η){(e2e11)a+(e1+1)m}e2)dη+10ηΩ1E(b,e;χηρ)((1η){(e2e1)a+e1m}+η{(e2e11)a+(e1+1)m}e2)dη[((e2e1)a+e1me2)+((e2e11)a+(e1+1)me2)]10ηΩ1E(b,e;χηρ)dη.

    Equivalently,

    (εφ1(e2e1)a+e1me2+)((e2e11)a+(e1+1)me2)+(εφ1(e2e11)a+(e1+1)me2)((e2e1)a+e1me2)[((e2e1)a+e1me2)+((e2e11)a+(e1+1)me2)](εφ1(e2e1)a+e1me2+1)((e2e11)a+(e1+1)me2). (3.14)

    The desired inequality (3.1) is produced by combining (3.10) and (3.14).

    Corollary 1. Under assumption of Theorem 1 for σ(0)=β=1 and p=φ1=0, we have

    ((2e22e11)a+(2e1+1)m2e2)(e2)ΩΓ(Ω+1)2(ma)Ω[JΩ(e2e1)a+e1me2+((e2e11)a+(e1+1)me2)+JΩ(e2e11)a+(e1+1)me2((e2e1)a+e1me2)]((e2e1)a+e1me2)+((e2e11)a+(e1+1)me2)2. (3.15)

    Remark 3. Theorem 1 is the generalization of the Corollary 1, and Corollary 1 is the generalization of the classical Hermite-Hadamard inequality for Ω=e2=1 and e1=0 in (3.15).

    Theorem 2. Let L1[a,m] be a nonnegative convex function with 0a<m and a<e2<m, φ2R, p0, δ1, e>b>0, 0μ1, 0k1<1, α,β,γ,ρ,Ω,τ,ϰ,r,s,v>0 such that 0<qr+v+ρ, then

    (2a+(me2)(1k1)2)(εφ2a+)(a+(me2)(1k1))+(εφ2[a+(me2)(1k1)])(a)2(εφ2a+1)(a+(me2)(1k1))(1+k1)(a)+(1k1)(a+me2)2. (3.16)

    Proof. Let η[0,1]. Since is a convex function on [a,m], for x2,y2[a,m],

    (x2+y22)(x2)+(y2)2, (3.17)

    provided that

    x2=η a+(1η)(k1a+(1k1)(a+me2)), (3.18)
    y2=(1η)a+η (k1a+(1k1)(a+me2)). (3.19)

    In this case, (3.17) reduces to

    2(2a+(me2)(1k1)2)(ηa+(1η)(k1a+(1k1)(a+me2)))+((1η)a+η(k1a+(1k1)(a+me2))). (3.20)

    Multiplying both sides of (3.20) by ηΩ1E(b,e;χηρ) and integrating over

    η[0,1] yields

    2(2a+(me2)(1k1)2)10ηΩ1E(b,e;χηρ)dη10ηΩ1E(b,e;χηρ)(ηa+(1η)(k1a+(1k1)(a+me2)))dη+10ηΩ1E(b,e;χηρ)((1η)a+η(k1a+(1k1)(a+me2)))dη.

    Equivalently,

    I4I5+I6, (3.21)
    I4=2(2a+(1k1)(me2)2)10ηΩ1E(b,e;χηρ)dη,I5=10ηΩ1E(b,e;χηρ)(ηa+(1η)(k1a+(1k1)(a+me2)))dη,I6=10ηΩ1E(b,e;χηρ)((1η)a+η(k1a+(1k1)(a+me2)))dη.

    Now,

    I4=2(2a+(1k1)(me2)2)10ηΩ1E(b,e;χηρ)dη.

    By (3.18), we have η=a+(me2)(1k1)x2(me2)(1k1), and letting φ2=χ((me2)(1k1))ρ,

    I4=2(2a+(me2)(1k1)2)10ηΩ1E(b,e;χηρ)dη=2((me2)(1k1))Ω(2a+(me2)(1k1)2)a+(me2)(1k1)a(a+(me2)(1k1)x2)Ω1×E(b,e;φ2(a+(me2)(1k1)x2)ρ)dx2=2((me2)(1k1))Ω(2a+(me2)(1k1)2)(εφ2a+1)(a+(me2)(1k1)), (3.22)
    I5=10ηΩ1E(b,e;χηρ)(ηa+(1η)(k1a+(1k1)(a+me2)))dη=1((me2)(1k1))Ωa+(me2)(1k1)a(a+(me2)(1k1)x2)Ω1×E(b,e;φ2(a+(me2)(1k1)x2)ρ)(x2)dx2=1((me2)(1k1))Ω(εφ2a+)(a+(me2)(1k1)), (3.23)
    I6=10ηΩ1E(b,e;χηρ)((1η)a+η(k1a+(1k1)(a+me2)))dη.

    By (3.19), we have

    η=y2a(me2)(1k1),
    I6=1((me2)(1k1))Ωa+(me2)(1k1)a(y2a)Ω1E(b,e;φ2(y2a)ρ)(y2)dy2=1((me2)(1k1))Ω(εφ2[a+(me2)(1k1)])(a). (3.24)

    Putting (3.22)–(3.24) in (3.21),

    2(2a+(me2)(1k1)2)(εφ2a+1)(a+(me2)(1k1))(εφ2a+)(a+(me2)(1k1))+(εφ2[a+(me2)(1k1)])(a). (3.25)

    Again, we note by the convexity of that

    (ηa+(1η)(k1a+(1k1)(a+me2)))η(a)+k1(1η)(a)+(1η)(1k1)(a+me2), (3.26)
    ((1η)a+η(k1a+(1k1)(a+me2)))(1η)(a)+k1η(a)+η(1k1)(a+me2). (3.27)

    By addition of (3.26) and (3.27), we have

    (ηa+(1η)(k1a+(1k1)(a+me2)))+((1η)a+η(k1a+(1k1)(a+me2)))(1+k1)(a)+(1k1)(a+me2). (3.28)

    Multiplying both sides of (3.28) by ηΩ1E(b,e;χηρ) and integrating over

    η[0,1] yields

    10ηΩ1E(b,e;χηρ)(ηa+(1η)(k1a+(1k1)(a+me2)))dη+10ηΩ1E(b,e;χηρ)((1η)a+η(k1a+(1k1)(a+me2)))dη(1+k1)(a)10ηΩ1E(b,e;χηρ)dη+(1k1)(a+me2)10ηΩ1E(b,e;χηρ)dη.

    Equivalently,

    (εφ2a+)(a+(me2)(1k1))+(εφ2[a+(me2)(1k1)])(a)[(1+k1)(a)+(1k1)(a+me2)](εφ2a+1)(a+(me2)(1k1)). (3.29)

    The desired inequality (3.16) is produced by combining (3.25) and (3.29).

    Corollary 2. Under assumption of Theorem 2 with σ(0)=β=1 and p=φ2=0, we have

    (2a+(me2)(1k1)2)Γ(Ω+1)[JΩa+(a+(me2)(1k1))+JΩ[a+(me2)(1k1)](a)]2((me2)(1k1))Ω(1+k1)(a)+(1k1)(a+me2)2.

    Remark 4. On letting k1=0, e2=a, and Ω=1, Corollary 2 coincides with the classical Hermite-Hadamard inequality.

    Theorem 3. Let L1[a,m] be a nonnegative convex function with 0a<m and a<e1+1<e2<m, φ3R, p0, δ1, e>b>0, 0μ1, α,β,γ,ρ,Ω,τ,ϰ,r,s,v>0 such that 0<qr+v+ρ, then

    ((2e22e11)a+(2e1+1)m2e2)(εφ3(e2e112)a+(e1+12)me2+)((e2e11)a+(e1+1)me2)+(εφ3(e2e112)a+(e1+12)me2)((e2e1)a+e1me2)2(εφ3(e2e112)a+(e1+12)me2+1)((e2e11)a+(e1+1)me2)((e2e1)a+e1me2)+((e2e11)a+(e1+1)me2)2. (3.30)

    Proof. Let η[0,1]. Since is a convex function on [a,m], for x3,y3[a,m],

    (x3+y32)(x3)+(y3)2, (3.31)

    provided that

    x3=η{(e2e1)a+e1m}+(2η){(e2e11)a+(e1+1)m}2e2, (3.32)
    y3=(2η){(e2e1)a+e1m}+η{(e2e11)a+(e1+1)m}2e2. (3.33)

    In this case, (3.31) reduces to

    2((2e22e11)a+(2e1+1)m2e2)(η{(e2e1)a+e1m}+(2η){(e2e11)a+(e1+1)m}2e2)+((2η){(e2e1)a+e1m}+η{(e2e11)a+(e1+1)m}2e2). (3.34)

    Multiplying both sides of (3.34) by ηΩ1E(b,e;χηρ) and integrating over

    η[0,1] yields

    2((2e22e11)a+(2e1+1)m2e2)10ηΩ1E(b,e;χηρ)dη10ηΩ1E(b,e;χηρ)(η{(e2e1)a+e1m}+(2η){(e2e11)a+(e1+1)m}2e2)dη+10ηΩ1E(b,e;χηρ)((2η){(e2e1)a+e1m}+η{(e2e11)a+(e1+1)m}2e2)dη.

    Equivalently,

    I7I8+I9, (3.35)

    provided that

    I7=2((2e22e11)a+(2e1+1)m2e2)10ηΩ1E(b,e;χηρ)dη,I8=10ηΩ1E(b,e;χηρ)(η{(e2e1)a+e1m}+(2η){(e2e11)a+(e1+1)m}2e2)dη,I9=10ηΩ1E(b,e;χηρ)((2η){(e2e1)a+e1m}+η{(e2e11)a+(e1+1)m}2e2)dη.

    Now,

    I7=2((2e22e11)a+(2e1+1)m2e2)10E(b,e;χηρ)dηη1Ω.

    By (3.32), we have η=2(e2e11)a+(e1+1)me2x3ma, and letting φ3=(2e2)ρχ(ma)ρ,

    2((2e22e11)a+(2e1+1)m2e2)10ηΩ1E(b,e;χηρ)dη=2Ω+1(e2)Ω(ma)Ω((2e22e11)a+(2e1+1)m2e2)(e2e11)a+(e1+1)me2(e2e112)a+(e1+12)me2((e2e11)a+(e1+1)me2x3)Ω1×E(b,e;φ3((e2e11)a+(e1+1)me2x3)ρ)dx3=2Ω+1(e2)Ω(ma)Ω((2e22e11)a+(2e1+1)m2e2)(εφ3(e2e112)a+(e1+12)me2+1)((e2e11)a+(e1+1)me2), (3.36)
    I8=10E(b,e;χηρ)(η{(e2e1)a+e1m}+(2η){(e2e11)a+(e1+1)m}2e2)dηη1Ω=(2e2ma)Ω(e2e11)a+(e1+1)me2(e2e112)a+(e1+12)me2((e2e11)a+(e1+1)me2x3)Ω1×E(b,e;φ3((e2e11)a+(e1+1)me2x3)ρ)(x3)dx3=(2e2ma)Ω(εφ3(e2e112)a+(e1+12)me2+)((e2e11)a+(e1+1)me2), (3.37)
    I9=10E(b,e;χηρ)((2η){(e2e1)a+e1m}+η{(e2e11)a+(e1+1)m}2e2)dηη1Ω.

    By (3.33), we have

    η=2e2y3(e2e1)ae1mma,
    I9=(2e2ma)Ω(e2e112)a+(e1+12)me2(e2e1)a+e1me2(y3(e2e1)a+e1me2)Ω1E(b,e;φ3(y3(e2e1)a+e1me2)ρ)(y3)dy3=(2e2ma)Ω(εφ3(e2e112)a+(e1+12)me2)((e2e1)a+e1me2). (3.38)

    Putting (3.36)(3.38) in (3.35),

    2((2e22e11)a+(2e1+1)m2e2)(εφ3(e2e112)a+(e1+12)me2+1)((e2e11)a+(e1+1)me2)(εφ3(e2e112)a+(e1+12)me2+)((e2e11)a+(e1+1)me2)+(εφ3(e2e112)a+(e1+12)me2)((e2e1)a+e1me2). (3.39)

    Again, we note by the convexity of that

    (η{(e2e1)a+e1m}+(2η){(e2e11)a+(e1+1)m}2e2)η2((e2e1)a+e1me2)+2η2((e2e11)a+(e1+1)me2), (3.40)
    ((2η){(e2e1)a+e1m}+η{(e2e11)a+(e1+1)m}2e2)2η2((e2e1)a+e1me2)+η2((e2e11)a+(e1+1)me2). (3.41)

    By addition of (3.40) and (3.41),

    (η{(e2e1)a+e1m}+(2η){(e2e11)a+(e1+1)m}2e2)+((2η){(e2e1)a+e1m}+η{(e2e11)a+(e1+1)m}2e2)((e2e1)a+e1me2)+((e2e11)a+(e1+1)me2). (3.42)

    Multiplying both sides of (3.42) by ηΩ1E(b,e;χηρ) and integrating over

    η[0,1] yields

    10ηΩ1E(b,e;χηρ)(η{(e2e1)a+e1m}+(2η){(e2e11)a+(e1+1)m}2e2)dη+10ηΩ1E(b,e;χηρ)((2η){(e2e1)a+e1m}+η{(e2e11)a+(e1+1)m}2e2)dη[((e2e1)a+e1me2)+((e2e11)a+(e1+1)me2)]10ηΩ1E(b,e;χηρ)dη.

    Equivalently,

    (εφ3(e2e112)a+(e1+12)me2+)((e2e11)a+(e1+1)me2)+(εφ3(e2e112)a+(e1+12)me2)((e2e1)a+e1me2)(εφ3(e2e112)a+(e1+12)me2+1)((e2e112)a+(e1+1)me2)[((e2e1)a+e1me2)+((e2e11)a+(e1+1)me2)]. (3.43)

    The required inequality (3.30) is produced when (3.39) and (3.43) are combined.

    Corollary 3. Under assumption of Theorem 3 with σ(0)=β=1 and p=φ3=0, we have

    ((2e22e11)a+(2e1+1)m2e2)(2e2)ΩΓ(Ω+1)(ma)Ω[JΩ(e2e112)a+(e1+12)me2+((e2e11)a+(e1+1)me2)+JΩ(e2e112)a+(e1+12)me2((e2e1)a+e1me2)]((e2e1)a+e1me2)+((e2e11)a+(e1+1)me2)2.

    Theorem 4. Let L1[a,m] be a nonnegative convex function with 0a<m and a<e1+1<e2<m, φ1R, p0, δ1, e>b>0, 0μ1, α,β,γ,ρ,Ω,τ,ϰ,r,s,v>0 such that 0<qr+v+ρ. Further, let wL1([a,m]) be a nonnegative and symmetric with respect to x1+y12, that is, w(x1+y1x)=w(x) with ax1xy1m, where x1 and y1 are defined by (3.3) and (3.4), respectively. Then,

    ((2e22e11)a+(2e1+1)m2e2)[(εφ1(e2e1)a+e1me2+w)((e2e11)a+(e1+1)me2)+(εφ1(e2e11)a+(e1+1)me2w)((e2e1)a+e1me2)](εφ1(e2e1)a+e1me2+(w))((e2e11)a+(e1+1)me2)+(εφ1(e2e11)a+(e1+1)me2(w))((e2e1)a+e1me2)[(εφ1(e2e1)a+e1me2+w)((e2e11)a+(e1+1)me2)+(εφ1(e2e11)a+(e1+1)me2w)((e2e1)a+e1me2)]×((e2e1)a+e1me2)+((e2e11)a+(e1+1)me2)2. (4.1)

    Proof. The proof is followed by inequality (3.5) by multiplying both sides by

    ηΩ1E(b,e;χηρ)w((1η){(e2e1)a+e1m}+η{(e2e11)a+(e1+1)m}e2),

    and integrating over η[0,1], we obtain

    2((2e22e11)a+(2e1+1)m2e2)10ηΩ1E(b,e;χηρ)×w((1η){(e2e1)a+e1m}+η{(e2e11)a+(e1+1)m}e2)dη10ηΩ1E(b,e;χηρ)w((1η){(e2e1)a+e1m}+η{(e2e11)a+(e1+1)m}e2)×(η{(e2e1)a+e1m}+(1η){(e2e11)a+(e1+1)m}e2)dη+10ηΩ1E(b,e;χηρ)w((1η){(e2e1)a+e1m}+η{(e2e11)a+(e1+1)m}e2)×((1η){(e2e1)a+e1m}+η{(e2e11)a+(e1+1)m}e2)dη
      2((2e22e11)a+(2e1+1)m2e2)(e2e11)a+(e1+1)me2(e2e1)a+e1me2(y1(e2e1)a+e1me2)Ω1×E(b,e;φ1(y1(e2e1)a+e1me2)ρ)w(y1)dy1(e2e11)a+(e1+1)me2(e2e1)a+e1me2(y1(e2e1)a+e1me2)Ω1E(b,e;φ1(y1(e2e1)a+e1me2)ρ)×((2e22e11)a+(2e1+1)me2y1)w(y1)dy1+(e2e11)a+(e1+1)me2(e2e1)a+e1me2(y1(e2e1)a+e1me2)Ω1×E(b,e;φ1(y1(e2e1)a+e1me2)ρ)(y1)w(y1)dy1,

    or

    2((2e22e11)a+(2e1+1)m2e2)×(e2e11)a+(e1+1)me2(e2e1)a+e1me2(y1(e2e1)a+e1me2)Ω1×E(b,e;φ1(y1(e2e1)a+e1me2)ρ)w(y1)dy1(e2e11)a+(e1+1)me2(e2e1)a+e1me2((e2e11)a+(e1+1)me2s1)Ω1E(b,e;φ1((e2e11)a+(e1+1)me2s1)ρ)(s1)×w((2e22e11)a+(2e1+1)me2s1)ds1+(e2e11)a+(e1+1)me2(e2e1)a+e1me2(y1(e2e1)a+e1me2)Ω1×E(b,e;φ1(y1(e2e1)a+e1me2)ρ)(y1)w(y1)dy1.

    Equivalently,

    2((2e22e11)a+(2e1+1)m2e2)(εφ1(e2e11)a+(e1+1)me2w)((e2e1)a+e1me2)(εφ1(e2e1)a+e1me2+(w))((e2e11)a+(e1+1)me2)+(εφ1(e2e11)a+(e1+1)me2(w))((e2e1)a+e1me2). (4.2)

    However, by symmetry of w with respect to (2e22e11)a+(2e1+1)m2e2, we have

    (εφ1(e2e1)a+e1me2+w)((e2e11)a+(e1+1)me2)=(εφ1(e2e11)a+(e1+1)me2w)((e2e1)a+e1me2)=12{(εφ1(e2e1)a+e1me2+w)((e2e11)a+(e1+1)me2)+(εφ1(e2e11)a+(e1+1)me2w)((e2e1)a+e1me2)}. (4.3)

    By combining (4.2) and (4.3), we have

    ((2e22e11)a+(2e1+1)m2e2)×[(εφ1(e2e1)a+e1me2+w)((e2e11)a+(e1+1)me2)+(εφ1(e2e11)a+(e1+1)me2w)((e2e1)a+e1me2)](εφ1(e2e1)a+e1me2+w)((e2e11)a+(e1+1)me2)+(εφ1(e2e11)a+(e1+1)me2w)((e2e1)a+e1me2). (4.4)

    Again, multiplying inequality (3.13) to ηΩ1E(b,e;χηρ)×w((1η){(e2e1)a+e1m}+η{(e2e11)a+(e1+1)m}e2) and integrating over η[0,1], we obtain

    10ηΩ1E(b,e;χηρ)w((1η){(e2e1)a+e1m}+η{(e2e11)a+(e1+1)m}e2)×(η{(e2e1)a+e1m}+(1η){(e2e11)a+(e1+1)m}e2)dη+10ηΩ1E(b,e;χηρ)w((1η){(e2e1)a+e1m}+η{(e2e11)a+(e1+1)m}e2)×((1η){(e2e1)a+e1m}+η{(e2e11)a+(e1+1)m}e2)dη[((e2e1)a+e1me2)+((e2e11)a+(e1+1)me2)]×10ηΩ1E(b,e;χηρ)w((1η){(e2e1)a+e1m}+η{(e2e11)a+(e1+1)m}e2)dη.

    Equivalently,

    (εφ1(e2e1)a+e1me2+(w))((e2e11)a+(e1+1)me2)+(εφ1(e2e11)a+(e1+1)me2(w))((e2e1)a+e1me2)[(εφ1(e2e1)a+e1me2+w)((e2e11)a+(e1+1)me2)+(εφ1(e2e11)a+(e1+1)me2w)((e2e1)a+e1me2)]×((e2e1)a+e1me2)+((e2e11)a+(e1+1)me2)2. (4.5)

    The desired inequality (4.1) is obtained by combining (4.4) and (4.5).

    Corollary 4. Under assumption of Theorem 4 with σ(0)=β=1 and p=φ1=0, we have

    ((2e22e11)a+(2e1+1)m2e2)×[JΩ(e2e1)a+e1me2+w((e2e11)a+(e1+1)me2)+JΩ(e2e11)a+(e1+1)me2w((e2e1)a+e1me2)]JΩ(e2e1)a+e1me2+(w)((e2e11)a+(e1+1)me2)+JΩ(e2e11)a+(e1+1)me2(w)((e2e1)a+e1me2)[JΩ(e2e1)a+e1me2+w((e2e11)a+(e1+1)me2)+JΩ(e2e11)a+(e1+1)me2w((e2e1)a+e1me2)]×((e2e1)a+e1me2)+((e2e11)a+(e1+1)me2)2.

    Remark 5. On letting Ω=e2=1 and e1=0, Corollary 4 coincides with the classical Hermite-Hadamard-Fejér inequality.

    Theorem 4. Let L1[a,m] be a nonnegative convex function with 0a<m and a<e2<m, φ2R, p0, δ1, e>b>0, 0μ1, 0k1<1, α,β,γ,ρ,Ω,τ,ϰ,r,s,v>0 such that 0<qr+v+ρ. Further, let wL1([,]) be nonnegative and symmetric with respect to x2+y22, that is, w(x2+y2x)=w(x) with ax2xy2m, where x2 and y2 are defined by (3.17) and (3.18), respectively. Then,

    (2a+(me2)(1k1)2)[(εφ2a+w)(a+(me2)(1k1))+(εφ2[a+(me2)(1k1)]w)(a)](εφ2a+(w))(a+(me2)(1k1))+(εφ2[a+(me2)(1k1)](w))(a)(1+k1)(a)+(1k1)(a+me2)2[(εφ2a+w)(a+(me2)(1k1))+(εφ2[a+(me2)(1k1)]w)(a)]. (4.6)

    Proof. The proof is followed by inequality (3.20) by multiplying both sides by

    ηΩ1E(b,e;χηρ)w((1η)a+η(k1a+(1k1)(a+me2))),

    and integrating over η[0,1], we obtain

    2(2a+(me2)(1k1)2)10ηΩ1E(b,e;χηρ)w((1η)a+η(k1a+(1k1)(a+me2)))dη10ηΩ1E(b,e;χηρ)w((1η)a+η(k1a+(1k1)(a+me2)))(ηa+(1η)(k1a+(1k1)(a+me2)))dη+10ηΩ1E(b,e;χηρ)w((1η)a+η(k1a+(1k1)(a+me2)))((1η)a+η(k1a+(1k1)(a+me2)))dη
    2(2a+(me2)(1k1)2)a+(me2)(1k1)a(y2a)Ω1E(b,e;φ2(y2a)ρ)w(y2)dy2a+(1k1)(me2)a(y2a)Ω1E(b,e;φ2(y2a)ρ)(2a+(me2)(1k1)y2)w(y2)dy2+a+(me2)(1k1)a(y2a)Ω1E(b,e;φ2(y2a)ρ)(y2)w(y2)dy2,

    or

    2(2a+(me2)(1k1)2)a+(me2)(1k1)a(y2a)Ω1E(b,e;φ2(y2a)ρ)w(y2)dy2a+(me2)(1k1)a(a+(me2)(1k1)s2)Ω1×E(b,e;φ2(a+(me2)(1k1)s2)ρ)(s2)w(2a+(me2)(1k1)s2)ds2+a+(me2)(1k1)a(y2a)Ω1E(b,e;φ2(y2a)ρ)(y2)w(y2)dy2.

    Equivalently,

    2(2a+(me2)(1k1)2)(εφ2[a+(me2)(1k1)]w)(a)(εφ2a+(w))(a+(me2)(1k1))+(εφ2[a+(me2)(1k1)](w))(a). (4.7)

    Provided that w is symmetric with regard to 2a+(me2)(1k1)2, we have

    (εφ2a+w)(a+(me2)(1k1))=(εφ2[a+(me2)(1k1)]w)(a)=(εφ2a+w)(a+(me2)(1k1))+(εφ2[a+(me2)(1k1)]w)(a)2. (4.8)

    By combining (4.7) and (4.8), we have

    (2a+(me2)(1k1)2)[(εφ2a+w)(a+(me2)(1k1))+(εφ2[a+(me2)(1k1)]w)(a)](εφ2a+(w))(a+(me2)(1k1))+(εφ2[a+(me2)(1k1)](w))(a). (4.9)

    Again, multiplying both sides of (3.28) by ηΩ1E(b,e;χηρ)×w((1η)a+η(k1a+(a+me2)(1k1))) and integrating over η[0,1], we obtain

    10ηΩ1E(b,e;χηρ)w((1η)a+η(k1a+(1k1)(a+me2)))(ηa+(1η)(k1a+(1k1)(a+me2)))dη+10ηΩ1E(b,e;χηρ)w((1η)a+η(k1a+(1k1)(a+me2)))((1η)a+η(k1a+(1k1)(a+me2)))dη[(1+k1)(a)+(1k1)(a+me2)]10ηΩ1E(b,e;χηρ)w((1η)a+η(k1a+(1k1)(a+me2)))dη.

    Equivalently,

    (εφ2a+(w))(a+(me2)(1k1))+(εφ2[a+(me2)(1k1)](w))(a)(1+k1)(a)+(1k1)(a+me2)2[(εφ2a+w)(a+(me2)(1k1))+(εφ2[a+(me2)(1k1)]w)(a)]. (4.10)

    The desired inequality (4.6) is demonstrated by combining (4.9) and (4.10).

    Corollary 5. Under assumption of Theorem 4 with σ(0)=β=1 and p=φ2=0, we have

    (2a+(me2)(1k1)2)[JΩa+w(a+(me2)(1k1))+JΩ[a+(me2)(1k1)]w(a)]JΩa+(w)(a+(me2)(1k1))+JΩ[a+(me2)(1k1)](w)(a)[(1+k1)(a)+(1k1)(a+me2)]2[JΩa+w(a+(me2)(1k1))+JΩ[a+(me2)(1k1)]w(a)].

    Remark 6. On letting k1=0, e2=a, and Ω=1, Corollary 5 coincides with the classical Hermite-Hadamard-Fejér inequality.

    This section covers the numerical and graphical analysis of our main results to help understand the theoretical results. In every example, there is no correlation between the tables and figures. Random selections were made for both sets of statistics. In our calculation, we find out values separately for the left, middle, and right sides of each inequality of the relevant theorem.

    Example 1. Let (x)=exp(x) such that x[0,), and σ(k)=17k+1, with β=1, e=ϰ, q=v, p=s=r=0, ρ=3, in the result (3.16) of Theorem 2 (Table 1). Additionally, Figure 1 displays a graphic representation of the result (3.16) in Theorem 2 by taking the above functions with Ω=a=1, β=11, p=φ2=0, e2=7, m=10, and 0k10.9.

    Table 1.  Comparison of values in result of Theorem 2.
    a e2 m k1 Ω χ LHS of (3.16) Mid of (3.16) RHS of (3.16)
    1 4 9 0 0.7 2 33.1155 89.8721 203.0735
    4 49 90 0.2 0.5 0 7.2378e+08 8.1666e+14 1.3974e+19
    3 4 40 0.5 0.6 0.125 1.6275e+05 1.2652e+08 2.1648e+16
    0.1 0.4 1 0.7 19 1 0.7047 0.7640 0.9476
    0.9 101 400 0.9 11 0.27 7.6483e+06 3.2571e+12 8.7879e+128
    21 50 100 0.999 34 10 1.3522e+09 1.3526e+09 3.4188e+27

     | Show Table
    DownLoad: CSV
    Figure 1.  Validity of inequality (3.16) in Theorem 2.

    Example 2. Let (x)=x3 such that x[0,), with σ(0)=1, β=3, p=φ3=0 in the result (3.30) of Theorem 3 (Table 2). Additionally, Figure 2 displays a graphic representation of the result (3.30) in Theorem 3 by taking the above function with assumptions: σ(0)=1, β=3.5, p=φ3=0, a=0.2, e1=0.5, e2=3, Ω=2, and 10m20.

    Table 2.  Comparison of values in result of Theorem 3.
    a e1 e2 m Ω LHS of (3.30) Mid of (3.30) RHS of (3.30)
    3 7 11 21 5 3.5625e+03 3.5639e+03 3.5931e+03
    11 100 124 129 10 1.2126e+06 1.2126e+06 1.2127e+06
    0.1 0.3 4 10 21 8.9989 9.0367 18.5549
    0.9 1 3 612 11 2.8779e+07 2.8901e+07 3.8316e+07
    7 8 19 20 7 2.1049e+03 2.1050e+03 2.1094e+03
    1 10 40 47 8 2.2352e+03 2.2355e+03 2.2482e+03

     | Show Table
    DownLoad: CSV
    Figure 2.  Validity of inequality (3.30) in Theorem 3.

    Example 3. Let (x)=x4 such that x[0,), and w(x)=2, with σ(0)=1, β=7.1, p=φ1=0 in the result (4.1) of Theorem 4 (Table 3). Additionally, Figure 3 displays a graphic representation of the result (4.1) in Theorem 4 by taking the above functions with assumptions: σ(0)=1, β=1.2, p=φ1=0, a=0.3, e1=1, e2=5, m=21, and 0Ω10.

    Table 3.  Comparison of values in result of Theorem 4.
    a e1 e2 m Ω LHS of (4.1) Mid of (4.1) RHS of (4.1)
    2 5 10 11 13 3.8095e-07 3.8817e-07 3.9054e-07
    0.3 0.9 4 20 20 0.3106 0.4941 0.5331
    10 950 980 990 5 2.8371e+10 2.8371e+10 2.8371e+10
    11 20 50 71 2 4.6259e+06 4.6285e+06 4.6337e+06
    22 30 100 130 9 200.7545 200.8328 200.8709
    5 6 120 125 4 2.9150e+03 2.9304e+03 2.9481e+03

     | Show Table
    DownLoad: CSV
    Figure 3.  Validity of inequality (4.1) in Theorem 4.

    In this section, we give some examples of our established results related to modified Bessel functions and matrices. Here, Cn is expressed as the set of n×n complex matrices, Mn as the algebra of n×n complex matrices, and M+n as the strictly positive matrices in Mn. That is, AM+n if Au,u>0 for all nonzero uCn. Sababheh [28, Theorem 4] incorporated the concept of matrices and convexity together, i.e., (z)=AzXB1z+A1zXBz, A,BM+n, XMn is convex on R for all z[0,1], provided that . is a unitarily invariant norm. Then, by using Theorem 1, we have

    A(2e22e11)a+(2e1+1)m2e2XB2e2(1a)+(2e1+1)(am)2e2+A2e2(1a)+(2e1+1)(am)2e2XB(2e22e11)a+(2e1+1)m2e212(εφ1(e2e1)a+e1me2+1)((e2e11)a+(e1+1)me2)×(mae2)Ω[10zΩ1E(b,e;χzρ)×Az{(e2e1)a+e1m}+(1z){(e2e11)a+(e1+1)m}e2XB1z{(e2e1)a+e1m}+(1z){(e2e11)a+(e1+1)m}e2+A1z{(e2e1)a+e1m}+(1z){(e2e11)a+(e1+1)m}e2XBz{(e2e1)a+e1m}+(1z){(e2e11)a+(e1+1)m}e2dz+10zΩ1E(b,e;χzρ)A(1z){(e2e1)a+e1m}+z{(e2e11)a+(e1+1)m}e2XB1(1z){(e2e1)a+e1m}+z{(e2e11)a+(e1+1)m}e2+A1(1z){(e2e1)a+e1m}+z{(e2e11)a+(e1+1)m}e2XB(1z){(e2e1)a+e1m}+z{(e2e11)a+(e1+1)m}e2dz]12[A(e2e1)a+e1me2XBe2(1a)+e1(am)e2+Ae2(1a)+e1(am)e2XB(e2e1)a+e1me2+A(e2e11)a+(e1+1)me2XBe2(1a)+(e1+1)(am)e2+Ae2(1a)+(e1+1)(am)e2XB(e2e11)a+(e1+1)me2]. (6.1)

    For more understanding of (6.1), let σ(0)=e1=Ω=1, e2=β=3, m=4, a=p=φ1=0, X=I, A= (1003), and B= (3001). In unitarily invariant norm, we are taking Ky Fan k-norm,

    A(2e22e11)a+(2e1+1)m2e2XB2e2(1a)+(2e1+1)(am)2e2+A2e2(1a)+(2e1+1)(am)2e2XB(2e22e11)a+(2e1+1)m2e2=A2B1+A1B2=18.6667, (6.2)
    A(e2e1)a+e1me2XBe2(1a)+e1(am)e2+Ae2(1a)+e1(am)e2XB(e2e1)a+e1me2=A43B13+A13B43=10.0402, (6.3)
    A(e2e11)a+(e1+1)me2XBe2(1a)+(e1+1)(am)e2+Ae2(1a)+(e1+1)(am)e2XB(e2e11)a+(e1+1)me2=A83B53+A53B83=37.7620, (6.4)
    (εφ1(e2e1)a+e1me2+1)((e2e11)a+(e1+1)me2)=(ε043+1)(83)=0.6667, (6.5)
    10zΩ1E(b,e;χzρ)Az{(e2e1)a+e1m}+(1z){(e2e11)a+(e1+1)m}e2XB1z{(e2e1)a+e1m}+(1z){(e2e11)a+(e1+1)m}e2+A1z{(e2e1)a+e1m}+(1z){(e2e11)a+(e1+1)m}e2XBz{(e2e1)a+e1m}+(1z){(e2e11)a+(e1+1)m}e2dz=10E(b,e;0)A84z3B5+4z3+A5+4z3B84z3dz=14.17225, (6.6)
    10zΩ1E(b,e;χzρ)A(1z){(e2e1)a+e1m}+z{(e2e11)a+(e1+1)m}e2XB1(1z){(e2e1)a+e1m}+z{(e2e11)a+(e1+1)m}e2+A1(1z){(e2e1)a+e1m}+z{(e2e11)a+(e1+1)m}e2XB(1z){(e2e1)a+e1m}+z{(e2e11)a+(e1+1)m}e2dz=10E(b,e;0)A4+4z3B1+4z3+A1+4z3B4+4z3dz=5.09522. (6.7)

    Substituting the values from (6.2)(6.7) in (6.1), we have 18.6667<19.26747<23.9011.

    Watson [29] defined the function Mθ:R[1,) as

    Mθ(ν)=2θΓ(θ+1)νθIθ(ν)   νR, θ>1,

    provided that the modified Bessel function of first kind is: Iθ(ν)=z=0(ν2)θ+2zz!Γ(θ+z+1). Employing the above two functions, one can have Mθ(ν)=νMθ+1(ν)2(θ+1). If we use (ν)=Mθ(ν) and the above identity in Theorem 2, then we have

    2a+(me2)(1k1)4(θ+1)Mθ+1(2a+(me2)(1k1)2)12(εφ2a+1)(a+(me2)(1k1))[εφ2a+(a+(me2)(1k1)2(θ+1)Mθ+1(a+(me2)(1k1)))+εφ2[a+(me2)(1k1](a2(θ+1)Mθ+1(a))]12[(1+k1)(a2(θ+1)Mθ+1(a))+(1k1)(a+me22(θ+1)Mθ+1(a+me2))].

    A generalized MPMLF has been introduced as a generalization of the Wright function [2], the Shukla-Prajapati function [4], the Salim-Faraj function [6], Andric et al. function [7], the Bansal-Mehrez function [8], the Raina function [9], the generalized Wright function [10], and the Pochhammer-Barnes confluent hypergeometric function [27]. Moreover, the defined fractional integral operator is a generalization of the Prabhakar fractional integral [3], the Srivastava-Tomovski fractional integral [5], the Salim-Faraj fractional integral [6], Andric et al. fractional integral [7], the Raina fractional integral [9], and the Riemann-Liouville fractional integral [25]. The article is an elegant unification of several known Mittag-Leffler-type functions and related integral operators. Based on defined generalized fractional integrals, some new extended and generalized estimates for Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities are produced. These findings enable us to generalize existing functional inequality discoveries involving convex functions to a new class of inequalities. The validity of the derived results is ensured through matrix theory, special functions, and numerically and graphically. The results of the paper are expected to be of interest to readers. In the future, the defined generalized fractional integral can be helpful for the researchers to find more interesting results.

    Sabir Hussain: Conceptualization, formal analysis, writing-review and editing, methodology, validation; Sobia Rafeeq: Conceptualization, formal analysis, writing-review and editing, writing-original draft preparation, validation, visualization, Software, investigation; Jongsuk Ro: Conceptualization, formal analysis, writing-review and editing, visualization, resources; Rida Khaliq: Methodology, writing-original draft preparation; Azhar Ali: Methodology, writing-original draft preparation. All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-2022R1A2C2004874).

    The authors declare no conflict of interest.



    [1] Y. Swapna, Applications of partial differential equations in fluid physics, Commun. Appl. Nonlinear Anal., 31 (2024), 207–220. https://doi.org/10.52783/cana.v31.396 doi: 10.52783/cana.v31.396
    [2] A. Cheviakov, P. Zhao, Analytical properties of nonlinear partial differential equations: with applications to shallow water models, Vol. 10, Springer Cham, 2024. https://doi.org/10.1007/978-3-031-53074-6
    [3] A. H. Ganie, L. H. Sadek, M. M. Tharwat, M. A. Iqbal, M. M. Miah, M. M. Rasid, et al., New investigation of the analytical behaviors for some nonlinear PDEs in mathematical physics and modern engineering, Partial Differ. Equations Appl. Math., 9 (2024), 100608. https://doi.org/10.1016/j.padiff.2023.100608 doi: 10.1016/j.padiff.2023.100608
    [4] J. L. Kazdan, Applications of partial differential equations to problems in geometry, Graduate Texts in Mathematics, 1983.
    [5] H. Khan, R. Shah, J. F. Gómez-Aguilar, Shoaib, D. Baleanu, P. Kumam, Travelling waves solution for fractional-order biological population model, Math. Model. Nat. Phenom., 16 (2021), 32. https://doi.org/10.1051/mmnp/2021016 doi: 10.1051/mmnp/2021016
    [6] A. P. Bassom, P. A. Clarkson, A. C. Hicks, On the application of solutions of the fourth Painlev equation to various physically motivated nonlinear partial differential equations, Adv. Differ. Equations, 1 (1996), 175–198. https://doi.org/10.57262/ade/1366896236 doi: 10.57262/ade/1366896236
    [7] P. Albayrak, M. Ozisik, M. Bayram, A. Secer, S. E. Das, A. Biswas, et al., Pure-cubic optical solitons and stability analysis with Kerr law nonlinearity, Contemp. Math., 4 (2023), 530-548. https://doi.org/10.37256/cm.4320233308 doi: 10.37256/cm.4320233308
    [8] S. Altun, M. Ozisik, A. Secer, M. Bayram, Optical solitons for Biswas-Milovic equation using the new Kudryashov's scheme, Optik, 270 (2022), 170045. https://doi.org/10.1016/j.ijleo.2022.170045 doi: 10.1016/j.ijleo.2022.170045
    [9] E. M. Zayed, A. H. Arnous, A. Secer, M. Ozisik, M. Bayram, N. A. Shah, et al., Highly dispersive optical solitons in fiber Bragg gratings for stochastic Lakshmanan-Porsezian-Daniel equation with spatio-temporal dispersion and multiplicative white noise, Results Phys., 55 (2023), 107177. https://doi.org/10.1016/j.rinp.2023.107177 doi: 10.1016/j.rinp.2023.107177
    [10] M. S. Islam, K. Khan, M. A. Akbar, The generalized Kudrysov method to solve some coupled nonlinear evolution equations, Asian J. Math. Comput. Res., 3 (2015), 104–121.
    [11] R. Ali, E. Tag-eldin, A comparative analysis of generalized and extended (GG)-Expansion methods for travelling wave solutions of fractional Maccari's system with complex structure, Alexandria Eng. J., 79 (2023), 508–530. https://doi.org/10.1016/j.aej.2023.08.007 doi: 10.1016/j.aej.2023.08.007
    [12] M. Cinar, A. Secer, M. Ozisik, M. Bayram, Derivation of optical solitons of dimensionless Fokas-Lenells equation with perturbation term using Sardar sub-equation method, Opt. Quant. Electron., 54 (2022), 402. https://doi.org/10.1007/s11082-022-03819-0 doi: 10.1007/s11082-022-03819-0
    [13] M. Dehghan, J. Manafian Heris, A. Saadatmandi, Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics, Int. J. Numer. Methods Heat Fluid Flow, 21 (2011), 736–753. https://doi.org/10.1108/09615531111148482 doi: 10.1108/09615531111148482
    [14] A. Bekir, E. Aksoy, A. C. Cevikel, Exact solutions of nonlinear time fractional partial differential equations by sub-equation method, Math. Methods Appl. Sci., 38 (2015), 2779–2784. https://doi.org/10.1002/mma.3260 doi: 10.1002/mma.3260
    [15] M. Kamrujjaman, A. Ahmed, J. Alam, Travelling waves: interplay of low to high Reynolds number and Tan-Cot function method to solve Burgers equations, J. Appl. Math. Phys., 7 (2019), 861. https://doi.org/10.4236/jamp.2019.74058 doi: 10.4236/jamp.2019.74058
    [16] S. Noor, A. S. Alshehry, A. Khan, I. Khan, Analysis of soliton phenomena in (2+1)-dimensional Nizhnik-Novikov-Veselov model via a modified analytical technique, AIMS Math., 8 (2023), 28120–28142. https://doi.org/10.3934/math.20231439 doi: 10.3934/math.20231439
    [17] R. Ali, S. Barak, A. Altalbe, Analytical study of soliton dynamics in the realm of fractional extended shallow water wave equations, Phys. Scr., 99 (2024), 065235. https://doi.org/10.1088/1402-4896/ad4784 doi: 10.1088/1402-4896/ad4784
    [18] M. M. Tariq, M. B. Riaz, M. Aziz-ur-Rehman, Investigation of space-time dynamics of Akbota equation using Sardar sub-equation and Khater methods: unveiling bifurcation and chaotic structure, Int. J. Theor. Phys., 63 (2024), 210. https://doi.org/10.1007/s10773-024-05733-5 doi: 10.1007/s10773-024-05733-5
    [19] X. Yang, Z. Wang, Z. Zhang, Decay mode ripple waves within the (3+1)-dimensional Kadomtsev-Petviashvili equation, Math. Methods Appl. Sci., 47 (2024), 10444-10461. https://doi.org/10.1002/mma.10132 doi: 10.1002/mma.10132
    [20] A. H. Ganie, M. M. AlBaidani, A. M. Wazwaz, W. X. Ma, U. Shamima, M. S. Ullah, Soliton dynamics and chaotic analysis of the Biswas-Arshed model, Opt. Quant. Electron., 56 (2024), 1379. https://doi.org/10.1007/s11082-024-07291-w doi: 10.1007/s11082-024-07291-w
    [21] M. Wang, X. Li, J. Zhang, The (GG)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, 372 (2008), 417–423. https://doi.org/10.1016/j.physleta.2007.07.051 doi: 10.1016/j.physleta.2007.07.051
    [22] E. H. M. Zahran, M. M. A. Khater, Modified extended tanh-function method and its applications to the Bogoyavlenskii equation, Appl. Math. Model., 40 (2016), 1769–1775. https://doi.org/10.1016/j.apm.2015.08.018 doi: 10.1016/j.apm.2015.08.018
    [23] Z. Myrzakulova, S. Manukure, R. Myrzakulov, G. Nugmanova, Integrability, geometry and wave solutions of some Kairat equations, arXiv, 2023. https://doi.org/10.48550/arXiv.2307.00027
    [24] M. Awadalla, A. Zafar, A. Taishiyeva, M. Raheel, R. Myrzakulov, A. Bekir, The analytical solutions to the M-fractional Kairat-Ⅱ and Kairat-X equations, Front. Phys., 11 (2023), 1335423.
    [25] S. Roy, S. Raut, R. Myrzakulov, Z. Umurzakhova, A Kairat-X equation and its integrability: shocks, lump-kink and kinky-breather, CC BY 4.0, 2023. https://doi.org/10.13140/RG.2.2.23245.20963 doi: 10.13140/RG.2.2.23245.20963
    [26] S. Ghazanfar, N. Ahmed, M. S. Iqbal, A. Akgül, M. Bayram, M. De la Sen, Imaging ultrasound propagation using the Westervelt equation by the generalized Kudryashov and modified Kudryashov methods, Appl. Sci., 12 (2022), 11813. https://doi.org/10.3390/app122211813 doi: 10.3390/app122211813
    [27] G. H. Tipu, W. A. Faridi, Z. Myrzakulova, R. Myrzakulov, S. A. AlQahtani, N. F. AlQahtani, et al., On optical soliton wave solutions of non-linear Kairat-X equation via new extended direct algebraic method, Opt. Quant. Electron., 56 (2024), 655. https://doi.org/10.1007/s11082-024-06369-9 doi: 10.1007/s11082-024-06369-9
    [28] M. Iqbal, D. Lu, A. R. Seadawy, F. A. H. Alomari, Z. Umurzakhova, R. Myrzakulov, Constructing the soliton wave structure to the nonlinear fractional Kairat-X dynamical equation under computational approach, Mod. Phys. Lett. B, 2024, 2450396. https://doi.org/10.1142/S0217984924503962 doi: 10.1142/S0217984924503962
    [29] S. Sirisubtawee, S. Koonprasert, S. Sungnul, New exact solutions of the conformable space-time Sharma-Tasso-Olver equation using two reliable methods, Symmetry, 12 (2020), 644. https://doi.org/10.3390/sym12040644 doi: 10.3390/sym12040644
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1286) PDF downloads(86) Cited by(2)

Figures and Tables

Figures(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog