Research article

A new approach for accuracy-preassigned finite-time exponential synchronization of neutral-type Cohen–Grossberg memristive neural networks involving multiple time-varying leakage delays

  • Published: 13 May 2025
  • MSC : 93D20

  • We studied the problem of accuracy-preassigned finite-time exponential synchronization of neutral-type Cohen–Grossberg memristive neural networks involving time-varying multiple leakage and transmission delays. First, a novel method was presented to give an estimation formula for solutions of the error system. Then, the estimation formula was used to establish sufficient conditions guaranteeing accuracy-preassigned finite-time exponential synchronization of the considered memristive Cohen–Grossberg neural networks. The obtained sufficient conditions were composed of some linear scalar inequalities that was easy to solve by employing standard tool softwares. Moreover, the approach proposed here was based on the concept of accuracy-preassigned finite-time exponential synchronization, and Lyapunov–Krasovskii functionals or model transformations were not involved, simplifying the theorematic proof. Finally, two numerical examples were given to present the validity of theorematic results.

    Citation: Er-Yong Cong, Yantao Wang, Xian Zhang, Li Zhu. A new approach for accuracy-preassigned finite-time exponential synchronization of neutral-type Cohen–Grossberg memristive neural networks involving multiple time-varying leakage delays[J]. AIMS Mathematics, 2025, 10(5): 10917-10942. doi: 10.3934/math.2025496

    Related Papers:

  • We studied the problem of accuracy-preassigned finite-time exponential synchronization of neutral-type Cohen–Grossberg memristive neural networks involving time-varying multiple leakage and transmission delays. First, a novel method was presented to give an estimation formula for solutions of the error system. Then, the estimation formula was used to establish sufficient conditions guaranteeing accuracy-preassigned finite-time exponential synchronization of the considered memristive Cohen–Grossberg neural networks. The obtained sufficient conditions were composed of some linear scalar inequalities that was easy to solve by employing standard tool softwares. Moreover, the approach proposed here was based on the concept of accuracy-preassigned finite-time exponential synchronization, and Lyapunov–Krasovskii functionals or model transformations were not involved, simplifying the theorematic proof. Finally, two numerical examples were given to present the validity of theorematic results.



    加载中


    [1] B. Hu, Z.-H. Guan, G. Chen, F. L. Lewis, Multistability of delayed hybrid impulsive neural networks with application to associative memories, IEEE T. Neur. Net. Lear., 30 (2019), 1537–1551. http://doi.org/10.1109/TNNLS.2018.2870553 doi: 10.1109/TNNLS.2018.2870553
    [2] S. S. Song, J. Liu, J. N. Guo, J. Wang, Y. X. Xie, J.-H. Cui, Neural-network-based AUV navigation for fast-changing environments, IEEE Internet Things, 7 (2020), 9773–9783. http://doi.org/10.1109/JIOT.2020.2988313 doi: 10.1109/JIOT.2020.2988313
    [3] Z. Y. Dong, X. Wang, X. Zhang, M. J. Hu, T. N. Dinh, Global exponential synchronization of discrete-time high-order switched neural networks and its application to multi-channel audio encryption, Nonlinear Anal.-Hybri., 47 (2023), 101291. http://doi.org/10.1016/j.nahs.2022.101291 doi: 10.1016/j.nahs.2022.101291
    [4] Y. D. Wang, J. W. Xia, Z. Wang, H. Shen, Design of a fault-tolerant output-feedback controller for thickness control in cold rolling mills, Appl. Math. Comput., 369 (2020), 124841. http://doi.org/10.1016/j.amc.2019.124841 doi: 10.1016/j.amc.2019.124841
    [5] C. J. Li, X. H. Yu, T. W. Huang, G. Chen, X. He, A generalized Hopfield network for nonsmooth constrained convex optimization: Lie derivative approach, IEEE T. Neur. Net. Lear., 27 (2016) 308–321. http://doi.org/10.1109/TNNLS.2015.2496658 doi: 10.1109/TNNLS.2015.2496658
    [6] C. X. Huang, B. W. Liu, H. D. Yang, J. D. Cao, Positive almost periodicity on SICNNs incorporating mixed delays and $D$-operator, Nonlinear Anal.-Model., 27 (2022), 719–739. http://doi.org/10.15388/namc.2022.27.27417 doi: 10.15388/namc.2022.27.27417
    [7] X. Wang, G. H. Yang, Fault-tolerant consensus tracking control for linear multiagent systems under switching directed network, IEEE T. Cybernetics, 50 (2020), 1921–1930. http://doi.org/10.1109/TCYB.2019.2901542 doi: 10.1109/TCYB.2019.2901542
    [8] E. Cuevas, M.-A. Diaz-Cortes, E. Mezura-Montes, Corner detection of intensity images with cellular neural networks (CNN) and evolutionary techniques, Neurocomputing, 347 (2019), 82–93. http://doi.org/10.1016/j.neucom.2019.03.014 doi: 10.1016/j.neucom.2019.03.014
    [9] H. J. Li, Y. L. Zhu, L. Jing, Y. Wang, Consensus of second-order delayed nonlinear multi-agent systems via node-based distributed adaptive completely intermittent protocols, Appl. Math. Comput., 326 (2018), 1–15. http://doi.org/10.1016/j.amc.2018.01.005 doi: 10.1016/j.amc.2018.01.005
    [10] X. Zhang, X. H. Meng, Y. T. Wang, C. Y. Liu, Bounded real lemmas for inertial neural networks with unbounded mixed delays and state-dependent switching, Commun. Nonlinear Sci., 119 (2023), 107075. http://doi.org/10.1016/j.cnsns.2022.107075 doi: 10.1016/j.cnsns.2022.107075
    [11] X. Zhang, Z. J. Zhang, Y. T. Wang, X. Wang, New global exponential stability conditions for nonlinear delayed differential systems with three kinds of time-varying delays, Nonlinearity, 37 (2024), 095014. http://doi.org/10.1088/1361-6544/ad6126 doi: 10.1088/1361-6544/ad6126
    [12] A. Pratap, R. Raja, J. D. Cao, G. Rajchakit, F. E. Alsaadi, Further synchronization in finite time analysis for time-varying delayed fractional order memristive competitive neural networks with leakage delay, Neurocomputing, 317 (2018), 110–126. http://doi.org/10.1016/j.neucom.2018.08.016 doi: 10.1016/j.neucom.2018.08.016
    [13] B. W. Liu, Finite-time stability of CNNs with neutral proportional delays and time-varying leakage delays, Math. Method. Appl. Sci., 40 (2017), 167–174. http://doi.org/10.1002/mma.3976 doi: 10.1002/mma.3976
    [14] V. Gokulakrishnan, R. Srinivasan, M. S. Ali, G. Rajchakit, G. Thak ur, Novel LMI-based adaptive boundary synchronisation of fractional-order fuzzy reaction–diffusion BAM neural networks with leakage delay, Int. J. Syst. Sci., 54 (2023), 2975–2998. http://doi.org/10.1080/00207721.2023.2250491 doi: 10.1080/00207721.2023.2250491
    [15] R. X. Li, J. D. Cao, M. Abdel-Aty, Exponential input-to-state stability of quaternion-valued memristive neural networks: Continuous and discrete cases, Int. J. Adapt. Control, 39 (2024), 372–382. http://doi.org/10.1002/acs.3943 doi: 10.1002/acs.3943
    [16] P. Wang, Z. Wang, X. Huang, H. Shen, Dynamic event-triggered control for delayed switched neural networks: A merging signal scheme, Int. J. Robust Nonlin., 33 (2023), 11374–11391. http://doi.org/10.1002/rnc.6950 doi: 10.1002/rnc.6950
    [17] Z. Y. Dong, X. Wang, X. Zhang, A nonsingular M-matrix-based global exponential stability analysis of higher-order delayed discrete-time Cohen–Grossberg neural networks, Appl. Math. Comput., 385 (2020), 125401. http://doi.org/10.1016/j.amc.2020.125401 doi: 10.1016/j.amc.2020.125401
    [18] H.-B. Zeng, Y.-J. Chen, Y. He, X.-M. Zhang, A delay-derivative-dependent switched system model method for stability analysis of linear systems with time-varying delay, Automatica, 175 (2025), 112183. http://doi.org/10.1016/j.automatica.2025.112183 doi: 10.1016/j.automatica.2025.112183
    [19] Y. Xue, K. R. Tu, C. Y. Liu, X. Zhang, Non-fragile extended dissipative synchronization control for uncertain discrete-time neural networks with leakage and unbounded time-varying delays, Chaos Soliton. Fract., 185 (2024), 115072. http://doi.org/10.1016/j.chaos.2024.115072 doi: 10.1016/j.chaos.2024.115072
    [20] K. R. Tu, Y. Xue, X. Zhang, Observer-based resilient dissipativity control for discrete-time memristor-based neural networks with unbounded or bounded time-varying delays, Neural Networks, 175 (2024), 106279. http://doi.org/10.1016/j.neunet.2024.106279 doi: 10.1016/j.neunet.2024.106279
    [21] K. R. Tu, Y. Xue, X. Zhang, A new approach based on system solutions for passivity analysis of discrete-time memristor-based neural networks with time-varying delays, Appl. Math. Comput., 469 (2024), 128551. http://doi.org/10.1016/j.amc.2024.128551 doi: 10.1016/j.amc.2024.128551
    [22] L. Luo, J. G. Jian, S. Zheng, Non-fragile state estimation for second-order memristive neural networks with unbounded time-varying delays, Int. J. Adapt. Control, 36 (2022), 88–103. http://doi.org/10.1002/acs.3343 doi: 10.1002/acs.3343
    [23] P. Anbalagan, R. Ramachandran, J. Alzabut, E. Hincal, M. Niezabitowski, Improved results on finite-time passivity and synchronization problem for fractional-order memristor-based competitive neural networks: Interval matrix approach, Fractal Fract., 6 (2022), 36. http://doi.org/10.3390/fractalfract6010036 doi: 10.3390/fractalfract6010036
    [24] S. L. Yuan, Y. T. Wang, X. Zhang, Global exponential synchronization of switching neural networks with leakage time-varying delays, Commun. Nonlinear Sci., 133 (2024), 107979. http://doi.org/10.1016/j.cnsns.2024.107979 doi: 10.1016/j.cnsns.2024.107979
    [25] W. T. Hua, Y. T. Wang, C. Y. Liu, New method for global exponential synchronization of multi-link memristive neural networks with three kinds of time-varying delays, Appl. Math. Comput., 471 (2024), 128593. http://doi.org/10.1016/j.amc.2024.128593 doi: 10.1016/j.amc.2024.128593
    [26] M. A. Cohen, S. Grossberg, Absolute stability of global pattern formation and parallel memory storage by competitive neural networks, IEEE T. Syst. Man Cy., 13 (1983), 815–826. http://doi.org/10.1109/TSMC.1983.6313075 doi: 10.1109/TSMC.1983.6313075
    [27] C. Wang, H. Zhang, D. L. Wen, M. Q. Shen, L. W. Li, Z. H. Zhang, Novel passivity and dissipativity criteria for discrete-time fractional generalized delayed Cohen–Grossberg neural networks, Commun. Nonlinear Sci., 133 (2024), 107960. http://doi.org/10.1016/j.cnsns.2024.107960 doi: 10.1016/j.cnsns.2024.107960
    [28] Q. Li, L. Q. Zhou, Global asymptotic synchronization of inertial memristive Cohen–Grossberg neural networks with proportional delays, Commun. Nonlinear Sci., 123 (2023), 107295. http://doi.org/10.1016/j.cnsns.2023.107295 doi: 10.1016/j.cnsns.2023.107295
    [29] X. Wang, J. D. Cao, B. Yang, F. B. Chen, Fast fixed-time synchronization control analysis for a class of coupled delayed Cohen-Grossberg neural networks, J. Franklin I., 359 (2022), 1612–1639. http://doi.org/10.1016/j.jfranklin.2022.01.026 doi: 10.1016/j.jfranklin.2022.01.026
    [30] H. B. Jia, D. M. Luo, J. Wang, H. Shen, Fixed-time synchronization for inertial Cohen–Grossberg delayed neural networks: An event-triggered approach, Knowl.-Based Syst., 250 (2022), 109104. http://doi.org/10.1016/j.knosys.2022.109104 doi: 10.1016/j.knosys.2022.109104
    [31] D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, Erratum: The missing memristor found, Nature, 453 (2009), 1154. http://doi.org/10.1038/nature08166 doi: 10.1038/nature08166
    [32] L. Chua, Memristor–the missing circuit element, IEEE Transactions on Circuit Theory, 18 (1971), 507–519. http://doi.org/10.1109/TCT.1971.1083337 doi: 10.1109/TCT.1971.1083337
    [33] H.-B. Zeng, Z.-L. Zhai, H. C. Yan, W. Wang, A new looped functional to synchronize neural networks with sampled-data control, IEEE T. Neur. Net. Lear., 33 (2022), 406–415. http://doi.org/10.1109/TNNLS.2020.3027862 doi: 10.1109/TNNLS.2020.3027862
    [34] S. L. Yuan, Y. T. Wang, X. N. Yang, X. Zhang, Accuracy-preassigned fixed-time synchronization of switching inertial neural networks with time-varying leakage and mixed delays, Neurocomputing, 617 (2025), 128958. http://doi.org/10.1016/j.neucom.2024.128958 doi: 10.1016/j.neucom.2024.128958
    [35] J. B. Lan, X. Wang, X. Zhang, Global robust exponential synchronization of interval BAM neural networks with multiple time-varying delays, Circuits Syst. Signal Process., 43 (2024), 2417–2170. http://doi.org/10.1007/s00034-023-02584-z doi: 10.1007/s00034-023-02584-z
    [36] J. Liu, L. Shu, Q. Chen, S. M. Zhong, Fixed-time synchronization criteria of fuzzy inertial neural networks via Lyapunov functions with indefinite derivatives and its application to image encryption, Fuzzy Set. Syst., 459 (2023), 22–42. http://doi.org/10.1016/j.fss.2022.08.002 doi: 10.1016/j.fss.2022.08.002
    [37] F. Wei, G. C. Chen, Z. G. Zeng, N. Gunasekaran, Finite/fixed-time synchronization of inertial memristive neural networks by interval matrix method for secure communication, Neural Networks, 167 (2023), 168–182. http://doi.org/10.1016/j.neunet.2023.08.015 doi: 10.1016/j.neunet.2023.08.015
    [38] P. Kowsalya, S. S. Mohanrasu, A. Kashkynbayev, P. Gokul, R. Rakkiyapp an, Fixed-time synchronization of inertial Cohen–Grossberg neural networks with state dependent delayed impulse control and its application to multi-image encryption, Chaos Soliton. Fract., 181 (2024), 114693. http://dx.doi.org/10.1016/j.chaos.2024.114693 doi: 10.1016/j.chaos.2024.114693
    [39] Y. C. Shi, J. D. Cao, Finite-time synchronization of memristive Cohen–Grossberg neural networks with time delays, Neurocomputing, 377 (2020), 159–167. http://doi.org/10.1016/j.neucom.2019.10.036 doi: 10.1016/j.neucom.2019.10.036
    [40] F. M. Ren, M. H. Jiang, H. Xu, M. Q. Li, Quasi fixed-time synchronization of memristive Cohen–Grossberg neural networks with reaction-diffusion, Neurocomputing, 415 (2020), 74–83. http://doi.org/10.1016/j.neucom.2020.07.071 doi: 10.1016/j.neucom.2020.07.071
    [41] Y. Z. Cheng, Y. C. Shi, J. Guo, Exponential synchronization of quaternion-valued memristor-based Cohen–Grossberg neural networks with time-varying delays: norm method, Cogn. Neurodyn., 18 (2024), 1943–1953. http://doi.org/10.1007/s11571-023-10057-x doi: 10.1007/s11571-023-10057-x
    [42] L. B. Peng, D. J. Bi, X. F. Li, H. Li, Y. Tang, Y. L. Xie, Multi-synchronization of coupled multi-stable memristive Cohen–Grossberg neural networks with mixed time-delays, Expert Syst. Appl., 255 (2024), 124501. http://doi.org/10.1016/j.eswa.2024.124501 doi: 10.1016/j.eswa.2024.124501
    [43] F. F. Du, J.-G. Lu, Novel methods of finite-time synchronization of fractional-order delayed memristor-based Cohen–Grossberg neural networks, Nonlinear Dyn., 111 (2023), 18985–19001. http://doi.org/10.1007/s11071-023-08880-2 doi: 10.1007/s11071-023-08880-2
    [44] X. Y. Cui, M. W. Zheng, Y. P. Zhang, M. M. Yuan, H. Zhao, Y. M. Zhang, Predefined-time synchronization of time-varying delay fractional-order Cohen–Grossberg neural network based on memristor, Commun. Nonlinear Sci., 139 (2024), 108294. http://doi.org/10.1016/j.cnsns.2024.108294 doi: 10.1016/j.cnsns.2024.108294
    [45] X. Wang, J. H. Park, H. Liu, X. Zhang, Cooperative output-feedback secure control of distributed linear cyber-physical systems resist intermittent DoS attacks, IEEE T. Cybernetics, 51 (2021), 4924–4933. http://doi.org/10.1109/TCYB.2020.3034374 doi: 10.1109/TCYB.2020.3034374
    [46] A. Columbu, R. D. Fuentes, S. Frassu, Uniform-in-time boundedness in a class of local and nonlocal nonlinear attraction-repulsion chemotaxis models with logistics, Nonlinear Anal.-Real, 79 (2024), 104135. http://doi.org/10.1016/j.nonrwa.2024.104135 doi: 10.1016/j.nonrwa.2024.104135
    [47] T. X. Li, D. Acosta-Soba, A. Columbu, G. Viglialoro, Dissipative gradient nonlinearities prevent $\delta$-formations in local and nonlocal attraction-repulsion chemotaxis models, Stud. Appl. Math., 154 (2025), e70018. http://doi.org/10.1111/sapm.70018 doi: 10.1111/sapm.70018
    [48] J. C. Huang, X. M. Wu, Z. W. Tu, Exponential synchronization of Cohen-Grossberg neural networks with delays, IEEE Access, 11 (2023), 49992–49999. http://doi.org/10.1109/ACCESS.2023.3277986 doi: 10.1109/ACCESS.2023.3277986
    [49] K. Gopalsamy, Leakage delays in BAM, J. Math. Anal. Appl., 325 (2007), 1117–1132. http://doi.org/10.1016/j.jmaa.2006.02.039 doi: 10.1016/j.jmaa.2006.02.039
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(746) PDF downloads(63) Cited by(0)

Article outline

Figures and Tables

Figures(12)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog