
This article proposed a flexible three-parameter distribution known as the modified Chen distribution (MCD). The MCD is capable of modeling failure rates with both monotonic and non-monotonic behaviors, including the bathtub curve commonly used to represent device performance in reliability engineering. We examined its statistical properties, such as moments, mean time to failure, mean residual life, Rényi entropy, and order statistics. Model parameters, along with survival and hazard functions, were estimated by utilizing maximum likelihood estimators and two types of bootstrap confidence intervals. Bayesian estimates of the model parameters, along with the survival and hazard functions and their corresponding credible intervals, were derived via the Markov chain Monte Carlo method under balanced squared error loss, balanced linear-exponential loss, and balanced general entropy loss. We also provided a simulated dataset analysis for illustration. Furthermore, the MCD's performance was compared with other popular distributions across two well-known failure time datasets. The findings suggested that the MCD offered the best fit for these datasets, highlighting its potential applicability to real-world problems and its suitability as a model for analyzing and predicting device failure times.
Citation: M. G. M. Ghazal. Modified Chen distribution: Properties, estimation, and applications in reliability analysis[J]. AIMS Mathematics, 2024, 9(12): 34906-34946. doi: 10.3934/math.20241662
[1] | Rashad M. EL-Sagheer, Mohamed S. Eliwa, Khaled M. Alqahtani, Mahmoud El-Morshedy . Bayesian and non-Bayesian inferential approaches under lower-recorded data with application to model COVID-19 data. AIMS Mathematics, 2022, 7(9): 15965-15981. doi: 10.3934/math.2022873 |
[2] | M. G. M. Ghazal, Yusra A. Tashkandy, Oluwafemi Samson Balogun, M. E. Bakr . Exponentiated extended extreme value distribution: Properties, estimation, and applications in applied fields. AIMS Mathematics, 2024, 9(7): 17634-17656. doi: 10.3934/math.2024857 |
[3] | Ahmed Z. Afify, Rehab Alsultan, Abdulaziz S. Alghamdi, Hisham A. Mahran . A new flexible Weibull distribution for modeling real-life data: Improved estimators, properties, and applications. AIMS Mathematics, 2025, 10(3): 5880-5927. doi: 10.3934/math.2025270 |
[4] | Refah Alotaibi, Mazen Nassar, Zareen A. Khan, Ahmed Elshahhat . Statistical analysis of stress–strength in a newly inverted Chen model from adaptive progressive type-Ⅱ censoring and modelling on light-emitting diodes and pump motors. AIMS Mathematics, 2024, 9(12): 34311-34355. doi: 10.3934/math.20241635 |
[5] | Hisham Mahran, Mahmoud M. Mansour, Enayat M. Abd Elrazik, Ahmed Z. Afify . A new one-parameter flexible family with variable failure rate shapes: Properties, inference, and real-life applications. AIMS Mathematics, 2024, 9(5): 11910-11940. doi: 10.3934/math.2024582 |
[6] | Sajid Mehboob Zaidi, Mashail M. AL Sobhi, M. El-Morshedy, Ahmed Z. Afify . A new generalized family of distributions: Properties and applications. AIMS Mathematics, 2021, 6(1): 456-476. doi: 10.3934/math.2021028 |
[7] | Fiaz Ahmad Bhatti, G. G. Hamedani, Mashail M. Al Sobhi, Mustafa Ç. Korkmaz . On the Burr XII-Power Cauchy distribution: Properties and applications. AIMS Mathematics, 2021, 6(7): 7070-7092. doi: 10.3934/math.2021415 |
[8] | Refah Alotaibi, Hassan Okasha, Hoda Rezk, Abdullah M. Almarashi, Mazen Nassar . On a new flexible Lomax distribution: statistical properties and estimation procedures with applications to engineering and medical data. AIMS Mathematics, 2021, 6(12): 13976-13999. doi: 10.3934/math.2021808 |
[9] | Mohieddine Rahmouni, Dalia Ziedan . The Weibull-generalized shifted geometric distribution: properties, estimation, and applications. AIMS Mathematics, 2025, 10(4): 9773-9804. doi: 10.3934/math.2025448 |
[10] | Essam A. Ahmed, Laila A. Al-Essa . Inference of stress-strength reliability based on adaptive progressive type-Ⅱ censing from Chen distribution with application to carbon fiber data. AIMS Mathematics, 2024, 9(8): 20482-20515. doi: 10.3934/math.2024996 |
This article proposed a flexible three-parameter distribution known as the modified Chen distribution (MCD). The MCD is capable of modeling failure rates with both monotonic and non-monotonic behaviors, including the bathtub curve commonly used to represent device performance in reliability engineering. We examined its statistical properties, such as moments, mean time to failure, mean residual life, Rényi entropy, and order statistics. Model parameters, along with survival and hazard functions, were estimated by utilizing maximum likelihood estimators and two types of bootstrap confidence intervals. Bayesian estimates of the model parameters, along with the survival and hazard functions and their corresponding credible intervals, were derived via the Markov chain Monte Carlo method under balanced squared error loss, balanced linear-exponential loss, and balanced general entropy loss. We also provided a simulated dataset analysis for illustration. Furthermore, the MCD's performance was compared with other popular distributions across two well-known failure time datasets. The findings suggested that the MCD offered the best fit for these datasets, highlighting its potential applicability to real-world problems and its suitability as a model for analyzing and predicting device failure times.
MCD | Modified Chen distribution |
HR | Hazard rate |
CD | Chen distribution |
MWED | Modified Weibull extension distribution |
ExpCD | Exponentiated Chen distribution |
GCD | Gamma-Chen distribution |
ECD | Extended Chen distribution |
MECD | Modified extended Chen distribution |
NECD | New extended Chen distribution |
CDF | Cumulative distribution function |
Probability density function | |
SK | Skewness |
KU | Kurtosis |
MTTF | Mean time to failure |
Γ(.) | Gamma function |
MRL | Mean residual life |
MSEs | Mean squared errors |
MLEs | Maximum likelihood estimators |
ACIs | Asymptotic confidence intervals |
CIs | Confidence intervals |
Boot-P | Bootstrap-p |
Boot-T | Bootstrap-t |
MCMC | Markov chain Monte Carlo |
BSEL | Balanced squared error loss |
BLINEXL | Balanced linear-exponential loss |
BGEL | Balanced general entropy loss |
M-H | Metropolis-Hastings |
ℓ | Log-likelihood |
K-S | Kolmogorov-Smirnov |
A∗ | Anderson-Darling |
W∗ | Cramér-von Mises |
AIC | Akaike information criterion |
BIC | Bayesian information criterion |
HQIC | Hannan-Quinn information criterion |
TTT-Transform | Total time on test transform |
EWD | Exponentiated Weibull distribution |
MWD | Modified Weibull distribution |
SZMWD | Sarhan–Zaindin modified Weibull distribution |
ENHD | Exponentiated Nadarajah-Haghighi distribution |
NEWD | New extended Weibull distribution |
ALTWD | Alpha logarithmic transformed Weibull distribution |
LNHD | Logistic Nadarajah-Haghighi distribution |
In survival analysis, the hazard rate (HR) function plays a critical role in studying a product's lifecycle. A bathtub-shaped HR function illustrates a pattern over time that begins with a high initial HR, followed by a period of low, steady HR, and then an increase later in the lifecycle. This pattern is relevant in fields such as product reliability, warranty analysis, infrastructure planning, healthcare systems, manufacturing, aerospace, aviation, and telecommunications. Understanding the HR pattern is essential for determining optimal maintenance strategies. For instance, electronic components or machinery may exhibit a high initial HR due to manufacturing defects or early-life failures, which then decreases to a stable rate during their useful life. Toward the end of the lifecycle, the HR may rise again due to wear and aging. Similarly, manufacturing equipment may experience high early HRs from issues like malfunctioning components or calibration errors, stabilize, and then increase again due to wear and tear or obsolescence. Recognizing this pattern helps in scheduling preventive maintenance, optimizing production efficiency, and reducing downtime [1,2,3,4].
Practitioners analyze statistical probability distributions to determine whether a device exhibits bathtub curve behavior, with a focus on warranty periods and optimal maintenance schedules. Classical probability distributions, like the Weibull, lognormal, and exponential, are often employed for their mathematical flexibility. However, these distributions may not accurately fit data that exhibit non-monotonic behavior, such as the bathtub curve. This limitation can introduce uncertainty in data interpretation and may lead to inconclusive results in the analysis due to the specific characteristics of these distributions.
The Chen distribution (CD) [5], introduced by Chen in 2000, is a life distribution widely used in survival analysis and modeling. It is defined by two parameters and is adaptable for various applications. The model also provides closed-form confidence intervals for the shape parameter and joint confidence regions for both parameters. However, the CD has limitations in accurately modeling certain survival datasets, particularly due to its asymmetric HR, which does not conform to a bathtub shape, and its lack of a scale parameter.
To address these limitations, researchers have developed modified versions of the CD to improve its flexibility in describing diverse data types. For instance, Xie et al. [6] introduced the modified Weibull extension distribution (MWED) by incorporating a scale parameter. Pappas et al. [7] further expanded on this by adding a shape parameter to the MWED, resulting in the Marshall-Olkin extended CD. Sarhan and Apaloo [8] introduced the exponentiated MWED, a four-parameter distribution that extends the MWED. Chaubey and Zhang [9] proposed the exponentiated CD (ExpCD), a three-parameter extension of the CD. Recently, Reis et al. [10] presented the gamma-CD (GCD), and Bhatti et al. [11] developed another flexible model, also named the extended CD (ECD), derived from the generalized Burr-Hatke differential equation. Additionally, Anafo et al. [12] proposed the modified ECD (MECD), and Acquah et al. [13] introduced the new ECD (NECD), a three-parameter distribution.
While these modifications have improved data-fitting capabilities for specific applications, they have failed to accurately represent complex hazard behaviors, particularly non-monotonic patterns such as bathtub-shaped HRs. One significant issue is their inability to model the bathtub curve accurately, often producing hazard functions that resemble 'V' or 'J' shapes, which incorrectly suggest a short operational life for the device. This misrepresentation biases the data, leading to inadequate estimates of device reliability. The research gap lies in the absence of a three-parameter distribution capable of effectively modeling all three phases of a product's lifecycle-early failure, stable operation, and wear-out-without introducing excessive mathematical complexity or practical limitations. Therefore, it is essential to explore alternative methodologies or develop hybrid distributions that better align with the characteristics of the bathtub curve.
In recent years, several models have been developed to represent reliability by combining two distinct classical distributions, even when they belong to the same distribution family. Examples of these models include the additive Chen-Weibull distribution [14], Weibull-CD [15], additive Chen-Gompertz distribution [16], additive CD [17], and additive Chen-Perks distribution [18]. These models are capable of providing a bathtub-shaped hazard function. However, by merging two classical distributions, each with at least two parameters, these models typically involve four or five parameters, increasing their complexity and making parameter estimation more challenging. This highlights the need for a distribution that can effectively handle system reliability with fewer parameters, balancing flexibility and simplicity.
In this article, we present a novel, flexible three-parameter distribution known as the modified CD (MCD). The MCD addresses critical shortcomings of existing models by incorporating an additional parameter that significantly enhances flexibility while maintaining interpretability. This novel three-parameter distribution overcomes the absence of a scale parameter in the original CD and enables the modeling of both monotonic and non-monotonic hazard functions, including the three phases of the bathtub curve-early failure, stable operation, and wear-out. The MCD's highly adaptable HR function exhibits a bathtub shape, offering a versatile and practical solution readily applicable to real-world scenarios. Its simplicity facilitates ease of parameter estimation, making it an attractive option for reliability engineers, and it consistently provides a better fit compared to the other three-parameter models. This unique combination of flexibility, simplicity, and practical applicability distinguishes the MCD from previous modifications, making it a valuable contribution to the field of reliability analysis.
The article is organized as follows: Section 2 introduces the new distribution. Section 3 delves into the statistical properties of the distribution. Section 4 details the parameter estimation methods, including maximum likelihood estimators, two bootstrap confidence intervals, and Bayesian estimates via the Markov chain Monte Carlo (MCMC) method under balanced loss functions. Section 5 presents the results of a simulation study. In Section 6, the applications of the MCD to two real datasets are discussed, highlighting its importance and flexibility. Finally, Section 7 provides the conclusions and future work regarding the MCD.
In this section, we introduce a new three-parameter MCD, obtained by modifying the cumulative distribution function (CDF) of the CD [5]. The CDF of the MCD, parameterized by the vector ψ_=(α,γ,λ), is defined as follows:
F(x;ψ_)=1−eα(2−eγx−exλ),x≥0,α>0,γ,λ≥0, | (2.1) |
where α is the location parameter, allowing the distribution to adjust its position; γ is the scale parameter, which adjusts the scale of the distribution, effectively stretching or compressing the survival function along the time axis; and λ is the shape parameter, which governs the overall shape of the distribution, influencing how rapidly the hazard rate changes.
The probability density function (PDF) and the survival function S(x) are defined as follows:
f(x;ψ_)=α(γeγx+λxλ−1exλ)eα(2−eγx−exλ), | (2.2) |
and
S(x;ψ_)=eα(2−eγx−exλ). | (2.3) |
The HR and cumulative hazard functions are expressed as follows:
h(x;ψ_)=α(γeγx+λxλ−1exλ), | (2.4) |
and
H(x;ψ_)=−α(2−eγx−exλ). | (2.5) |
Different shapes of the PDF of the MCD are shown in Figure 1. The PDF of the MCD can be unimodal, decreasing, or increasing. Equation (2.4) demonstrates that the HR function increases when λ≥1 and displays a bathtub shape when 0<λ<1. For 0<λ<1, the HR function presents a bathtub shape if h′(x∗;ψ_)=0, with x=x∗ being the root of the equation:
αγ2eγx∗+αλ(λx∗λ+λ−1)x∗λ−2ex∗λ=0. | (2.6) |
The HR function decreases when h′(x∗;ψ_)<0 for x<x∗ and increases when h′(x∗;ψ_)>0 for x>x∗. Therefore, the HR function exhibits different behaviors depending on the value of λ, summarized as follows:
● For λ≥1, the HR function increases steadily throughout its entire range (refer to Figure 2(a)).
● For 0<λ<1, the HR function exhibits a bathtub-like shape (refer to Figure 2(b)–(d)).
The pth quantile (xp) of the MCD(ψ_) is calculated as the real solution to the following nonlinear equation:
exλp+eγxp+log(1−p)1α−2=0. | (3.1) |
By setting p=0.25,0.5,0.75, we can determine the first, second, and third quartiles of the MCD.
The mode of the MCD is obtained by solving the following nonlinear equation:
α(γ2eγx+λ(λ−1)xλ−2exλ+λ2x2λ−2exλ−α(γeγx+λxλ−1exλ)2)eα(2−eγx−exλ)=0. | (3.2) |
Equations (3.1) and (3.2) lack simple closed form solutions, necessitating the use of numerical methods.
Theorem 3.1. Given that X follows the MCD(ψ_), the rth moment of X, for r=1,2,⋯ is defined as
μ′r=reα∞∑i=0∞∑m=0(−1)iimαiγmi!m!(m+r)μ′r+m,CD, | (3.3) |
where μ′m+r,CD is the (m+r)th noncentral moment of the CD.
Proof. See Appendix A.
Using the first four ordinary moments of the MCD, the measures of skewness (SK) and kurtosis (KU) can be determined as follows:
SK=μ′3−3μ′1μ′2+2(μ′1)3(μ′2−(μ′1)2)32, |
and
KU=μ′4−4μ′1μ′3+6(μ′1)2μ′2−3(μ′1)4(μ′2−(μ′1)2)2. |
Table 1 presents the values of the first four moments, variance, SK, and KU for the MCD, taking into account different combinations of α,γ, and λ.
α | γ | λ | μ′1 | μ′2 | μ′3 | μ′4 | Variance | SK | KU |
0.005 | 0.05 | 0.6 | 13.8919 | 221.33 | 3820.78 | 69869.7 | 28.3468 | -0.27487 | 2.6252 |
0.01 | 0.05 | 0.6 | 10.8699 | 139.955 | 1980.23 | 29941.7 | 21.8012 | -0.14749 | 2.48003 |
2.5 | 0.05 | 0.6 | 0.17946 | 0.08393 | 0.06045 | 0.05701 | 0.05172 | 2.28031 | 9.99219 |
8.5 | 0.05 | 0.6 | 0.03337 | 0.00363 | 0.00069 | 0.00019 | 0.00252 | 3.20996 | 18.6808 |
12.5 | 0.05 | 0.6 | 0.01873 | 0.00121 | 0.00014 | 0.00002 | 0.00086 | 3.4785 | 21.9745 |
0.05 | 0.01 | 0.6 | 5.32591 | 37.6848 | 307.028 | 2749.55 | 9.31943 | 0.2479 | 2.40194 |
0.05 | 0.1 | 0.6 | 5.21106 | 36.3474 | 292.825 | 2597.57 | 9.1922 | 0.2732 | 2.41148 |
0.05 | 0.6 | 0.6 | 3.36323 | 14.5046 | 70.27 | 366.975 | 3.19327 | 0.00146 | 2.17677 |
0.05 | 0.7 | 0.6 | 3.0149 | 11.5151 | 49.1126 | 224.945 | 2.42551 | -0.06084 | 2.17804 |
0.05 | 7.5 | 0.6 | 0.33831 | 0.13413 | 0.05773 | 0.02628 | 0.01967 | -0.34755 | 2.49154 |
0.5 | 0.05 | 0.01 | 7.58978 | 192.348 | 5774.72 | 193139. | 134.743 | 1.45101 | 4.09513 |
0.5 | 0.05 | 0.1 | 5.42 | 118.097 | 3299.9 | 105529. | 88.7206 | 2.03199 | 6.63337 |
0.5 | 0.05 | 0.9 | 0.92172 | 1.24406 | 2.02079 | 3.69775 | 0.39449 | 0.59283 | 2.72154 |
0.5 | 0.05 | 1.5 | 0.8876 | 0.95825 | 1.15228 | 1.48947 | 0.17042 | -0.01116 | 2.27333 |
0.5 | 0.05 | 3.5 | 0.91325 | 0.88495 | 0.89096 | 0.92264 | 0.05093 | -0.8901 | 3.69432 |
Theorem 3.2. Assume X is a continuous random variable following the MCD(ψ_). The incomplete moment of X is then given by:
ms(x)=αγe2α∞∑i,j,k=0(−1)i+jαi+jjki!j!k!(−(1+i)γ)−(s+kλ+1)γ1+αλe2α∞∑i,j,k,l=0(−1)i+jαi+jjki!j!k!l!(−iγ)−(s+(k+l+1)λ)γ2, |
where
γ1=Γ(s+kλ+1)−Γ(s+kλ+1,−(1+i)γt),ℜ(s+kλ+1)>0, |
and
γ2=Γ(s+(k+l+1)λ)−Γ(s+(k+l+1)λ,−iγt),ℜ(s+(k+l+1)λ)>0. |
Proof. See Appendix A.
Theorem 3.3. Given that X follows the MCD(ψ_), the mean time to failure (MTTF) of the MCD is expressed as:
MTTF=eαλ∞∑i,j,k=0k∑l=0(kl)(−1)i+k−lαi+k(iγ)ji!j!k!(l−k)j+1λΓ(j+1λ), | (3.4) |
where Γ(.) denotes the gamma function.
Proof. See Appendix A.
Theorem 3.4. The mean residual life (MRL) of the MCD(ψ_) is expressed as
MX(t)=eαλS(t;ψ_)∞∑i,j,k=0k∑l=0(kl)(−1)i+k−lαi+k(iγ)ji!j!k!(l−k)j+1λΓ(j+1λ). | (3.5) |
Proof. See Appendix A.
Table 2 presents the outcomes of a Monte Carlo simulation for the MRL (MX(t)) and MTTF. We generated N=2000 random samples with sizes of 50,150,250,350, and 450 from the MCD, using various parameter values. The MX(t) was evaluated at time points t=0.1,0.25,0.4,0.9, and 1.5. It was observed that the expected remaining lifetime (MRL) of an individual or system approaches the MTTF as t approaches zero, i.e., MX(t)→ MTTF as t→0, confirming that MTTF=MX(t)|t=0. Additionally, we noticed that MX(t) decreases as t increases for a fixed n, and the mean squared errors (MSEs) (in parentheses) decreases as n increases (see Figure 3). Moreover, the MTTF remained relatively stable across different sample sizes. Figure 4 also presents the trace plots and density estimates for MRL and MTTF produced by the Monte Carlo simulation.
MRL | MTTF | |||||||
(α,γ,λ) | n | t=0.1 | t=0.25 | t=0.4 | t=0.9 | t=1.5 | ||
50 | 2.60597 | 2.52678 | 2.45297 | 2.18303 | 1.88464 | 2.63912 | ||
(0.22248) | (0.23116) | (0.21865) | (0.21054) | (0.21082) | (0.22409) | |||
150 | 2.61128 | 2.5335 | 2.45315 | 2.18143 | 1.89022 | 2.64464 | ||
(0.1316) | (0.13039) | (0.1291) | (0.12584) | (0.1195) | (0.13285) | |||
(0.1,0.3,0.7) | 250 | 2.60598 | 2.52576 | 2.52576 | 2.18685 | 1.89222 | 2.63926 | |
(0.09915) | (0.09924) | (0.09924) | (0.09548) | (0.09315) | (0.10003) | |||
350 | 2.60625 | 2.53115 | 2.45205 | 2.18706 | 1.89143 | 2.64066 | ||
(0.08648) | (0.08422) | (0.08338) | (0.08205) | (0.08094) | (0.08705) | |||
450 | 2.60728 | 2.52918 | 2.52918 | 2.18827 | 1.89012 | 2.64188 | ||
(0.07497) | (0.07534) | (0.07534) | (0.07005) | (0.07043) | (0.07555) | |||
50 | 2.75849 | 2.68387 | 2.58162 | 2.23433 | 1.84612 | 2.79497 | ||
(0.19717) | (0.1933) | (0.18279) | (0.17367) | (0.16343) | (0.20433) | |||
150 | 2.7616 | 2.67429 | 2.56997 | 2.23198 | 1.84866 | 2.79698 | ||
(0.1131) | (0.1124) | (0.10701) | (0.10148) | (0.09569) | (0.11655) | |||
(0.05,0.8,0.5) | 250 | 2.76378 | 2.66893 | 2.56935 | 2.2357 | 1.84827 | 2.80033 | |
(0.08914) | (0.08605) | (0.08498) | (0.07661) | (0.07316) | (0.09193) | |||
350 | 2.76533 | 2.66884 | 2.57279 | 2.23756 | 1.847 | 2.80093 | ||
(0.07301) | (0.07376) | (0.06896) | (0.06506) | (0.06186) | (0.07443) | |||
450 | 2.76165 | 2.67192 | 2.57152 | 2.23481 | 1.84873 | 2.79799 | ||
(0.06531) | (0.06386) | (0.06221) | (0.05932) | (0.05413) | (0.06705) | |||
50 | 0.6629 | 0.65275 | 0.62618 | 0.51821 | 0.39241 | 0.61476 | ||
(0.08957) | (0.09478) | (0.08666) | (0.12123) | (0.16865) | (0.08428) | |||
150 | 0.66787 | 0.65108 | 0.62702 | 0.52379 | 0.39969 | 0.61852 | ||
(0.05097) | (0.05414) | (0.05706) | (0.06844) | (0.08996) | (0.0479) | |||
(0.5,0.8,0.5) | 250 | 0.66542 | 0.65257 | 0.62691 | 0.52351 | 0.39679 | 0.6169 | |
(0.03936) | (0.04194) | (0.04426) | (0.05191) | (0.07032) | (0.03631) | |||
350 | 0.66706 | 0.65238 | 0.62806 | 0.52317 | 0.39847 | 0.61792 | ||
(0.03363) | (0.03433) | (0.03809) | (0.04445) | (0.05975) | (0.03131) | |||
450 | 0.66569 | 0.65299 | 0.62707 | 0.52219 | 0.39836 | 0.61669 | ||
(0.03014) | (0.03127) | (0.03237) | (0.03864) | (0.05212) | (0.0277) |
Theorem 3.5. Given that X follows the MCD(ψ_), the Rényi entropy of X is given by
IR(ρ)=11−ρlogρ∑i=0∞∑j,k,l=0(ρi)(−1)i+kαρ+j+kγρ−iρj+kλi(i+k)le2ραj!k!l!((i−j−ρ)γ)(i+l)λ−i+1×Γ((i+l)λ−i+1). |
Proof. See Appendix A.
Theorem 3.6. Consider an ordered sample {Xi}ni=1,n≥1 from the MCD(ψ_). The rth moments of the lth order statistic are given as
μ(r)l:n(x)=l−1∑j=0(−1)jn!j!(n−l)!(l−j−1)!(n+j+1−l)μ′r(x;α′,γ,λ), | (3.6) |
where μ′r(x;α′,γ,λ) is provided in Eq (3.3), with the parameters α′=(n+j+1−l)α,γ,λ.
Proof. See Appendix A.
In this subsection, we estimate the parameters α,γ, and λ of the MCD using maximum likelihood estimators (MLEs), along with the functions S(x) and h(x). Additionally, we calculate asymptotic confidence intervals (ACIs) for α,γ,λ,S(x), and h(x) by leveraging the normality property of the corresponding MLEs.
Consider x_=(x1,…,xn) as an observed sample drawn from the MCD with an unknown parameter vector ψ_=(α,γ,λ)T. Based on Eq (2.2), the likelihood function of MCD can be expressed as follows:
L(D|ψ_)=αneα∑ni=1(2−eγxi−exλi)n∏i=1(γeγxi+λxλ−1iexλi). | (4.1) |
The log-likelihood function can then be derived as:
ℓ(D|ψ_)=nlog(α)+αn∑i=1(2−eγxi−exλi)+n∑i=1log(γeγxi+λxλ−1iexλi). | (4.2) |
To obtain the MLEs of ψ_, we begin by computing the first partial derivatives of ℓ(D|ψ_) with respect to α,γ, and λ. The resulting likelihood equations are as follows:
∂ℓ(D|ψ_)∂α=nα+n∑i=1(2−eγxi−exλi), | (4.3) |
∂ℓ(D|ψ_)∂γ=−αn∑i=1xieγxi+n∑i=1(1+γxi)eγxiγeγxi+λxλ−1iexλi, | (4.4) |
and
∂ℓ(D|ψ_)∂λ=−αn∑i=1xλiexλilog(xi)+n∑i=1(1+λ(1+xλi)log(xi))xλ−1iexλiγeγxi+λxλ−1iexλi. | (4.5) |
By setting these expressions to zero, the MLEs for the parameters ˆψ_=(ˆα,ˆγ,ˆλ)T can be determined by solving the system of nonlinear Eqs (4.3)–(4.5) for α,γ, and λ. Since these equations do not have an analytical solution, numerical methods, such as the Newton–Raphson method, are necessary to find the estimates. Mathematica software provides subroutines for nonlinear optimization problems, and we utilized the FindRoot[{eqn1,eqn2,…},{{x,x0},{y,y0},…}] package for this purpose.
The MLEs for S(x) and h(x) are given by:
ˆS(x)=eˆα(2−eˆγx−exˆλ), |
and
ˆh(x)=ˆα(ˆγeˆγx+λxˆλ−1exˆλ). |
To obtain the CIs for the parameters α,γ, and λ, we require the distributions of the MLEs ˆα,ˆγ, and ˆλ. Since these MLEs do not have closed-form solutions, determining their exact distributions is not feasible. Therefore, we derive ACIs based on the asymptotic normality of these parameters. Under standard regularity conditions, √n(ψ_−ˆψ_) is asymptotically distributed as a multivariate normal N3(0,J−1(ψ_)), where
J(ψ_)=−[∂2ℓ∂α2∂2ℓ∂α∂γ∂2ℓ∂α∂λ⋅∂2ℓ∂γ2∂2ℓ∂γ∂λ⋅⋅∂2ℓ∂λ2], |
where the formulas for the second partial derivatives are provided in Appendix B. The approximate variance-covariance matrix can be evaluated at ˆψ_=(ˆα,ˆγ,ˆλ)T, the MLE of (ˆα,ˆγ,ˆλ)T:
ˆV=−[^Var(ˆα)Cov(ˆα, ˆγ)Cov(ˆα, ˆλ).^Var(ˆγ)Cov(ˆγ, ˆλ)..^Var(ˆλ)]≈J−1(ˆψ_). | (4.6) |
Thus, the (1−τ)100% symmetric approximate normal CIs for ψ_=(α,γ,λ) are given by
(ˆψ_i−zτ2√^Var(ˆψ_ii),ˆψ_i+zτ2√^Var(ˆψ_ii)), |
where i=1,2,3 and zτ2 is the upper τ2 point of the standard normal distribution.
To derive the ACIs for S(x) and h(x), we apply the delta method to compute their variances, as described by Greene [19]. Let A1=(∂S(x)∂α∂S(x)∂γ∂S(x)∂λ) and A2=(∂h(x)∂α∂h(x)∂γ∂h(x)∂λ), where ∂S(x)∂α,∂S(x)∂γ,∂S(x)∂λ,∂h(x)∂α,∂h(x)∂γ, and ∂h(x)∂λ are the first derivatives of S(x) and h(x) with respect to the parameters α,γ, and λ, respectively. The approximate asymptotic variances of ˆS(x) and ˆh(x) are given by
^Var(ˆS(x))=(A1ˆVAT1)(ˆα,ˆγ,ˆλ),^Var(ˆh(x))=(A2ˆVAT2)(ˆα,ˆγ,ˆλ), |
where ATk is the transpose of Ak, for k=1,2. These results yield the ACIs for S(x) and h(x) as
(ˆS(x)∓Zτ2√^Var(ˆS(x))),(ˆh(x)∓Zτ2√^Var(ˆh(x))). |
In this subsection, we present two parametric bootstrap methods for constructing CIs for α,γ,λ,S(x), and h(x). These methods are the percentile bootstrap-p (Boot-P) CI, introduced by Efron [20], and the bootstrap-t (Boot-T) CI, proposed by Hall [21]. The following algorithms outline the process of estimating CIs using both approaches.
Algorithm 1: Boot-P method
1. Begin by using the original dataset x_=X1:n,X2:n,…,Xn:n to compute ˆα,ˆγ, and ˆλ by maximizing Eqs (4.3)–(4.5).
2. Generate a bootstrap sample x_∗=X∗1:n,X∗2:n,…,X∗n:n by performing resampling with replacement.
3. Calculate the MLEs from the bootstrap sample and denote this estimate as ˆφ∗, where φ=(α,γ,λ,S(x),h(x)).
4. Repeat Steps 2 and 3 NBoot times, producing a series of estimates ˆφ∗1,ˆφ∗2,…,ˆφ∗NBoot, where ˆφ∗l=(ˆα∗l,ˆγ∗l,ˆλ∗l,ˆS∗l(x),ˆh∗l(x)) for l=1,2,…,NBoot.
5. Arrange the series of estimates ˆφ∗l,l=1,2,…,NBoot in ascending order, and then compute ˆφ∗(1),ˆφ∗(2),…,ˆφ∗(NBoot).
6. Define ˆG1(u)=P(ˆφ∗≤u) as the CDF of ˆφ∗. Idintify ˆφNBootP=ˆG−11(u) for a given value of u. The approximate bootstrap-P 100(1−τ)% CIs for ˆφ are then given by:
(ˆφNBootP(τ2),ˆφNBootP(1−τ2)). |
Algorithm 2: Boot-T method
1. Follow Steps 1 through 3 as described in the Boot-P method.
2. Compute the T∗φ statistic defined as: T∗φ=(ˆφ∗−ˆφ)√^Var(ˆφ∗), where ^Var(ˆφ∗) is determined using Eq (4.6).
3. Repeat Steps 1 and 2 for NBoot iterations, calculating T∗φ1,T∗φ2,…,T∗φNBoot.
4. Arrange the sequence T∗φ1,T∗φ2,…,T∗φNBoot in ascending order to obtain T∗φ(1),T∗φ(2),…,T∗φ(NBoot).
5. Define ˆG2(u)=P(T∗≤u) as the CDF of T∗. For a given u, set ˆφNBootT=ˆφ+ˆG−12(u)√^Var(ˆφ∗). The approximate bootstrap-T 100(1−τ)% CIs for ˆφ are then:
(ˆφNBootT(τ2),ˆφNBootT(1−τ2)). |
In this subsection, we derive Bayesian estimates and the corresponding CIs for the unknown parameters α,γ, and λ, as well as for the functions S(x) and h(x). Additionally, we apply Bayes estimation using the MCMC method under balanced loss functions, including balanced squared error loss (BSEL), balanced linear-exponential loss (BLINEXL), and balanced general entropy loss (BGEL).
In Bayesian analysis, specifying a loss function is crucial for determining the optimal estimate of an unknown parameter. To comprehensively compare Bayes estimates, we use three types of loss functions: BSEL, BLINEXL, and BGEL. For further research on the balanced loss function, refer to references [22,23,24,25,26].
Assume that the parameters α,γ, and λ are independent random variables, and according to the literature [27,28], they follow gamma prior distributions:
{π1(α)∝αc1−1e−d1α,c1,d1>0,π2(γ)∝γc2−1e−d2γ,c2,d2>0,π3(λ)∝λc3−1e−d3λ,c3,d3>0. |
As a result, the joint prior distribution π(ψ_) for α,γ and λ is
π(ψ_)∝αc1−1γc2−1λc2−1e−(d1α+d2γ+d3λ). | (4.7) |
The posterior distribution of α,γ, and λ, denoted as π∗(ψ_|D), can be derived by integrating the likelihood function from Eq (4.1) with the joint prior distribution from Eq (4.7). By applying Bayes' theorem, the posterior distribution π∗(ψ_|D) for ψ_|D is given by:
π∗(ψ_|D)=L(D|ψ_)×π(ψ_)∫ψ_L(D|ψ_)×π(ψ_)dψ_, |
where ∫ψ_L(D|ψ_)×π(ψ_)dψ_ represents the normalizing constant of the posterior distribution of ψ_, also known as the marginal distribution of D. Since this constant is not required for Bayesian inference using MCMC methods, the posterior distribution is typically expressed as:
π∗(ψ_|D)∝L(D|ψ_)×π(ψ_). | (4.8) |
By substituting Eqs (4.1), (4.7), and (4.8), the joint posterior distribution of ψ_|D is given by:
π∗(ψ_|D)∝αn+c1−1γc2−1λc2−1e−(d1α+d2γ+d3λ)×eα∑ni=1(2−eγxi−exλi)n∏i=1(γeγxi+λxλ−1iexλi). | (4.9) |
The MCMC technique is utilized to generate samples from Eq (4.9). These samples are then used to compute the Bayes estimates of α,γ and λ, as well as related functions like S(x) and h(x), and to construct the CIs. The Gibbs within Metropolis sampler is applied to perform the MCMC technique, which requires deriving the full set of conditional posterior distributions. The marginal posterior density for α,γ, and λ is derived from Eq (4.9) as follows:
π∗1(α|D)∝αn+c1−1e−α(d1−∑ni=1(2−eγxi−exλi)), | (4.10) |
π∗2(γ|α,λ,D)∝γc2−1e−(d2γ+α∑ni=1eγxi)n∏i=1(γeγxi+λxλ−1iexλi), | (4.11) |
and
π∗3(λ|α,γ,D)∝λc3−1e−(d3λ+α∑ni=1exλi)n∏i=1(γeγxi+λxλ−1iexλi). | (4.12) |
The conditional posterior density of α follows a gamma distribution with a shape parameter of (n+c1) and a scale parameter of (d1−∑ni=1(2−eγxi−exλi)). Consequently, samples of α can be generated using any gamma distribution generation method. Although the conditional posteriors of γ and λ do not follow standard forms, they resemble a normal distribution, as shown in Figure 5, making Gibbs sampling impractical. Therefore, the Metropolis-Hastings (M-H) sampler is necessary for implementing the MCMC methodology. We will outline the steps involved in the M-H within the Gibbs sampling method as presented in Algorithm 3.
Algorithm 3: M-H within Gibbs sampling
1. Begin by selecting initial values for the chain (α0,γ0,λ0) and define M as the burn-in period.
2. Set the iteration counter to j=1.
3. Generate αj from a Gamma distribution with parameters (n+c1,d1−∑ni=1(2−eγxi−exλi)).
4. Using the M-H algorithm, generate γ(j) and λ(j) from Eqs (4.11) and (4.12) utilizing normal proposal distributions N(γ(j−1),Var(γ)) and N(λ(j−1),Var(λ)), where Var(γ) and Var(λ) are obtained using Eq (4.6).
● Generate proposals γ∗ from N(γ(j−1),Var(γ)) and λ∗ from N(λ(j−1),Var(λ)).
● Calculate the acceptance probabilities:
ρ1=min[1,π∗2(γ∗|αj,λj−1,D)π∗2(γj−1|αj,λj−1,D)], |
ρ2=min[1,π∗3(λ∗|αj,γj,D)π∗3(λj−1|αj,γj,D)]. |
● Generate u from a Uniform (0,1) distribution.
● If u≤ρ1, accept the proposal and set γ(j)=γ∗; otherwise, set γ(j)=γ(j−1).
● If u≤ρ2, accept the proposal and set λ(j)=λ∗; otherwise, set λ(j)=λ(j−1).
5. Compute S(x) and h(x) as follows:
{S(j)(x)=eα(j)(2−eγ(j)x−exλ(j)),h(j)(x)=α(j)(γ(j)eγ(j)x+λ(j)xλ(j)−1exλ(j)). |
6. Set j=j+1.
7. Repeat Steps 3–6 for N iterations to generate
(α(1),γ(1),λ(1),S(1)(x),h(1)(x)),…,(α(N),γ(N),λ(N),S(N)(x),h(N)(x)). |
8. Calculate the Bayes estimates of φ=(α,,γ,,λ,,S(x),,h(x)) after the burn-in period M as:
ˆφSE=1N−MN∑j=M+1φ(j). |
9. Determine the Bayes estimates of φ under the BSEL, as introduced by Jozani [23], as follows:
ˆφBSE=ωˆφ+1−ωN−MN∑j=M+1φ(j),0≤ω≤1, |
10. Obtain the Bayes estimates of φ under the BLINEXL, as presented by Jozani [22], as follows:
ˆφBLINEX=−1cln[ωe−cˆφ+1−ωN−MN∑j=M+1e−cφ(j)],c≠0. |
11. Compute the Bayes estimates of φ using the BGEL, as outlined by Jozani [25], as follows:
ˆφBGE=[ω(ˆφ)−q+1−ωN−MN∑j=M+1(φ(j))−q]−q,q≠0. |
12. To calculate the CIs for α,γ,λ,S(x), and h(x), first sort the generated values α(l),γ(l),λ(l),S(l)(x), and h(l)(x) for l=1,…,N in ascending order as follows: {α(1)<…<α(N)}, {γ(1)<…<γ(N)}, {λ(1)<…<λ(N)}, {S(1)(x)<…<S(N)(x)}, and {h(1)(x)<…<h(N)(x)}. Then, the (1−τ)100% CIs for φ=(α,γ,λ,S(x),h(x)) are given by (φ(Nτ2),φ(N(1−τ2))).
This section outlines a simulation study evaluating the performance of the MLEs, along with two bootstrap CIs (Boot-P and Boot-T) and Bayesian estimators using MCMC under BSEL, BLINEXL, and BGEL, to estimate the parameters of the MCD, as well as S(x) and h(x). The following steps are employed for the simulation study:
1. Set initial values for the parameters α,γ, and λ, and assume the samples sizes n=50,100,150, and 200.
2. Generate a random sample x1,…,xn of size n from Eq (3.1).
3. Replicate each sample N=1000 times.
4. Calculate the bias and MSE for the parameters α,γ, and λ, as well as for S(x) and h(x), according to the procedures detailed in Subsection 4.1.
5. Apply Algorithm 1 of the Boot-B to calculate the bias and MSE for the parameters α,γ, and λ, as well as for S(x) and h(x).
6. Use Algorithm 2 of the Boot-T to compute the bias and MSE for the parameters α, γ, and λ, as well as for S(x) and h(x).
7. Use Algorithm 3 to calculate the bias and MSE for the parameters α, γ, and λ, as well as S(x) and h(x), utilizing chosen hyperparameter values to generate posterior samples from each marginal posterior distribution.
8. Compute the bias and MSEs using the results from Step 7 based on BSEL, BLINEXL, and BGEL.
All simulations were performed using Wolfram Mathematica, generating 11000 MCMC samples and discarding the first 1000 samples as the 'burn-in' period.
The bias and MSE of the MCD parameter estimates across various sample sizes using MLE, Bayes MCMC, Boot-P, and Boot-T are presented in Table 3. The table indicates that the MLEs and Bayes MCMC demonstrate similar efficiency. Additionally, Boot-P outperforms Boot-T by exhibiting smaller MSE for α,γ,λ,S(x), and h(x). Tables 4–8 provide numerical results on bias and MSE for α,γ,λ,S(x), and h(x) based on Bayes estimates under BSEL, BLINEXL, and BGEL. The results indicate that Bayes estimates under these loss functions maintain low bias and MSE across all scenarios. Furthermore, both bias and MSE tend to decrease as the sample size increases, indicating the consistency of the estimates. When ω=0, Bayes estimates yield better results for α,γ,λ,S(x), and h(x) by achieving smaller MSEs. Bayes estimates under BLINEXL with c=0.7 consistently produce better estimates with smaller MSE when ω=0, while BGEL with q=0.7 offers improved estimates with smaller MSE when ω=0.9. Finally, Figure 6 presents trace plots and density estimates derived from the Monte Carlo simulation conducted for the MCD, utilizing n=450 and t=0.9, with parameters α=0.1, γ=0.3, and λ=0.7.
MLEs | MCMC | Boot-P | Boot-T | |||||||||
Parameter | n | Bais | MSE | Bais | MSE | Bais | MSE | Bais | MSE | |||
α | 0.00366 | 0.00933 | -0.00133 | 0.00921 | 0.01479 | 0.02178 | -0.01045 | 0.09226 | ||||
γ | 0.01552 | 0.00341 | 0.00337 | 0.00368 | 0.02639 | 0.00811 | 0.01019 | 0.04692 | ||||
λ | 50 | 0.00366 | 0.0005 | 0.00428 | 0.0006 | 0.00652 | 0.00098 | -0.00025 | 0.02511 | |||
S(x) | 0.00156 | 0.00398 | 0.01328 | 0.00389 | -0.00047 | 0.00829 | -0.00028 | 0.06576 | ||||
h(x) | 0.01785 | 0.00536 | 0.00346 | 0.00455 | 0.03707 | 0.01415 | 0.00554 | 0.06868 | ||||
α | 0.00214 | 0.00434 | -0.00192 | 0.00414 | 0.00237 | 0.00815 | -0.00416 | 0.05789 | ||||
γ | 0.00619 | 0.00166 | 0.00222 | 0.00163 | 0.01411 | 0.00316 | 0.004 | 0.03953 | ||||
λ | 100 | 0.00126 | 0.00022 | 0.00117 | 0.00022 | 0.00218 | 0.00042 | -0.00058 | 0.01391 | |||
S(x) | 0.00055 | 0.00189 | 0.00704 | 0.00186 | 0.00175 | 0.00358 | -0.00025 | 0.04499 | ||||
h(x) | 0.00703 | 0.00219 | -0.00031 | 0.00199 | 0.01364 | 0.00471 | 0.00118 | 0.03927 | ||||
α | 0.00445 | 0.00313 | 0.00163 | 0.00302 | 0.00708 | 0.00608 | -0.00036 | 0.0448 | ||||
γ | 0.00371 | 0.00101 | 0.00117 | 0.001 | 0.00651 | 0.002 | 0.00231 | 0.03077 | ||||
λ | 150 | 0.00103 | 0.00014 | 0.00095 | 0.00014 | 0.00198 | 0.00029 | -0.00019 | 0.0135 | |||
S(x) | -0.00161 | 0.00136 | 0.00281 | 0.00132 | -0.00188 | 0.00259 | -0.00225 | 0.03784 | ||||
h(x) | 0.00696 | 0.00158 | 0.00201 | 0.00147 | 0.01165 | 0.00316 | 0.00254 | 0.03371 | ||||
α | 0.00066 | 0.00207 | -0.00138 | 0.00202 | 0.00216 | 0.00425 | -0.00241 | 0.04174 | ||||
γ | 0.00328 | 0.00075 | 0.00143 | 0.00074 | 0.00608 | 0.00145 | 0.00254 | 0.03099 | ||||
λ | 200 | 0.00053 | 0.0001 | 0.00047 | 0.0001 | 0.0008 | 0.0002 | -0.00034 | 0.01045 | |||
S(x) | 0.00046 | 0.00091 | 0.00374 | 0.0009 | 0.0004 | 0.00185 | 0.00007 | 0.0307 | ||||
h(x) | 0.00328 | 0.00105 | -0.00034 | 0.001 | 0.00632 | 0.0022 | 0.00048 | 0.03235 |
BSEL | BLINEXL | BGEL | |||||||||
n | ω | c=−7 | c=0.3 | c=7 | q=−7 | q=0.3 | q=7 | ||||
0.0 | Bais | -0.00133 | 0.03469 | -0.0027 | -0.03051 | 0.0522 | -0.01284 | -0.07194 | |||
MSE | 0.00921 | 0.01321 | 0.00913 | 0.00837 | 0.01357 | 0.00906 | 0.01263 | ||||
0.2 | Bais | 0.00017 | 0.02629 | -0.0008 | -0.0212 | 0.0522 | -0.00799 | -0.05782 | |||
MSE | 0.00922 | 0.01202 | 0.00916 | 0.00832 | 0.01357 | 0.00906 | 0.01119 | ||||
50 | 0.5 | Bais | 0.00166 | 0.0172 | 0.00111 | -0.01115 | 0.02658 | -0.00305 | -0.03879 | ||
MSE | 0.00925 | 0.01084 | 0.00921 | 0.00852 | 0.01069 | 0.00913 | 0.00986 | ||||
0.9 | Bais | 0.00316 | 0.00723 | 0.00302 | -0.00022 | 0.01006 | 0.00196 | -0.0101 | |||
MSE | 0.00931 | 0.0097 | 0.0093 | 0.00906 | 0.00959 | 0.00927 | 0.00914 | ||||
0.0 | Bais | -0.00192 | 0.01424 | -0.00257 | -0.01664 | 0.02418 | -0.00758 | -0.03679 | |||
MSE | 0.00414 | 0.00481 | 0.00413 | 0.00404 | 0.005 | 0.00414 | 0.00515 | ||||
0.2 | Bais | -0.0007 | 0.01073 | -0.00116 | -0.01128 | 0.02418 | -0.00469 | -0.02753 | |||
MSE | 0.0042 | 0.00464 | 0.00419 | 0.00404 | 0.005 | 0.00418 | 0.00468 | ||||
100 | 0.5 | Bais | 0.00052 | 0.00711 | 0.00025 | -0.00569 | 0.01167 | -0.00178 | -0.01654 | ||
MSE | 0.00425 | 0.00449 | 0.00425 | 0.00411 | 0.0045 | 0.00423 | 0.00435 | ||||
0.9 | Bais | 0.00174 | 0.0034 | 0.00167 | 0.00014 | 0.00463 | 0.00116 | -0.00309 | |||
MSE | 0.00431 | 0.00437 | 0.00431 | 0.00426 | 0.00436 | 0.00431 | 0.00427 | ||||
0.0 | Bais | 0.00163 | 0.01231 | 0.00119 | -0.00841 | 0.01913 | -0.00216 | -0.02174 | |||
MSE | 0.00302 | 0.00338 | 0.00301 | 0.0029 | 0.00351 | 0.00299 | 0.00332 | ||||
0.2 | Bais | 0.00248 | 0.01 | 0.00217 | -0.00468 | 0.01913 | -0.00019 | -0.01499 | |||
MSE | 0.00305 | 0.0033 | 0.00304 | 0.00293 | 0.00351 | 0.00302 | 0.00314 | ||||
150 | 0.5 | Bais | 0.00332 | 0.00765 | 0.00315 | -0.00084 | 0.01064 | 0.00179 | -0.0074 | ||
MSE | 0.00308 | 0.00322 | 0.00308 | 0.00299 | 0.00324 | 0.00306 | 0.00305 | ||||
0.9 | Bais | 0.00417 | 0.00526 | 0.00413 | 0.00311 | 0.00604 | 0.00379 | 0.00127 | |||
MSE | 0.00312 | 0.00315 | 0.00312 | 0.00309 | 0.00315 | 0.00311 | 0.00308 | ||||
0.0 | Bais | -0.00138 | 0.00647 | -0.00171 | -0.00889 | 0.01172 | -0.00423 | -0.01887 | |||
MSE | 0.00202 | 0.00216 | 0.00202 | 0.002 | 0.00222 | 0.00202 | 0.00229 | ||||
0.2 | Bais | -0.00077 | 0.00476 | -0.001 | -0.0061 | 0.01172 | -0.00277 | -0.01364 | |||
MSE | 0.00203 | 0.00213 | 0.00203 | 0.002 | 0.00222 | 0.00203 | 0.00216 | ||||
200 | 0.5 | Bais | -0.00016 | 0.00301 | -0.00029 | -0.00324 | 0.00526 | -0.0013 | -0.00792 | ||
MSE | 0.00205 | 0.0021 | 0.00204 | 0.00202 | 0.0021 | 0.00204 | 0.00207 | ||||
0.9 | Bais | 0.00045 | 0.00125 | 0.00042 | -0.00033 | 0.00183 | 0.00017 | -0.0016 | |||
MSE | 0.00206 | 0.00207 | 0.00206 | 0.00205 | 0.00207 | 0.00206 | 0.00205 |
BSEL | BLINEXL | BGEL | |||||||||
n | ω | c=−7 | c=0.3 | c=7 | q=−7 | q=0.3 | q=7 | ||||
0.0 | Bais | 0.00337 | 0.01615 | 0.0028 | -0.01049 | 0.0342 | -0.01527 | -0.13227 | |||
MSE | 0.00368 | 0.00394 | 0.00368 | 0.00391 | 0.0044 | 0.00662 | 0.03407 | ||||
0.2 | Bais | 0.00702 | 0.01603 | 0.00661 | -0.00342 | 0.0342 | -0.0084 | -0.12589 | |||
MSE | 0.00353 | 0.00375 | 0.00352 | 0.00362 | 0.0044 | 0.00597 | 0.03353 | ||||
50 | 0.5 | Bais | 0.01066 | 0.01584 | 0.01042 | 0.0042 | 0.02384 | -0.00049 | -0.13227 | ||
MSE | 0.00344 | 0.00359 | 0.00343 | 0.00342 | 0.00375 | 0.00519 | 0.03286 | ||||
0.9 | Bais | 0.0143 | 0.01561 | 0.01424 | 0.01424 | 0.01774 | 0.00981 | 0.00981 | |||
MSE | 0.00341 | 0.00345 | 0.00341 | 0.00338 | 0.00348 | 0.00407 | 0.03168 | ||||
0.0 | Bais | 0.00222 | 0.00741 | 0.002 | -0.00303 | 0.01601 | -0.00116 | -0.02388 | |||
MSE | 0.00163 | 0.00173 | 0.00163 | 0.0016 | 0.00187 | 0.00165 | 0.00299 | ||||
0.2 | Bais | 0.00341 | 0.00705 | 0.00325 | -0.00033 | 0.01601 | 0.00101 | -0.01773 | |||
MSE | 0.00164 | 0.00171 | 0.00163 | 0.00159 | 0.00187 | 0.00164 | 0.00274 | ||||
100 | 0.5 | Bais | 0.0046 | 0.00668 | 0.00451 | 0.00242 | 0.01036 | 0.00321 | -0.02388 | ||
MSE | 0.00164 | 0.00168 | 0.00164 | 0.00161 | 0.00172 | 0.00164 | 0.00251 | ||||
0.9 | Bais | 0.00579 | 0.00631 | 0.00577 | 0.00577 | 0.00727 | 0.00544 | 0.00544 | |||
MSE | 0.00165 | 0.00166 | 0.00165 | 0.00164 | 0.00167 | 0.00165 | 0.00231 | ||||
0.0 | Bais | 0.00117 | 0.00454 | 0.00103 | -0.00221 | 0.01034 | -0.00096 | -0.01314 | |||
MSE | 0.001 | 0.00104 | 0.001 | 0.00098 | 0.0011 | 0.001 | 0.00122 | ||||
0.2 | Bais | 0.00194 | 0.00429 | 0.00183 | -0.00046 | 0.01034 | 0.00043 | -0.00889 | |||
MSE | 0.001 | 0.00103 | 0.001 | 0.00098 | 0.0011 | 0.001 | 0.00112 | ||||
150 | 0.5 | Bais | 0.0027 | 0.00405 | 0.00264 | 0.00131 | 0.00647 | 0.00183 | -0.01314 | ||
MSE | 0.001 | 0.00102 | 0.001 | 0.00099 | 0.00103 | 0.001 | 0.00105 | ||||
0.9 | Bais | 0.00346 | 0.0038 | 0.00345 | 0.00345 | 0.00442 | 0.00324 | 0.00324 | |||
MSE | 0.00101 | 0.00101 | 0.00101 | 0.001 | 0.00101 | 0.00101 | 0.00101 | ||||
0.0 | Bais | 0.00143 | 0.00389 | 0.00132 | -0.00105 | 0.00821 | -0.00012 | -0.00862 | |||
MSE | 0.00074 | 0.00077 | 0.00074 | 0.00073 | 0.00081 | 0.00074 | 0.00083 | ||||
0.2 | Bais | 0.00198 | 0.00371 | 0.00191 | 0.00024 | 0.00821 | 0.0009 | -0.00545 | |||
MSE | 0.00074 | 0.00076 | 0.00074 | 0.00073 | 0.00081 | 0.00074 | 0.00078 | ||||
200 | 0.5 | Bais | 0.00254 | 0.00353 | 0.0025 | 0.00153 | 0.00531 | 0.00192 | -0.00862 | ||
MSE | 0.00074 | 0.00076 | 0.00074 | 0.00074 | 0.00077 | 0.00074 | 0.00075 | ||||
0.9 | Bais | 0.0031 | 0.00334 | 0.00309 | 0.00309 | 0.0038 | 0.00294 | 0.00294 | |||
MSE | 0.00075 | 0.00075 | 0.00075 | 0.00074 | 0.00075 | 0.00075 | 0.00074 |
BSEL | BLINEXL | BGEL | |||||||||
n | ω | c=−7 | c=0.3 | c=7 | q=−7 | q=0.3 | q=7 | ||||
0.0 | Bais | 0.00428 | 0.00602 | 0.00421 | 0.00263 | 0.01709 | 0.00144 | -0.01366 | |||
MSE | 0.0006 | 0.00066 | 0.00059 | 0.00054 | 0.00104 | 0.00055 | 0.00059 | ||||
0.2 | Bais | 0.0041 | 0.00533 | 0.00405 | 0.00293 | 0.01709 | 0.00209 | -0.01366 | |||
MSE | 0.00056 | 0.00061 | 0.00056 | 0.00053 | 0.00104 | 0.00053 | 0.00053 | ||||
50 | 0.5 | Bais | 0.00391 | 0.00462 | 0.00388 | 0.00324 | 0.01031 | 0.00276 | -0.00651 | ||
MSE | 0.00054 | 0.00056 | 0.00053 | 0.00051 | 0.00073 | 0.00051 | 0.00048 | ||||
0.9 | Bais | 0.00373 | 0.00391 | 0.00372 | 0.00356 | 0.0056 | 0.00344 | 0.00015 | |||
MSE | 0.00051 | 0.00051 | 0.00051 | 0.0005 | 0.00056 | 0.0005 | 0.00047 | ||||
0.0 | Bais | 0.00117 | 0.00191 | 0.00114 | 0.00044 | 0.00715 | -0.00015 | -0.00708 | |||
MSE | 0.00022 | 0.00023 | 0.00022 | 0.00021 | 0.00029 | 0.00021 | 0.00024 | ||||
0.2 | Bais | 0.00119 | 0.00171 | 0.00117 | 0.00069 | 0.00715 | 0.00027 | -0.00708 | |||
MSE | 0.00022 | 0.00023 | 0.00022 | 0.00021 | 0.00029 | 0.00021 | 0.00022 | ||||
100 | 0.5 | Bais | 0.00122 | 0.00152 | 0.00121 | 0.00093 | 0.00386 | 0.00069 | -0.0028 | ||
MSE | 0.00022 | 0.00022 | 0.00022 | 0.00022 | 0.00024 | 0.00022 | 0.00021 | ||||
0.9 | Bais | 0.00125 | 0.00132 | 0.00124 | 0.00117 | 0.00195 | 0.00111 | 0.00011 | |||
MSE | 0.00022 | 0.00022 | 0.00022 | 0.00022 | 0.00022 | 0.00022 | 0.00021 | ||||
0.0 | Bais | 0.00095 | 0.00143 | 0.00093 | 0.00047 | 0.00492 | 0.00008 | -0.00448 | |||
MSE | 0.00014 | 0.00014 | 0.00014 | 0.00013 | 0.00017 | 0.00014 | 0.00015 | ||||
0.2 | Bais | 0.00097 | 0.00131 | 0.00096 | 0.00064 | 0.00492 | 0.00036 | -0.00448 | |||
MSE | 0.00014 | 0.00014 | 0.00014 | 0.00014 | 0.00017 | 0.00014 | 0.00014 | ||||
150 | 0.5 | Bais | 0.001 | 0.00119 | 0.00099 | 0.00081 | 0.0027 | 0.00065 | -0.00148 | ||
MSE | 0.00014 | 0.00014 | 0.00014 | 0.00014 | 0.00015 | 0.00014 | 0.00013 | ||||
0.9 | Bais | 0.00102 | 0.00107 | 0.00102 | 0.00097 | 0.00146 | 0.00093 | 0.00035 | |||
MSE | 0.00014 | 0.00014 | 0.00014 | 0.00014 | 0.00014 | 0.00014 | 0.00014 | ||||
0.0 | Bais | 0.00047 | 0.00083 | 0.00046 | 0.00012 | 0.00344 | -0.00018 | -0.00356 | |||
MSE | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.00011 | 0.0001 | 0.0001 | ||||
0.2 | Bais | 0.00049 | 0.00074 | 0.00048 | 0.00024 | 0.00344 | 0.00003 | -0.00356 | |||
MSE | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.00011 | 0.0001 | 0.0001 | ||||
200 | 0.5 | Bais | 0.00051 | 0.00065 | 0.0005 | 0.00037 | 0.00176 | 0.00025 | -0.00127 | ||
MSE | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | ||||
0.9 | Bais | 0.00053 | 0.00056 | 0.00053 | 0.00049 | 0.00085 | 0.00046 | 0.00006 | |||
MSE | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
BSEL | BLINEXL | BGEL | |||||||||
n | ω | c=−7 | c=0.3 | c=7 | q=−7 | q=0.3 | q=7 | ||||
0.0 | Bais | 0.01328 | 0.02651 | 0.01272 | 0.0004 | 0.03947 | 0.0071 | -0.02832 | |||
MSE | 0.00389 | 0.00446 | 0.00387 | 0.00363 | 0.00493 | 0.00384 | 0.0051 | ||||
0.2 | Bais | 0.00976 | 0.01948 | 0.00936 | 0.00073 | 0.03947 | 0.00542 | -0.02128 | |||
MSE | 0.00388 | 0.00419 | 0.00387 | 0.00373 | 0.00493 | 0.00388 | 0.00474 | ||||
50 | 0.5 | Bais | 0.00624 | 0.01208 | 0.00602 | 0.00108 | 0.0195 | 0.00375 | -0.0129 | ||
MSE | 0.00391 | 0.00402 | 0.0039 | 0.00384 | 0.00397 | 0.00392 | 0.00439 | ||||
0.9 | Bais | 0.00273 | 0.00426 | 0.00267 | 0.00144 | 0.00657 | 0.0021 | -0.00254 | |||
MSE | 0.00396 | 0.00397 | 0.00396 | 0.00395 | 0.00389 | 0.00396 | 0.00408 | ||||
0.0 | Bais | 0.00704 | 0.01378 | 0.00675 | 0.0004 | 0.02096 | 0.00389 | -0.0132 | |||
MSE | 0.00186 | 0.00201 | 0.00185 | 0.00179 | 0.00216 | 0.00184 | 0.00211 | ||||
0.2 | Bais | 0.00509 | 0.00994 | 0.00489 | 0.00044 | 0.02096 | 0.00288 | -0.00948 | |||
MSE | 0.00186 | 0.00194 | 0.00186 | 0.00182 | 0.00216 | 0.00185 | 0.00202 | ||||
100 | 0.5 | Bais | 0.00314 | 0.00599 | 0.00303 | 0.00049 | 0.0095 | 0.00188 | -0.00544 | ||
MSE | 0.00187 | 0.0019 | 0.00187 | 0.00185 | 0.00189 | 0.00187 | 0.00195 | ||||
0.9 | Bais | 0.0012 | 0.00193 | 0.00117 | 0.00053 | 0.00291 | 0.00088 | -0.00102 | |||
MSE | 0.00189 | 0.00189 | 0.00189 | 0.00188 | 0.00188 | 0.00189 | 0.0019 | ||||
0.0 | Bais | 0.00281 | 0.00732 | 0.00261 | -0.00166 | 0.01232 | 0.00068 | -0.01064 | |||
MSE | 0.00132 | 0.00138 | 0.00132 | 0.00131 | 0.00143 | 0.00133 | 0.00149 | ||||
0.2 | Bais | 0.00148 | 0.0047 | 0.00135 | -0.00164 | 0.01232 | -0.00001 | -0.0081 | |||
MSE | 0.00133 | 0.00136 | 0.00133 | 0.00132 | 0.00143 | 0.00134 | 0.00144 | ||||
150 | 0.5 | Bais | 0.00016 | 0.00203 | 0.00008 | -0.00163 | 0.00433 | -0.00069 | -0.00543 | ||
MSE | 0.00134 | 0.00135 | 0.00134 | 0.00134 | 0.00134 | 0.00135 | 0.0014 | ||||
0.9 | Bais | -0.00117 | -0.00069 | -0.00119 | -0.00161 | -0.00007 | -0.00138 | -0.00259 | |||
MSE | 0.00135 | 0.00135 | 0.00135 | 0.00136 | 0.00135 | 0.00136 | 0.00137 | ||||
0.0 | Bais | 0.00374 | 0.00714 | 0.00359 | 0.00036 | 0.01094 | 0.00214 | -0.0063 | |||
MSE | 0.0009 | 0.00095 | 0.0009 | 0.00089 | 0.00099 | 0.0009 | 0.00096 | ||||
0.2 | Bais | 0.00275 | 0.00517 | 0.00265 | 0.00039 | 0.01094 | 0.00164 | -0.00437 | |||
MSE | 0.0009 | 0.00093 | 0.0009 | 0.00089 | 0.00099 | 0.0009 | 0.00094 | ||||
200 | 0.5 | Bais | 0.00177 | 0.00317 | 0.00171 | 0.00042 | 0.00486 | 0.00113 | -0.00236 | ||
MSE | 0.00091 | 0.00091 | 0.00091 | 0.0009 | 0.00092 | 0.00091 | 0.00092 | ||||
0.9 | Bais | 0.00079 | 0.00114 | 0.00078 | 0.00045 | 0.00159 | 0.00063 | -0.00026 | |||
MSE | 0.00091 | 0.00091 | 0.00091 | 0.00091 | 0.00091 | 0.00091 | 0.00091 |
BSEL | BLINEXL | BGEL | |||||||||
n | ω | c=−7 | c=0.3 | c=7 | q=−7 | q=0.3 | q=7 | ||||
0.0 | Bais | 0.00346 | 0.02075 | 0.00278 | -0.01134 | 0.03946 | -0.00414 | -0.04214 | |||
MSE | 0.00455 | 0.00598 | 0.00451 | 0.00394 | 0.0071 | 0.00435 | 0.00515 | ||||
0.2 | Bais | 0.00777 | 0.01993 | 0.00729 | -0.00327 | 0.03946 | 0.00227 | -0.03116 | |||
MSE | 0.00474 | 0.0058 | 0.00471 | 0.00411 | 0.0071 | 0.00453 | 0.0046 | ||||
50 | 0.5 | Bais | 0.01209 | 0.01907 | 0.01181 | 0.00535 | 0.02745 | 0.00884 | -0.01623 | ||
MSE | 0.00498 | 0.00561 | 0.00495 | 0.00448 | 0.00601 | 0.00481 | 0.00426 | ||||
0.9 | Bais | 0.01641 | 0.01816 | 0.01634 | 0.0146 | 0.02041 | 0.01557 | 0.00666 | |||
MSE | 0.00526 | 0.00542 | 0.00525 | 0.00509 | 0.00552 | 0.00521 | 0.00471 | ||||
0.0 | Bais | -0.00031 | 0.0075 | -0.00064 | -0.00758 | 0.01715 | -0.00405 | -0.02299 | |||
MSE | 0.00199 | 0.00224 | 0.00199 | 0.00189 | 0.00249 | 0.00197 | 0.00227 | ||||
0.2 | Bais | 0.00189 | 0.00736 | 0.00166 | -0.00336 | 0.01715 | -0.00077 | -0.01592 | |||
MSE | 0.00204 | 0.00222 | 0.00203 | 0.00193 | 0.00249 | 0.00201 | 0.00208 | ||||
100 | 0.5 | Bais | 0.0041 | 0.00722 | 0.00396 | 0.001 | 0.01128 | 0.00255 | -0.00747 | ||
MSE | 0.0021 | 0.00221 | 0.00209 | 0.00201 | 0.00229 | 0.00207 | 0.00199 | ||||
0.9 | Bais | 0.0063 | 0.00708 | 0.00627 | 0.0055 | 0.00813 | 0.00591 | 0.00295 | |||
MSE | 0.00217 | 0.00219 | 0.00216 | 0.00214 | 0.00221 | 0.00216 | 0.00209 | ||||
0.0 | Bais | 0.00201 | 0.00719 | 0.00179 | -0.00293 | 0.01369 | -0.0005 | -0.01329 | |||
MSE | 0.00147 | 0.0016 | 0.00146 | 0.00139 | 0.00174 | 0.00144 | 0.00152 | ||||
0.2 | Bais | 0.00349 | 0.00712 | 0.00334 | -0.00004 | 0.01369 | 0.00171 | -0.00811 | |||
MSE | 0.0015 | 0.00159 | 0.00149 | 0.00143 | 0.00174 | 0.00147 | 0.00145 | ||||
150 | 0.5 | Bais | 0.00498 | 0.00705 | 0.00489 | 0.00292 | 0.00974 | 0.00395 | -0.00225 | ||
MSE | 0.00153 | 0.00159 | 0.00153 | 0.00148 | 0.00164 | 0.00151 | 0.00145 | ||||
0.9 | Bais | 0.00646 | 0.00698 | 0.00644 | 0.00593 | 0.00766 | 0.0062 | 0.00447 | |||
MSE | 0.00157 | 0.00158 | 0.00157 | 0.00155 | 0.0016 | 0.00156 | 0.00153 | ||||
0.0 | Bais | -0.00034 | 0.00346 | -0.0005 | -0.00399 | 0.00836 | -0.00221 | -0.01176 | |||
MSE | 0.001 | 0.00106 | 0.001 | 0.00098 | 0.00112 | 0.001 | 0.00108 | ||||
0.2 | Bais | 0.00075 | 0.0034 | 0.00064 | -0.00185 | 0.00836 | -0.00057 | -0.00775 | |||
MSE | 0.00101 | 0.00106 | 0.00101 | 0.00099 | 0.00112 | 0.00101 | 0.00103 | ||||
200 | 0.5 | Bais | 0.00183 | 0.00335 | 0.00177 | 0.00032 | 0.00536 | 0.00107 | -0.00335 | ||
MSE | 0.00103 | 0.00105 | 0.00103 | 0.00101 | 0.00107 | 0.00102 | 0.00101 | ||||
0.9 | Bais | 0.00292 | 0.00329 | 0.0029 | 0.00253 | 0.0038 | 0.00272 | 0.00153 | |||
MSE | 0.00104 | 0.00105 | 0.00104 | 0.00104 | 0.00105 | 0.00104 | 0.00103 |
This section illustrates the application of the MCD using two real datasets from reliability engineering. The first dataset is the Aarset data [36], which contains the lifetimes of fifty devices. The second dataset is the Meeker-Escobar data [37], which represents the failure and operating times of thirty devices. These datasets were chosen because their underlying distributions exhibit a characteristic bathtub shape (see Figures 7 and 10). This makes them widely recognized as benchmark datasets in the literature for evaluating the fit of distributions with a bathtub-shaped HR function. Additionally, they enable practitioners to effectively utilize the HR function for predictive maintenance and reliability analysis in engineering applications. We compared the MCD with competing models listed in Table 9, using various metrics such as Log-likelihood (ℓ), Kolmogorov-Smirnov (K-S) statistics with their corresponding P-values, Anderson-Darling (A∗), Cramér-von Mises (W∗), and several information criteria including the Akaike information criterion (AIC), Bayesian information criterion (BIC), and Hannan-Quinn information criterion (HQIC). All computations were carried out using Wolfram Mathematica 12.3 software.
Model | Abbreviation | CDF | Author |
Exponentiated Weibull distribution | EWD | (1−e−(xα)γ)λ | Weibull [29] |
Modified Weibull extension distribution | MWED | 1−eαλ(1−e(xα)γ) | Xie et al. [6] |
Modified Weibull distribution | MWD | 1−e−αxγeλx | Lai et al. [30] |
Sarhan–Zaindin modified Weibull distribution | SZMWD | 1−e−αx−γxλ | Sarhan and Zaindin [31] |
Exponentiated Nadarajah-Haghighi distribution | ENHD | (1−e1−(αx+1)γ)λ | Lemonte [32] |
New extended Weibull distribution | NEWD | 1−e−αxγe−λx | Peng X, Yan [33] |
Exponentiated Chen distribution | ExpCD | (1−eλ(1−exγ))α | Chaubey and Zhang [9] |
Alpha logarithmic transformed Weibull distribution | ALTWD | 1−log(α−(α−1)(1−e−γxλ))log(α) | Nassar et al. [34] |
Logistic Nadarajah-Haghighi distribution | LNHD | ((γx+1)α−1)λ((γx+1)α−1)λ+1 | Peña-Ramírez et al. [35] |
Gamma-Chen distribution | GCD | Γ(α,−((1−exγ)λ))Γ(α) | Reis et al. [10] |
Extended Chen distribution | ECD | 1−(λ(exγ−1)+1)−α | Bhatti et al. [11] |
Modified extended Chen distribution | MECD | (λ(ex−γ−1)+1)−α | Anafo et al. [12] |
New extended Chen distribution | NECD | 1−e((1−α)(1−eλ(1−exγ))+λ(1−exγ)) | Acquah et al. [13] |
The Aarset dataset [36], which represents the failure times of fifty electronic devices, has been extensively analyzed in the literature, with the latest studies referenced in [38,39,40]. As demonstrated by the scaled total time on test transform (TTT-transform) plot in Figure 7, the dataset exhibits a bathtub-shaped HR. Table 10 provides estimates for MLEs and Bayes MCMC, along with their 95% CIs, for α,γ,λ,S(x), and h(x) applied to the Aarset data. Additionally, Table 11 presents estimates for Boot-P and Boot-T methods, including their corresponding 95% CIs, for α,γ,λ,S(x), and h(x).
MLEs | MCMC | ||||
Parameter | Mean | CIs | Mean | CIs | |
α | 0.03828 | [0.00822,0.06834] | 0.03644 | [0.02674,0.04785] | |
γ | 0.04539 | [0.03570,0.05509] | 0.04623 | [0.04491,0.04734] | |
λ | 0.22366 | [0.13919,0.30814] | 0.22402 | [0.22045,0.22778] | |
S(x) | 0.9424 | [0.89674,0.98805] | 0.94511 | [0.92853,0.95939] | |
h(x) | 0.03023 | [0.01280,0.04765] | 0.02884 | [0.02116,0.03784] |
Boot-P | Boot-T | ||||
Parameter | Mean | CIs | Mean | CIs | |
α | 0.03837 | [0.01478,0.06898] | 0.05773 | [0.05044,0.07173] | |
γ | 0.04639 | [0.03811,0.05669] | 0.04074 | [0.03672,0.04353] | |
λ | 0.22867 | [0.19140,0.28079] | 0.21100 | [0.17201,0.25403] | |
S(x) | 0.94271 | [0.89800,0.97764] | 0.91318 | [0.89157,0.92455] | |
h(x) | 0.02977 | [0.01342,0.05329] | 0.03822 | [0.03584,0.04294] |
Bayes estimates derived from BSEL, BLINEXL, and BGEL functions, with various values of c,q, and ω for the parameters α,γ,λ, as well as S(x) and h(x), are summarized in Table 12. Further, Table 13 describes the MRL at specific time points and the Rényi entropy at different ρ values for the fitted MCD. Observations from Table 13 indicate that the MRL tends to increase and then decrease as time progresses, reflecting its inverse relationship with the bathtub-shaped HR of the MCD. The calculated MTTF values are 46.4929, 46.9939, 44.9965, and 41.0331 for the MLE, Bayes MCMC, Boot-P, and Boot-T methods, respectively.
BSEL | BLINEXL | BGEL | ||||||||
Parameters | ω | c=−7 | c=0.3 | c=7 | q=−7 | q=0.3 | q=7 | |||
0.0 | 0.03644 | 0.03655 | 0.03644 | 0.03634 | 0.03882 | 0.03593 | 0.03324 | |||
0.2 | 0.03681 | 0.03689 | 0.03681 | 0.03673 | 0.03882 | 0.03638 | 0.03388 | |||
α | 0.5 | 0.03736 | 0.03742 | 0.03736 | 0.03731 | 0.03856 | 0.03708 | 0.03508 | ||
0.9 | 0.0381 | 0.03811 | 0.0381 | 0.03808 | 0.03834 | 0.03804 | 0.03744 | |||
0.0 | 0.04623 | 0.04623 | 0.04623 | 0.04623 | 0.04628 | 0.04622 | 0.04616 | |||
0.2 | 0.04606 | 0.04606 | 0.04606 | 0.04606 | 0.04628 | 0.04605 | 0.046 | |||
γ | 0.5 | 0.04581 | 0.04581 | 0.04581 | 0.04581 | 0.04585 | 0.0458 | 0.04576 | ||
0.9 | 0.04548 | 0.04548 | 0.04548 | 0.04548 | 0.04549 | 0.04547 | 0.04546 | |||
0.0 | 0.22402 | 0.22403 | 0.22402 | 0.224 | 0.22406 | 0.22401 | 0.22395 | |||
0.2 | 0.22395 | 0.22396 | 0.22395 | 0.22394 | 0.22406 | 0.22394 | 0.22389 | |||
λ | 0.5 | 0.22384 | 0.22385 | 0.22384 | 0.22383 | 0.22387 | 0.22384 | 0.22381 | ||
0.9 | 0.2237 | 0.2237 | 0.2237 | 0.2237 | 0.2237 | 0.2237 | 0.22369 | |||
0.0 | 0.94511 | 0.94532 | 0.9451 | 0.94489 | 0.9453 | 0.94506 | 0.94484 | |||
0.2 | 0.94456 | 0.94474 | 0.94456 | 0.94438 | 0.9453 | 0.94453 | 0.94435 | |||
S(x) | 0.5 | 0.94375 | 0.94387 | 0.94375 | 0.94364 | 0.94386 | 0.94373 | 0.94361 | ||
0.9 | 0.94267 | 0.94269 | 0.94267 | 0.94264 | 0.94269 | 0.94266 | 0.94264 | |||
0.0 | 0.02884 | 0.02891 | 0.02884 | 0.02878 | 0.03073 | 0.02843 | 0.0263 | |||
0.2 | 0.02912 | 0.02917 | 0.02912 | 0.02907 | 0.03073 | 0.02878 | 0.02681 | |||
h(x) | 0.5 | 0.02954 | 0.02957 | 0.02953 | 0.0295 | 0.03049 | 0.02931 | 0.02774 | ||
0.9 | 0.03009 | 0.03009 | 0.03009 | 0.03008 | 0.03028 | 0.03004 | 0.02958 |
MRL | Rényi entropy | ||||||||
t | ˆMXMLE(t) | ˆMXMC(t) | ˆMXBP(t) | ˆMXBT(t) | ρ | ˆIRMLE(ρ) | ˆIRMC(ρ) | ˆIRBP(ρ) | ˆIRBT(ρ) |
0.1 | 47.8786 | 48.3209 | 46.3159 | 43.0059 | 0.05 | 4.90862 | 4.89888 | 4.88590 | 4.94248 |
3 | 48.5382 | 48.8454 | 46.9415 | 44.7115 | 0.1 | 4.82664 | 4.81795 | 4.80363 | 4.85051 |
7 | 46.9675 | 47.1855 | 45.3885 | 43.7523 | 0.5 | 4.64095 | 4.63616 | 4.61766 | 4.61981 |
18 | 40.9398 | 40.9881 | 39.4432 | 38.8195 | 0.95 | 4.49995 | 4.50185 | 4.47948 | 4.39064 |
36 | 30.2408 | 30.0981 | 28.9069 | 29.3765 | 1.05 | 4.43638 | 4.44214 | 4.41888 | 4.27358 |
47 | 24.0695 | 23.8479 | 22.8502 | 23.7994 | 1.1 | 4.38635 | 4.39528 | 4.37209 | 4.1769 |
55 | 19.9546 | 19.6939 | 18.8284 | 20.0391 | 1.14 | 4.32721 | 4.33998 | 4.31786 | 4.05704 |
67 | 14.54 | 14.2504 | 13.57 | 15.0241 | 1.17 | 4.26124 | 4.27835 | 4.25878 | 3.91518 |
79 | 10.1487 | 9.86372 | 9.34976 | 10.8672 | 1.2 | 4.15734 | 4.18144 | 4.16882 | 3.67086 |
86 | 8.07022 | 7.80065 | 7.37329 | 8.85311 | 1.297 | 0.04325 | 0.31359 | 1.80489 | -7.68537 |
Table 14 compares the MLEs, ℓ, K-S statistics, P-values, A∗, W∗, AIC, BIC, and HQIC for the MCD and other competitive models. The MCD shows the smallest values for K-S, A∗, W∗, AIC, BIC, and HQIC, and the highest ℓ and P-value, highlighting its superior fit to the Aarset data compared to other models. Figure 7 shows the empirical and fitted scaled TTT-transform plot for the MCD, while Figure 8 depicts the survival, hazard, and cumulative hazard functions of the MCD in comparison to competitive models. Figure 8 offers a graphical depiction of the devices' behavior over time. Figure 8(a), (b) illustrates the lifetimes of the Aarset data in relation to the MCD's survival equation and competing models, which are crucial in reliability engineering for estimating lifetimes and maintenance times to enhance product life. Notably, the MCD shows a better fit with Kaplan-Meier empirical reliability compared to other distributions, suggesting it more accurately describes lifetimes, maintenance times, and MTTF. Figure 8(c), (d) depicts the failure patterns, showing that the MCD aligns more closely with Kaplan-Meier empirical behavior compared to other distributions, suggesting it provides a more accurate representation of device failures. This information is valuable for product engineers aiming to improve designs, reduce costs, and estimate maintenance expenses. Finally, Figure 9 presents boxplots for the Aarset data and samples generated from competing distributions, showing that the MCD's boxplot more accurately reflects the range and variability of the Aarset data compared to other models. Consequently, the graphical results (Figures 8 and 9) support the numerical findings, endorsing the MCD as a suitable model for analyzing and predicting device failure times.
Model | α | γ | λ | ℓ | K-S | P-value | A∗ | W∗ | AIC | BIC | HQIC |
MCD | 0.03828 | 0.04539 | 0.22367 | -223.576 | 0.13309 | 0.33855 | 1.49466 | 0.20501 | 453.152 | 458.888 | 455.336 |
EWD | 91.7152 | 5.16712 | 0.13253 | -228.506 | 0.20599 | 0.02872 | 3.32948 | 0.54402 | 463.012 | 468.748 | 465.196 |
MWED | 13.7467 | 0.5877 | 0.00876 | -231.647 | 0.15924 | 0.15833 | 2.84918 | 0.37327 | 469.293 | 475.029 | 471.477 |
MWD | 0.0624 | 0.35481 | 0.02332 | -227.155 | 0.13374 | 0.33281 | 1.80574 | 0.26388 | 460.31 | 466.047 | 462.495 |
SZMWD | 0.02138 | 3.6×10−12 | 5.9428 | -229.603 | 0.22203 | 0.01446 | 5.31127 | 0.72025 | 465.206 | 470.942 | 467.39 |
ENHD | 0.00033 | 36.963 | 0.67336 | -233.406 | 0.21206 | 0.02229 | 3.3716 | 0.5945 | 472.811 | 478.547 | 474.996 |
NEWD | 0.02781 | 0.94224 | 0.02025 | -240.979 | 0.19358 | 0.04716 | 3.49506 | 0.53188 | 487.959 | 493.695 | 490.143 |
ExpCD | 0.24482 | 0.5288 | 3.1×10−5 | -226.843 | 0.14152 | 0.26925 | 1.6762 | 0.23859 | 459.686 | 465.423 | 461.871 |
ALTWD | 6.7×109 | 0.72573 | 0.75982 | -225.448 | 0.18677 | 0.0611 | 3.41212 | 0.48072 | 456.896 | 462.632 | 459.081 |
LNHD | 2552.13 | 1.1×10−5 | 0.75368 | -239.45 | 0.22755 | 0.01128 | 3.76041 | 0.71367 | 484.899 | 490.636 | 487.084 |
GCD | 179.746 | 0.02729 | 91.0347 | -251.22 | 0.22165 | 0.0147 | 4.26388 | 0.7452 | 508.44 | 514.176 | 510.625 |
ECD | 2494.84 | 0.34452 | 8.2×10−6 | -233.172 | 0.16685 | 0.12357 | 2.69969 | 0.38103 | 472.344 | 478.08 | 474.528 |
MECD | 0.34834 | 1.34825 | 450.937 | -250.132 | 0.2294 | 0.01037 | 3.77874 | 0.67492 | 506.263 | 511.999 | 508.448 |
NECD | 0.78773 | 0.33732 | 0.02567 | -233.009 | 0.16164 | 0.14661 | 2.65212 | 0.3678 | 472.017 | 477.753 | 474.202 |
The second application, referred to as the Meeker-Escobar data [37], includes the failure and running times of thirty electronic devices. This dataset has been extensively analyzed by numerous researchers [39,41]. As indicated by the scaled TTT-transform plot in Figure 10, the dataset exhibits a bathtub-shaped HR. Table 17 presents MLEs, Bayes MCMC estimates, and their 95% CIs for the parameters α,γ,λ, as well as S(x) and h(x), based on the Meeker-Escobar data. Additionally, Table 15 provides estimates for the Boot-P and Boot-T methods, along with their corresponding 95% CIs for α,γ,λ,S(x), and h(x).
MLEs | MCMC | ||||
Parameter | Mean | CIs | Mean | CIs | |
α | 0.01244 | [−0.00432,0.02920] | 0.01113 | [0.00739,0.01574] | |
γ | 0.01610 | [0.01165,0.02055] | 0.01610 | [0.01590,0.01634] | |
λ | 0.23778 | [0.15879,0.31677] | 0.25096 | [0.23929,0.25862] | |
S(x) | 0.98130 | [0.95568,1.00692] | 0.98338 | [0.97651,0.98894] | |
h(x) | 0.00993 | [−0.00110,0.02097] | 0.00927 | [0.00620,0.01298] |
Table 16 summarizes the results of Bayes estimates using the BSEL, BLINEXL, and BGEL functions, with varying values of c for BLINEXL, q for BGEL, and different values of ω for α,γ,λ, as well as S(x) and h(x) applied to the Meeker-Escobar data. Furthermore, Table 18 presents the MRL at specific time points and the Rényi entropy for different values of ρ for the fitted MCD. The table shows that the MRL for the MLE, Bayes MCMC, Boot-P, and Boot-T methods decreases over time, consistent with the empirical MRL curve. The calculated MTTF values are 182.437,180.078,112.624, and 112.547 for the MLE, Bayes MCMC, Boot-P, and Boot-T methods, respectively.
Boot-P | Boot-T | ||||
Parameter | Mean | CIs | Mean | CIs | |
α | 0.04538 | [0.00663,0.41552] | 0.01285 | [0.00709,0.01841] | |
γ | 0.01456 | [0.00542,0.01834] | 0.01716 | [0.00952,0.01843] | |
λ | 0.20108 | [0.00300,0.27096] | 0.29390 | [0.02539,0.40543] | |
S(x) | 0.93809 | [0.48515,0.99007] | 0.98063 | [0.97190,0.98936] | |
h(x) | 0.01234 | [0.00419,0.02306] | 0.01159 | [0.00755,0.01532] |
BSEL | BLINEXL | BGEL | ||||||||
Parameters | ω | c=−7 | c=0.3 | c=7 | q=−7 | q=0.3 | q=7 | |||
0.0 | 0.01113 | 0.01115 | 0.01113 | 0.01111 | 0.01236 | 0.01086 | 0.00946 | |||
0.2 | 0.01139 | 0.0114 | 0.01139 | 0.01138 | 0.01236 | 0.01116 | 0.00972 | |||
α | 0.5 | 0.01178 | 0.01179 | 0.01178 | 0.01177 | 0.0124 | 0.01162 | 0.01024 | ||
0.9 | 0.01231 | 0.01231 | 0.01231 | 0.01231 | 0.01243 | 0.01227 | 0.01165 | |||
0.0 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | 0.01611 | 0.0161 | 0.0161 | |||
0.2 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | 0.01611 | 0.0161 | 0.0161 | |||
γ | 0.5 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | ||
0.9 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | |||
0.0 | 0.25096 | 0.25107 | 0.25095 | 0.25084 | 0.25134 | 0.25087 | 0.25041 | |||
0.2 | 0.24832 | 0.24851 | 0.24831 | 0.24813 | 0.25134 | 0.24818 | 0.24744 | |||
λ | 0.5 | 0.24437 | 0.24458 | 0.24436 | 0.24416 | 0.24512 | 0.24421 | 0.24345 | ||
0.9 | 0.2391 | 0.23917 | 0.23909 | 0.23903 | 0.23936 | 0.23905 | 0.23883 | |||
0.0 | 0.98338 | 0.98341 | 0.98337 | 0.98334 | 0.98341 | 0.98337 | 0.98333 | |||
0.2 | 0.98296 | 0.98299 | 0.98296 | 0.98293 | 0.98341 | 0.98296 | 0.98292 | |||
S(x) | 0.5 | 0.98234 | 0.98236 | 0.98234 | 0.98232 | 0.98236 | 0.98233 | 0.98231 | ||
0.9 | 0.98151 | 0.98151 | 0.98151 | 0.9815 | 0.98151 | 0.98151 | 0.9815 | |||
0.0 | 0.00927 | 0.00929 | 0.00927 | 0.00926 | 0.01025 | 0.00906 | 0.00793 | |||
0.2 | 0.00941 | 0.00941 | 0.00941 | 0.0094 | 0.01025 | 0.00923 | 0.00813 | |||
h(x) | 0.5 | 0.0096 | 0.00961 | 0.0096 | 0.0096 | 0.0101 | 0.00948 | 0.00852 | ||
0.9 | 0.00986 | 0.00987 | 0.00986 | 0.00986 | 0.00996 | 0.00984 | 0.00948 |
MRL | Rényi entropy | ||||||||
t | ˆMXMLE(t) | ˆMXMC(t) | ˆMXBP(t) | ˆMXBT(t) | ρ | ˆIRMLE(ρ) | ˆIRMC(ρ) | ˆIRBP(ρ) | ˆIRBT(ρ) |
2 | 185.68 | 182.774 | 122.322 | 114.115 | 0.05 | 6.11361 | 6.12668 | 6.00771 | 6.00235 |
23 | 176.927 | 174.005 | 122.457 | 106.483 | 0.1 | 6.04549 | 6.05904 | 5.91615 | 5.91246 |
30 | 172.942 | 170.153 | 120.197 | 103.509 | 0.5 | 5.90156 | 5.91919 | 5.67348 | 5.69585 |
65 | 151.346 | 149.506 | 105.213 | 88.8658 | 0.75 | 5.86021 | 5.88203 | 5.55805 | 5.63642 |
88 | 136.565 | 135.454 | 94.0043 | 79.7009 | 0.95 | 5.82477 | 5.85202 | 5.41355 | 5.59515 |
147 | 99.0509 | 99.6887 | 65.2195 | 57.9184 | 1.05 | 5.8001 | 5.83224 | 5.27971 | 5.57287 |
212 | 62.0075 | 63.7823 | 38.3393 | 36.9219 | 1.15 | 5.75875 | 5.80137 | 4.97211 | 5.54557 |
266 | 37.6572 | 39.5497 | 22.2458 | 22.7113 | 1.25 | 5.62521 | 5.72194 | 1.84899 | 5.50297 |
293 | 28.1902 | 29.9186 | 16.4039 | 17.0268 | 1.3 | 5.12429 | 5.54309 | -13.7509 | 5.4637 |
300 | 26.038 | 27.7078 | 15.1097 | 15.7213 | 1.33 | 2.11833 | 5.03057 | -23.567 | 5.42279 |
Table 19 compares the MLEs, ℓ, K-S statistics, P-values, A∗, W∗, AIC, BIC, and HQIC for the MCD and other competitive models. The MCD shows the lowest values for K-S, A∗, W∗, AIC, BIC, and HQIC, along with the highest ℓ and P-value, indicating a better fit to the Meeker-Escobar data compared to the other models. Figure 10 shows the empirical and fitted scaled TTT-transform plot for the MCD, while Figure 11 illustrates the survival, hazard, and cumulative hazard functions of the MCD in comparison to competitive models fitted to the Meeker-Escobar data. Figure 11(a), (b) highlights the lifetimes of the Meeker-Escobar data relative to the MCD's survival equation and competing models. The Kaplan-Meier empirical reliability indicates that the MCD provides a superior fit compared to other analyzed distributions, offering a more accurate representation of lifetimes, maintenance times, and MTTF. Figure 11(c), (d) illustrates the failure patterns, showing that the MCD aligns more closely with empirical behavior compared to other distributions, providing a more accurate representation of device failures. Finally, Figure 12 shows boxplots for the Meeker-Escobar data and samples from competing distributions, with the MCD's boxplot closely resembling the range and variability of the Meeker-Escobar data, indicating a more accurate representation of device failure times compared to other fitted distributions. Thus, Figures 11 and 12 reinforce the numerical results, supporting the MCD as a suitable model for analyzing and predicting device failure times. This suggests that the MCD is more appropriate for modeling device failures over its lifespan, making it a valuable tool for reliability engineering practitioners.
Model | α | γ | λ | ℓ | K-S | P-value | A∗ | W∗ | AIC | BIC | HQIC |
MCD | 0.01244 | 0.0161 | 0.23778 | -174.798 | 0.15872 | 0.43642 | 1.34189 | 0.19434 | 355.595 | 359.799 | 356.94 |
EWD | 323.87 | 6.64787 | 0.13725 | -177.22 | 0.23369 | 0.0755 | 2.14356 | 0.34271 | 360.44 | 364.644 | 361.785 |
MWED | 85.1553 | 0.80479 | 0.00162 | -179.206 | 0.1933 | 0.21226 | 2.02396 | 0.27698 | 364.413 | 368.616 | 365.757 |
MWD | 0.01796 | 0.45363 | 0.00713 | -178.064 | 0.18046 | 0.28262 | 1.53354 | 0.22922 | 362.127 | 366.331 | 363.472 |
SZMWD | 0.00223 | 4.5×10−13 | 5.02732 | -175.747 | 0.16851 | 0.36181 | 2.00039 | 0.24917 | 357.495 | 361.699 | 358.84 |
ENHD | 0.00005 | 70.2516 | 0.94626 | -181.082 | 0.23237 | 0.07834 | 1.98779 | 0.34077 | 368.164 | 372.368 | 369.509 |
NEWD | 0.00051 | 1.44294 | 4.23584 | -185.993 | 0.2198 | 0.11017 | 2.7857 | 0.34492 | 377.987 | 382.191 | 379.332 |
ExpCD | 0.27993 | 0.43182 | 1.2×10−5 | -177.673 | 0.19256 | 0.21591 | 1.49685 | 0.22888 | 361.345 | 365.549 | 362.69 |
ALTWD | 3.7×106 | 0.03066 | 1.07231 | -176.204 | 0.20509 | 0.16024 | 2.25124 | 0.30822 | 358.407 | 362.611 | 359.752 |
LNHD | 3329.5 | 1.6×10−6 | 1.0893 | -185.175 | 0.21233 | 0.1337 | 1.92729 | 0.33754 | 376.349 | 380.553 | 377.694 |
GCD | 187.181 | 0.03519 | 82.7541 | -189.995 | 0.20968 | 0.14296 | 2.34507 | 0.418 | 385.99 | 390.193 | 387.334 |
ECD | 438.538 | 0.31131 | 0.00001 | -181.039 | 0.20587 | 0.15719 | 1.83489 | 0.27395 | 368.078 | 372.282 | 369.423 |
MECD | 0.18024 | 4.69419 | 6.4×1011 | -181.096 | 0.21816 | 0.11502 | 1.70224 | 0.29189 | 368.193 | 372.397 | 369.538 |
NECD | 0.75238 | 0.30632 | 0.00691 | -180.885 | 0.19931 | 0.18432 | 1.83022 | 0.26586 | 367.771 | 371.974 | 369.116 |
In this paper, we introduced and examined a novel lifetime distribution called the MCD for use as a reliability and survival model. The HR function of this distribution is straightforward and capable of encompassing both increasing and bathtub-shaped HRs. We studied several statistical properties of this distribution, such as moments, MTTF, MRL, Rényi entropy, and order statistics. These properties establish a robust mathematical framework for understanding the MCD's behavior and its real-world applications. The unknown model parameters, along with the survival and hazard functions, were estimated using maximum likelihood, two parametric bootstrap methods (Boot-P and Boot-T), and Bayesian methods via MCMC with SEL, BSEL, BLINEXL, and BGEL loss functions. The MCD's flexibility with various estimation methods and loss functions makes it a versatile and powerful tool for reliability practitioners. Additionally, ACIs for the parameters, as well as survival and hazard functions, were obtained using various methods. A simulation study was conducted to evaluate the performance of the proposed methods. It found that MLE and Bayesian MCMC exhibited similar efficiency, whereas the Boot-P method consistently outperformed Boot-T by demonstrating lower MSE across diverse parameter combinations and sample sizes. To demonstrate the flexibility of the MCD, we analyzed two real-world reliability datasets (Aarset and Meeker-Escobar). In both cases, the MCD demonstrably outperforms competing distributions, evidenced by superior fit statistics (AIC, BIC, HQIC, K-S) and graphical analysis. This superior performance underscores the MCD's ability to provide more accurate and reliable estimates of device lifetimes, MTTF, and failure patterns, ultimately leading to better decision-making in maintenance planning, warranty analysis, and system design.
In future research, it may be beneficial to apply the MCD to censored datasets, such as those involving type-Ⅱ progressive censoring, joint progressive type-Ⅱ censoring schemes, and generalized hybrid censoring schemes. Additionally, the MCD could be adapted for use in accelerated life tests, a method commonly employed in reliability engineering to gather information quickly by accelerating a variable that significantly influences the lifespan of the devices under study.
Proof of Theorem 3.1. The rth noncentral moment of the MCD(ψ_) can be expressed using Eq (2.3) as follows:
μ′r=∫∞0S(x;ψ_)dxr=∫∞0eα(2−eγx−exλ)dxr. |
By applying the Taylor expansion for ex, the rth noncentral moment of the MCD(ψ_) can be expressed as a linear combination of the moments of the CD, as shown below.
μ′r=e2α∞∑i=0(−1)iαii!∫∞0eiγxe−αxλdxr=e2α∞∑i=0∞∑m=0(−1)iimαiγmi!m!∫∞0xme−αxλdxr=reα∞∑i=0∞∑m=0(−1)iimαiγmi!m!(r+m)∫∞0eα(1−exλ)dxr+m=reα∞∑i=0∞∑m=0(−1)iimαiγmi!m!(m+r)μ′r+m,CD, |
where μ′m+r,CD represents the (m+r)th noncentral moment of the CD.
Proof of Theorem 3.2. Incomplete moments are determined using the following equation:
ms(x)=∫t0f(x)dx=α∫t0xs(γeγx+λxλ−1exλ)eα(2−eγx−exλ)dx. |
By applying the series expansions for e−αeγx and e−αexλ, we derive the following results:
ms(x)=αe2α∞∑i,j=0(−1)i+jαi+ji!j!∫t0xs(γeγx+λxλ−1exλ)eiγx+jxλdx. |
Additionally, by using the series expansions for ejxλ and exλ, we obtain
ms(x)=αγe2α∞∑i,j,k=0(−1)i+jαi+jjki!j!k!∫t0xs+kλe(1+i)γxdx+αλe2α∞∑i,j,k,l=0(−1)i+jαi+jjki!j!k!l!∫t0xs+(k+l+1)λ−1eiγxdx. |
After solving the integrals mentioned above, we obtain the result stated in Theorem 3.2.
Proof of Theorem 3.3. The MTTF of the MCD is obtained as
MTTF=E[X]=∫∞0S(x;ψ_)dx=∫∞0eα(2−eγx−exλ)dxr=eα∞∑i,j=0(−1)iαi(iγ)ji!j!∫∞0xjeα(1−exλ)dx=eα∞∑i,j,j=0k∑l=0(kl)(−1)i+k−lαi+k(iγ)ji!j!k!∫∞0xje−(l−k)xλdx=eαλ∞∑i,j,k=0k∑l=0(kl)(−1)i+k−lαi+k(iγ)ji!j!k!(l−k)j+1λΓ(j+1λ). |
Proof of Theorem 3.4. The MRL of the MCD is expressed as
MX(t)=E[X−t|x>t]=∫∞tS(x;ψ_)S(t;ψ_)dx=1S(t;ψ_)∫∞0S(x+t;ψ_)dx=1S(t;ψ_)∫∞0eα(2−eγ(x+t)−e(x+t)λ)dxr=eαS(t;ψ_)∞∑i,j=0(−1)iαi(iγ)ji!j!∫∞0(x+t)jeα(1−e(x+t)λ)dx=eαS(t;ψ_)∞∑i,j,k=0k∑l=0(kl)(−1)i+k−lαi+k(iγ)ji!j!k!∫∞0(x+t)je−(l−k)(x+t)λdx=eαλS(t;ψ_)∞∑i,j,k=0k∑l=0(kl)(−1)i+k−lαi+k(iγ)ji!j!k!(l−k)j+1λΓ(j+1λ). |
Proof of Theorem 3.5. The Rényi entropy of X for the MCD(ψ_) is defined as follows:
IR(ρ)=11−ρlog∫∞0(f(x;ψ))ρdx,ρ>0,ρ≠1. | (A.1) |
By substituting Eq (2.2) into Eq (A.1), we get
IR(ρ)=11−ρlog∫∞0αρ(γeγx+λxλ−1exλ)ρeρα(2−eγx−exλ)dx. |
Applying the binomial expansion to the function (γeγx+λxλ−1exλ)ρ yields:
IR(ρ)=11−ρlogρ∑i=0(ρi)αργρ−iλi∫∞0x(λ−1)ie(ρ−i)γx+ixλeρα(2−eγx−exλ)dx. |
Utilizing the Taylor series expansion, we obtain the following result:
IR(ρ)=11−ρlogρ∑i=0∞∑j,k=0(ρi)(−1)i+kαρ+j+kγρ−iρj+kλie2ραj!k!∫∞0x(λ−1)ie−(i−j−ρ)γxe(i+k)xλdx.=11−ρlogρ∑i=0∞∑j,k,l=0(ρi)(−1)i+kαρ+j+kγρ−iρj+kλi(i+k)le2ραj!k!l!∫∞0x(i+l)λ−ie−(i−j−ρ)γxdx. |
Solving the integrals above leads to the result presented in Theorem 3.5.
Proof of Theorem 3.6. Consider an ordered sample {Xi}ni=1,n≥1 from the MCD, with its PDF given by (2.2) and its CDF by (2.1). The PDF of the lth order statistic, denoted as fl:n(x), is defined as:
fl:n(x)=1B(l,n−l+1)[F(x)]l−1f(x)[1−F(x)]n−l, |
which can be expressed as
fl:n(x)=l−1∑j=0(−1)jn!j!(n−l)!(l−j−1)!f(x)[1−F(x)]n+j−l. | (A.2) |
Substituting Eqs (2.1) and (2.2) into (A.2) leads to
fl:n(x)=l−1∑j=0(−1)jn!j!(n−l)!(l−j−1)!α(γeγx+λxλ−1exλ)eα(n+j+1−l)(2−eγx−exλ). |
Consequently,
fl:n(x)=l−1∑j=0(−1)jn!j!(n−l)!(l−j−1)!(n+j+1−l)f(x;α′,γ,λ). | (A.3) |
Here, f(x;α′,γ,λ) denotes the PDF of the MCD with parameters α′=(n+j+1−l)α,γ,λ. By applying Eqs (3.3) and (A.3), the rth moment of the lth order statistics is derived as shown in (3.6).
The second partial derivatives of the log-likelihood function for the MCD are as follows:
Lαα=−nα2. |
Lαγ=−n∑i=1xieγxi. |
Lαλ=−n∑i=1xλiexλilog(xi) |
Lγγ=−αn∑i=1x2ieγxi+n∑i=1(2+γxi)xieγxiγeγxi+λxλ−1iexλi−n∑i=1(1+γxi)2e2γxi(γeγxi+λxλ−1iexλi)2. |
Lγλ=−n∑i=1(1+λ(1+xλi)log(xi))(1+γxi)xλ−1ieγxi+xλi(γeγxi+λxλ−1iexλi)2. |
Lλλ=−αn∑i=1xλi(1+xλi)log2(xi)exλi−n∑i=1x2λi(1+λlog(xi)+λxλilog(xi))2e2xλi(γxieγxi+λexλixλi)2+n∑i=1xλi(2+λlog(xi)+(2+3λlog(xi)+λxλilog(xi))xλi)log(xi)exλiγxieγxi+λexλixλi. |
The author declare that he has not used artificial intelligence tools in the creation of this article.
The author thanks the editor and the referees for their valuable comments and suggestions which improved greatly the quality of this paper.
There is no conflict of interest declared by the author.
[1] | R. E. Barlow, F. Proschan, Statistical theory of reliability and life testing, Holt, Rinehart and Winston, New York, 1975. |
[2] | C. D. Lai, M. Xie, Stochastic ageing and dependence for reliability, Springer-Verlag, New York, 2006. |
[3] |
K. S. Wang, F. S. Hsu, P. P. Liu, Modeling the bathtub shape hazard rate function in terms of reliability, Reliab. Eng. Syst. Safe., 75 (2002), 397–406. https://doi.org/10.1016/S0951-8320(01)00124-7 doi: 10.1016/S0951-8320(01)00124-7
![]() |
[4] |
A. Gaonkar, R. B. Patil, S. Kyeong, D. Das, M. G. Pecht, An assessment of validity of the bathtub model hazard rate trends in electronics, IEEE Access, 9 (2021), 10282–10290. https://doi.org/10.1109/ACCESS.2021.3050474 doi: 10.1109/ACCESS.2021.3050474
![]() |
[5] |
Z. Chen, A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function, Statist. Probab. Lett., 49 (2000), 155–161. https://doi.org/10.1016/S0167-7152(00)00044-4 doi: 10.1016/S0167-7152(00)00044-4
![]() |
[6] |
M. Xie, Y. Tang, T. N. Goh, A modified Weibull extension with bathtub-shaped failure rate function, Reliab. Eng. Syst. Safe., 76 (2002), 279–285. https://doi.org/10.1016/S0951-8320(02)00022-4 doi: 10.1016/S0951-8320(02)00022-4
![]() |
[7] |
V. Pappas, K. Adamidis, S. Loukas, A family of lifetime distributions, Int. J. Qual. Stat. Reliab., 2012 (2012), 1–6. https://doi.org/10.1155/2012/760687 doi: 10.1155/2012/760687
![]() |
[8] |
A. M. Sarhan, J. Apaloo, Exponentiated modified Weibull extension distribution, Reliab. Eng. Syst. Saf., 112 (2013), 137–144. https://doi.org/10.1016/j.ress.2012.10.013 doi: 10.1016/j.ress.2012.10.013
![]() |
[9] |
Y. P. Chaubey, R. Zhang, An extension of Chen's family of survival distributions with bathtub shape or increasing hazard rate function, Commun. Stat.-Theor. M., 44 (2015), 4049–4064. https://doi.org/10.1080/03610926.2014.997357 doi: 10.1080/03610926.2014.997357
![]() |
[10] |
L. D. R. Reis, G. M. Cordeiro, M. C. S. Lima, The Gamma-Chen distribution: A new family of distributions with applications, Span. J. Stat., 2 (2020), 23–40. https://doi.org/10.37830/SJS.2020.1.03 doi: 10.37830/SJS.2020.1.03
![]() |
[11] |
F. A. Bhatti, G. G. Hamedani, S. M. Najibi, M. Ahmad, On the extended Chen distribution: Development, properties, characterizations, and applications, Ann. Data Sci., 8 (2021), 159–180. https://doi.org/10.1007/s40745-019-00202-x doi: 10.1007/s40745-019-00202-x
![]() |
[12] |
Y. A. Anafo, I. Brew, S. Nasiru, Modified extended Chen distribution: Properties and applications, Appl. Math. Inf. Sci., 16 (2022), 711–728. https://doi.org/10.18576/amis/160506 doi: 10.18576/amis/160506
![]() |
[13] |
J. Acquah, B. Odoi, A. Y. Anafo, B. A. Senye, An extension of the Chen distribution: Properties, simulation study, and applications to data, Asian J. Probab. Stat., 23 (2023), 26–42. https://doi.org/10.9734/AJPAS/2023/v23i4510 doi: 10.9734/AJPAS/2023/v23i4510
![]() |
[14] |
T. T. Thach, R. Bris, An additive Chen-Weibull distribution and its applications in reliability modeling, Qual. Reliab. Eng. Int., 37 (2020), 352–373. https://doi.org/10.1002/qre.2740 doi: 10.1002/qre.2740
![]() |
[15] |
B. Tarvirdizade, M. Ahmadpour, A new extension of Chen distribution with applications to lifetime data, Commun. Math. Stat., 9 (2021), 23–38. https://doi.org/10.1007/s40304-019-00185-4 doi: 10.1007/s40304-019-00185-4
![]() |
[16] |
B. Abba, H. Wang, H. S. Bakouch, A reliability and survival model for one and two failure modes system with applications to complete and censored datasets, Reliab. Eng. Syst. Saf., 223 (2022), 108460. https://doi.org/10.1016/j.ress.2022.108460 doi: 10.1016/j.ress.2022.108460
![]() |
[17] |
L. C. Méndez-González, L. A. Rodríguez-Picón, I. J. C. Pérez-Olguín, L. R. V. Portilla, An additive Chen distribution with applications to lifetime data, Axioms, 12 (2023), 118. https://doi.org/10.3390/axioms12020118 doi: 10.3390/axioms12020118
![]() |
[18] |
L. C. Méndez-González, L. A. Rodríguez-Picón, M. I. Rodríguez Borbón, H. Sohn, The Chen-Perks distribution: Properties and reliability applications, Mathematics, 11 (2023), 3001. https://doi.org/10.3390/math11133001 doi: 10.3390/math11133001
![]() |
[19] | W. H. Greene, Econometric analysis, Prentice-Hall, New York, 2018. |
[20] | B. Efron, The jackknife, the bootstrap and other resampling plans, SIAM, Philadelphia, PA, USA, 1982. https://doi.org/10.1137/1.9781611970319 |
[21] |
P. Hall, Theoretical comparison of bootstrap confidence intervals, Ann. Stat., 16 (1988), 927–953. https://doi.org/10.1214/aos/1176350933 doi: 10.1214/aos/1176350933
![]() |
[22] |
A. Zellner, Bayesian estimation and prediction using asymmetric loss functions, J. Am. Stat. Assoc., 81 (1986), 446–451. https://doi.org/10.2307/2289234 doi: 10.2307/2289234
![]() |
[23] | A. Zellner, Bayesian and non-Bayesian estimation using balanced loss functions, Statist. Decis. Theory Methods V, Springer-Verlag, New York, 1994,337–390. https://doi.org/10.1007/978-1-4612-2618-5-28 |
[24] |
J. Ahmadi, M. J. Jozani, E. Marchand, A. Parsian, Bayes estimation based on k-record data from a general class of distributions under balanced type loss functions, J. Stat. Plan. Infer., 139 (2009), 1180–1189. https://doi.org/10.1016/j.jspi.2008.07.008 doi: 10.1016/j.jspi.2008.07.008
![]() |
[25] |
M. J. Jozani, E. Marchand, A. Parsian, Bayes and robust Bayesian estimation under a general class of balanced loss functions, Statist. Pap., 53 (2012), 51–60. https://doi.org/10.1007/s00362-010-0307-8 doi: 10.1007/s00362-010-0307-8
![]() |
[26] |
M. G. M. Ghazal, Q. Shihab, Exponentiated Pareto distribution: A Bayes study utilizing MCMC technique under unified hybrid censoring scheme, J. Egypt. Math. Soc., 26 (2018), 376–394. https://doi.org/10.21608/JOEMS.2018.2719.1026 doi: 10.21608/JOEMS.2018.2719.1026
![]() |
[27] |
D. Kundu, H. Howlader, Bayesian inference and prediction of the inverse Weibull distribution for type-Ⅱ censored data, Comput. Statist. Data Anal., 54 (2010), 1547–1558. https://doi.org/10.1016/j.csda.2010.01.003 doi: 10.1016/j.csda.2010.01.003
![]() |
[28] |
A. Gupta, B. Mukherjee, S. K. Upadhyay, Weibull extension model: A Bayes study using Markov chain Monte Carlo simulation, Reliab. Eng. Syst. Safe., 93 (2008), 1434–1443. https://doi.org/10.1016/j.ress.2007.10.008 doi: 10.1016/j.ress.2007.10.008
![]() |
[29] |
G. S. Mudholkar, D. K. Srivastava, Exponentiated Weibull family for analyzing bathtub failure-rate data, IEEE Trans. Reliab., 42 (1993), 299–302. https://doi.org/10.1109/24.229504 doi: 10.1109/24.229504
![]() |
[30] |
C. D. Lai, M. Xie, D. N. P. Murthy, A modified Weibull distribution, IEEE Trans. Reliab., 52 (2003), 33–37. https://doi.org/10.1109/TR.2002.805788 doi: 10.1109/TR.2002.805788
![]() |
[31] | A. M. Sarhan, M. Zaindin, Modified Weibull distribution, Appl. Sci., 11 (2009), 123–136. |
[32] |
A. Lemonte, A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub, and bathtub-shaped failure rate function, Comput. Statist. Data Anal., 62 (2013), 149–170. https://doi.org/10.1016/j.csda.2013.01.011 doi: 10.1016/j.csda.2013.01.011
![]() |
[33] |
X. Peng, Z. Yan, Estimation and application for a new extended Weibull distribution, Reliab. Eng. Syst. Safe., 121 (2014), 34–42. https://doi.org/10.1016/j.ress.2013.07.007 doi: 10.1016/j.ress.2013.07.007
![]() |
[34] |
M. Nassar, A. Z. Afify, S. Dey, D. Kumar, A new extension of Weibull distribution: Properties and different methods of estimation, J. Comput. Appl. Math., 336 (2018), 439–457. https://doi.org/10.1016/j.cam.2017.12.001 doi: 10.1016/j.cam.2017.12.001
![]() |
[35] |
F. A. Peña-Ramírez, R. R. Guerra, D. R. Canterle, G. M. Cordeiro, The logistic Nadarajah-Haghighi distribution and its associated regression model for reliability applications, Reliab. Eng. Syst. Safe., 204 (2020), 107196. https://doi.org/10.1016/j.ress.2020.107196 doi: 10.1016/j.ress.2020.107196
![]() |
[36] |
M. V. Aarset, How to identify a bathtub hazard rate, IEEE Trans. Reliab., 36 (1987), 106–108. https://doi.org/10.1109/TR.1987.5222310 doi: 10.1109/TR.1987.5222310
![]() |
[37] | W. Q. Meeker, L. A. Escobar, Statistical methods for reliability data, Wiley, New York, 1998. |
[38] |
M. G. M. Ghazal, H. M. M. Radwan, A reduced distribution of the modified Weibull distribution and its applications to medical and engineering data, Math. Biosci. Eng., 19 (2022), 13193–13213. https://doi.org/10.3934/mbe.2022617 doi: 10.3934/mbe.2022617
![]() |
[39] |
D. Jiang, Y. Han, W. Cui, F. Wan, T. Yu, B. Song, An improved modified Weibull distribution applied to predict the reliability evolution of an aircraft lock mechanism, Probab. Eng. Mech., 72 (2023), 103449. https://doi.org/10.1016/j.probengmech.2023.103449 doi: 10.1016/j.probengmech.2023.103449
![]() |
[40] |
M. G. M. Ghazal, Y. A. Tashkandy, O. S. Balogun, M. E. Bakr, Exponentiated extended extreme value distribution: Properties, estimation, and applications in applied fields, AIMS Math., 9 (2024), 17634–17656. https://doi.org/10.3934/math.2024857 doi: 10.3934/math.2024857
![]() |
[41] |
A. A. Ahmad, M. G. M. Ghazal, Exponentiated additive Weibull distribution, Reliab. Eng. Syst. Safe., 193 (2020), 106663. https://doi.org/10.1016/j.ress.2019.106663 doi: 10.1016/j.ress.2019.106663
![]() |
\alpha | \gamma | \lambda | \mu_{1}^{'} | \mu_{2}^{'} | \mu_{3}^{'} | \mu_{4}^{'} | Variance | SK | KU |
0.005 | 0.05 | 0.6 | 13.8919 | 221.33 | 3820.78 | 69869.7 | 28.3468 | -0.27487 | 2.6252 |
0.01 | 0.05 | 0.6 | 10.8699 | 139.955 | 1980.23 | 29941.7 | 21.8012 | -0.14749 | 2.48003 |
2.5 | 0.05 | 0.6 | 0.17946 | 0.08393 | 0.06045 | 0.05701 | 0.05172 | 2.28031 | 9.99219 |
8.5 | 0.05 | 0.6 | 0.03337 | 0.00363 | 0.00069 | 0.00019 | 0.00252 | 3.20996 | 18.6808 |
12.5 | 0.05 | 0.6 | 0.01873 | 0.00121 | 0.00014 | 0.00002 | 0.00086 | 3.4785 | 21.9745 |
0.05 | 0.01 | 0.6 | 5.32591 | 37.6848 | 307.028 | 2749.55 | 9.31943 | 0.2479 | 2.40194 |
0.05 | 0.1 | 0.6 | 5.21106 | 36.3474 | 292.825 | 2597.57 | 9.1922 | 0.2732 | 2.41148 |
0.05 | 0.6 | 0.6 | 3.36323 | 14.5046 | 70.27 | 366.975 | 3.19327 | 0.00146 | 2.17677 |
0.05 | 0.7 | 0.6 | 3.0149 | 11.5151 | 49.1126 | 224.945 | 2.42551 | -0.06084 | 2.17804 |
0.05 | 7.5 | 0.6 | 0.33831 | 0.13413 | 0.05773 | 0.02628 | 0.01967 | -0.34755 | 2.49154 |
0.5 | 0.05 | 0.01 | 7.58978 | 192.348 | 5774.72 | 193139. | 134.743 | 1.45101 | 4.09513 |
0.5 | 0.05 | 0.1 | 5.42 | 118.097 | 3299.9 | 105529. | 88.7206 | 2.03199 | 6.63337 |
0.5 | 0.05 | 0.9 | 0.92172 | 1.24406 | 2.02079 | 3.69775 | 0.39449 | 0.59283 | 2.72154 |
0.5 | 0.05 | 1.5 | 0.8876 | 0.95825 | 1.15228 | 1.48947 | 0.17042 | -0.01116 | 2.27333 |
0.5 | 0.05 | 3.5 | 0.91325 | 0.88495 | 0.89096 | 0.92264 | 0.05093 | -0.8901 | 3.69432 |
MRL | MTTF | |||||||
(\alpha, \, \gamma, \, \lambda) | n | t=0.1 | t=0.25 | t=0.4 | t=0.9 | t=1.5 | ||
50 | 2.60597 | 2.52678 | 2.45297 | 2.18303 | 1.88464 | 2.63912 | ||
(0.22248) | (0.23116) | (0.21865) | (0.21054) | (0.21082) | (0.22409) | |||
150 | 2.61128 | 2.5335 | 2.45315 | 2.18143 | 1.89022 | 2.64464 | ||
(0.1316) | (0.13039) | (0.1291) | (0.12584) | (0.1195) | (0.13285) | |||
(0.1, \, 0.3, \, 0.7) | 250 | 2.60598 | 2.52576 | 2.52576 | 2.18685 | 1.89222 | 2.63926 | |
(0.09915) | (0.09924) | (0.09924) | (0.09548) | (0.09315) | (0.10003) | |||
350 | 2.60625 | 2.53115 | 2.45205 | 2.18706 | 1.89143 | 2.64066 | ||
(0.08648) | (0.08422) | (0.08338) | (0.08205) | (0.08094) | (0.08705) | |||
450 | 2.60728 | 2.52918 | 2.52918 | 2.18827 | 1.89012 | 2.64188 | ||
(0.07497) | (0.07534) | (0.07534) | (0.07005) | (0.07043) | (0.07555) | |||
50 | 2.75849 | 2.68387 | 2.58162 | 2.23433 | 1.84612 | 2.79497 | ||
(0.19717) | (0.1933) | (0.18279) | (0.17367) | (0.16343) | (0.20433) | |||
150 | 2.7616 | 2.67429 | 2.56997 | 2.23198 | 1.84866 | 2.79698 | ||
(0.1131) | (0.1124) | (0.10701) | (0.10148) | (0.09569) | (0.11655) | |||
(0.05, \, 0.8, \, 0.5) | 250 | 2.76378 | 2.66893 | 2.56935 | 2.2357 | 1.84827 | 2.80033 | |
(0.08914) | (0.08605) | (0.08498) | (0.07661) | (0.07316) | (0.09193) | |||
350 | 2.76533 | 2.66884 | 2.57279 | 2.23756 | 1.847 | 2.80093 | ||
(0.07301) | (0.07376) | (0.06896) | (0.06506) | (0.06186) | (0.07443) | |||
450 | 2.76165 | 2.67192 | 2.57152 | 2.23481 | 1.84873 | 2.79799 | ||
(0.06531) | (0.06386) | (0.06221) | (0.05932) | (0.05413) | (0.06705) | |||
50 | 0.6629 | 0.65275 | 0.62618 | 0.51821 | 0.39241 | 0.61476 | ||
(0.08957) | (0.09478) | (0.08666) | (0.12123) | (0.16865) | (0.08428) | |||
150 | 0.66787 | 0.65108 | 0.62702 | 0.52379 | 0.39969 | 0.61852 | ||
(0.05097) | (0.05414) | (0.05706) | (0.06844) | (0.08996) | (0.0479) | |||
(0.5, \, 0.8, \, 0.5) | 250 | 0.66542 | 0.65257 | 0.62691 | 0.52351 | 0.39679 | 0.6169 | |
(0.03936) | (0.04194) | (0.04426) | (0.05191) | (0.07032) | (0.03631) | |||
350 | 0.66706 | 0.65238 | 0.62806 | 0.52317 | 0.39847 | 0.61792 | ||
(0.03363) | (0.03433) | (0.03809) | (0.04445) | (0.05975) | (0.03131) | |||
450 | 0.66569 | 0.65299 | 0.62707 | 0.52219 | 0.39836 | 0.61669 | ||
(0.03014) | (0.03127) | (0.03237) | (0.03864) | (0.05212) | (0.0277) |
MLEs | MCMC | Boot-P | Boot-T | |||||||||
Parameter | n | Bais | MSE | Bais | MSE | Bais | MSE | Bais | MSE | |||
\alpha | 0.00366 | 0.00933 | -0.00133 | 0.00921 | 0.01479 | 0.02178 | -0.01045 | 0.09226 | ||||
\gamma | 0.01552 | 0.00341 | 0.00337 | 0.00368 | 0.02639 | 0.00811 | 0.01019 | 0.04692 | ||||
\lambda | 50 | 0.00366 | 0.0005 | 0.00428 | 0.0006 | 0.00652 | 0.00098 | -0.00025 | 0.02511 | |||
S(x) | 0.00156 | 0.00398 | 0.01328 | 0.00389 | -0.00047 | 0.00829 | -0.00028 | 0.06576 | ||||
h(x) | 0.01785 | 0.00536 | 0.00346 | 0.00455 | 0.03707 | 0.01415 | 0.00554 | 0.06868 | ||||
\alpha | 0.00214 | 0.00434 | -0.00192 | 0.00414 | 0.00237 | 0.00815 | -0.00416 | 0.05789 | ||||
\gamma | 0.00619 | 0.00166 | 0.00222 | 0.00163 | 0.01411 | 0.00316 | 0.004 | 0.03953 | ||||
\lambda | 100 | 0.00126 | 0.00022 | 0.00117 | 0.00022 | 0.00218 | 0.00042 | -0.00058 | 0.01391 | |||
S(x) | 0.00055 | 0.00189 | 0.00704 | 0.00186 | 0.00175 | 0.00358 | -0.00025 | 0.04499 | ||||
h(x) | 0.00703 | 0.00219 | -0.00031 | 0.00199 | 0.01364 | 0.00471 | 0.00118 | 0.03927 | ||||
\alpha | 0.00445 | 0.00313 | 0.00163 | 0.00302 | 0.00708 | 0.00608 | -0.00036 | 0.0448 | ||||
\gamma | 0.00371 | 0.00101 | 0.00117 | 0.001 | 0.00651 | 0.002 | 0.00231 | 0.03077 | ||||
\lambda | 150 | 0.00103 | 0.00014 | 0.00095 | 0.00014 | 0.00198 | 0.00029 | -0.00019 | 0.0135 | |||
S(x) | -0.00161 | 0.00136 | 0.00281 | 0.00132 | -0.00188 | 0.00259 | -0.00225 | 0.03784 | ||||
h(x) | 0.00696 | 0.00158 | 0.00201 | 0.00147 | 0.01165 | 0.00316 | 0.00254 | 0.03371 | ||||
\alpha | 0.00066 | 0.00207 | -0.00138 | 0.00202 | 0.00216 | 0.00425 | -0.00241 | 0.04174 | ||||
\gamma | 0.00328 | 0.00075 | 0.00143 | 0.00074 | 0.00608 | 0.00145 | 0.00254 | 0.03099 | ||||
\lambda | 200 | 0.00053 | 0.0001 | 0.00047 | 0.0001 | 0.0008 | 0.0002 | -0.00034 | 0.01045 | |||
S(x) | 0.00046 | 0.00091 | 0.00374 | 0.0009 | 0.0004 | 0.00185 | 0.00007 | 0.0307 | ||||
h(x) | 0.00328 | 0.00105 | -0.00034 | 0.001 | 0.00632 | 0.0022 | 0.00048 | 0.03235 |
BSEL | BLINEXL | BGEL | |||||||||
n | \omega | c=-7 | c=0.3 | c=7 | q=-7 | q=0.3 | q=7 | ||||
0.0 | Bais | -0.00133 | 0.03469 | -0.0027 | -0.03051 | 0.0522 | -0.01284 | -0.07194 | |||
MSE | 0.00921 | 0.01321 | 0.00913 | 0.00837 | 0.01357 | 0.00906 | 0.01263 | ||||
0.2 | Bais | 0.00017 | 0.02629 | -0.0008 | -0.0212 | 0.0522 | -0.00799 | -0.05782 | |||
MSE | 0.00922 | 0.01202 | 0.00916 | 0.00832 | 0.01357 | 0.00906 | 0.01119 | ||||
50 | 0.5 | Bais | 0.00166 | 0.0172 | 0.00111 | -0.01115 | 0.02658 | -0.00305 | -0.03879 | ||
MSE | 0.00925 | 0.01084 | 0.00921 | 0.00852 | 0.01069 | 0.00913 | 0.00986 | ||||
0.9 | Bais | 0.00316 | 0.00723 | 0.00302 | -0.00022 | 0.01006 | 0.00196 | -0.0101 | |||
MSE | 0.00931 | 0.0097 | 0.0093 | 0.00906 | 0.00959 | 0.00927 | 0.00914 | ||||
0.0 | Bais | -0.00192 | 0.01424 | -0.00257 | -0.01664 | 0.02418 | -0.00758 | -0.03679 | |||
MSE | 0.00414 | 0.00481 | 0.00413 | 0.00404 | 0.005 | 0.00414 | 0.00515 | ||||
0.2 | Bais | -0.0007 | 0.01073 | -0.00116 | -0.01128 | 0.02418 | -0.00469 | -0.02753 | |||
MSE | 0.0042 | 0.00464 | 0.00419 | 0.00404 | 0.005 | 0.00418 | 0.00468 | ||||
100 | 0.5 | Bais | 0.00052 | 0.00711 | 0.00025 | -0.00569 | 0.01167 | -0.00178 | -0.01654 | ||
MSE | 0.00425 | 0.00449 | 0.00425 | 0.00411 | 0.0045 | 0.00423 | 0.00435 | ||||
0.9 | Bais | 0.00174 | 0.0034 | 0.00167 | 0.00014 | 0.00463 | 0.00116 | -0.00309 | |||
MSE | 0.00431 | 0.00437 | 0.00431 | 0.00426 | 0.00436 | 0.00431 | 0.00427 | ||||
0.0 | Bais | 0.00163 | 0.01231 | 0.00119 | -0.00841 | 0.01913 | -0.00216 | -0.02174 | |||
MSE | 0.00302 | 0.00338 | 0.00301 | 0.0029 | 0.00351 | 0.00299 | 0.00332 | ||||
0.2 | Bais | 0.00248 | 0.01 | 0.00217 | -0.00468 | 0.01913 | -0.00019 | -0.01499 | |||
MSE | 0.00305 | 0.0033 | 0.00304 | 0.00293 | 0.00351 | 0.00302 | 0.00314 | ||||
150 | 0.5 | Bais | 0.00332 | 0.00765 | 0.00315 | -0.00084 | 0.01064 | 0.00179 | -0.0074 | ||
MSE | 0.00308 | 0.00322 | 0.00308 | 0.00299 | 0.00324 | 0.00306 | 0.00305 | ||||
0.9 | Bais | 0.00417 | 0.00526 | 0.00413 | 0.00311 | 0.00604 | 0.00379 | 0.00127 | |||
MSE | 0.00312 | 0.00315 | 0.00312 | 0.00309 | 0.00315 | 0.00311 | 0.00308 | ||||
0.0 | Bais | -0.00138 | 0.00647 | -0.00171 | -0.00889 | 0.01172 | -0.00423 | -0.01887 | |||
MSE | 0.00202 | 0.00216 | 0.00202 | 0.002 | 0.00222 | 0.00202 | 0.00229 | ||||
0.2 | Bais | -0.00077 | 0.00476 | -0.001 | -0.0061 | 0.01172 | -0.00277 | -0.01364 | |||
MSE | 0.00203 | 0.00213 | 0.00203 | 0.002 | 0.00222 | 0.00203 | 0.00216 | ||||
200 | 0.5 | Bais | -0.00016 | 0.00301 | -0.00029 | -0.00324 | 0.00526 | -0.0013 | -0.00792 | ||
MSE | 0.00205 | 0.0021 | 0.00204 | 0.00202 | 0.0021 | 0.00204 | 0.00207 | ||||
0.9 | Bais | 0.00045 | 0.00125 | 0.00042 | -0.00033 | 0.00183 | 0.00017 | -0.0016 | |||
MSE | 0.00206 | 0.00207 | 0.00206 | 0.00205 | 0.00207 | 0.00206 | 0.00205 |
BSEL | BLINEXL | BGEL | |||||||||
n | \omega | c=-7 | c=0.3 | c=7 | q=-7 | q=0.3 | q=7 | ||||
0.0 | Bais | 0.00337 | 0.01615 | 0.0028 | -0.01049 | 0.0342 | -0.01527 | -0.13227 | |||
MSE | 0.00368 | 0.00394 | 0.00368 | 0.00391 | 0.0044 | 0.00662 | 0.03407 | ||||
0.2 | Bais | 0.00702 | 0.01603 | 0.00661 | -0.00342 | 0.0342 | -0.0084 | -0.12589 | |||
MSE | 0.00353 | 0.00375 | 0.00352 | 0.00362 | 0.0044 | 0.00597 | 0.03353 | ||||
50 | 0.5 | Bais | 0.01066 | 0.01584 | 0.01042 | 0.0042 | 0.02384 | -0.00049 | -0.13227 | ||
MSE | 0.00344 | 0.00359 | 0.00343 | 0.00342 | 0.00375 | 0.00519 | 0.03286 | ||||
0.9 | Bais | 0.0143 | 0.01561 | 0.01424 | 0.01424 | 0.01774 | 0.00981 | 0.00981 | |||
MSE | 0.00341 | 0.00345 | 0.00341 | 0.00338 | 0.00348 | 0.00407 | 0.03168 | ||||
0.0 | Bais | 0.00222 | 0.00741 | 0.002 | -0.00303 | 0.01601 | -0.00116 | -0.02388 | |||
MSE | 0.00163 | 0.00173 | 0.00163 | 0.0016 | 0.00187 | 0.00165 | 0.00299 | ||||
0.2 | Bais | 0.00341 | 0.00705 | 0.00325 | -0.00033 | 0.01601 | 0.00101 | -0.01773 | |||
MSE | 0.00164 | 0.00171 | 0.00163 | 0.00159 | 0.00187 | 0.00164 | 0.00274 | ||||
100 | 0.5 | Bais | 0.0046 | 0.00668 | 0.00451 | 0.00242 | 0.01036 | 0.00321 | -0.02388 | ||
MSE | 0.00164 | 0.00168 | 0.00164 | 0.00161 | 0.00172 | 0.00164 | 0.00251 | ||||
0.9 | Bais | 0.00579 | 0.00631 | 0.00577 | 0.00577 | 0.00727 | 0.00544 | 0.00544 | |||
MSE | 0.00165 | 0.00166 | 0.00165 | 0.00164 | 0.00167 | 0.00165 | 0.00231 | ||||
0.0 | Bais | 0.00117 | 0.00454 | 0.00103 | -0.00221 | 0.01034 | -0.00096 | -0.01314 | |||
MSE | 0.001 | 0.00104 | 0.001 | 0.00098 | 0.0011 | 0.001 | 0.00122 | ||||
0.2 | Bais | 0.00194 | 0.00429 | 0.00183 | -0.00046 | 0.01034 | 0.00043 | -0.00889 | |||
MSE | 0.001 | 0.00103 | 0.001 | 0.00098 | 0.0011 | 0.001 | 0.00112 | ||||
150 | 0.5 | Bais | 0.0027 | 0.00405 | 0.00264 | 0.00131 | 0.00647 | 0.00183 | -0.01314 | ||
MSE | 0.001 | 0.00102 | 0.001 | 0.00099 | 0.00103 | 0.001 | 0.00105 | ||||
0.9 | Bais | 0.00346 | 0.0038 | 0.00345 | 0.00345 | 0.00442 | 0.00324 | 0.00324 | |||
MSE | 0.00101 | 0.00101 | 0.00101 | 0.001 | 0.00101 | 0.00101 | 0.00101 | ||||
0.0 | Bais | 0.00143 | 0.00389 | 0.00132 | -0.00105 | 0.00821 | -0.00012 | -0.00862 | |||
MSE | 0.00074 | 0.00077 | 0.00074 | 0.00073 | 0.00081 | 0.00074 | 0.00083 | ||||
0.2 | Bais | 0.00198 | 0.00371 | 0.00191 | 0.00024 | 0.00821 | 0.0009 | -0.00545 | |||
MSE | 0.00074 | 0.00076 | 0.00074 | 0.00073 | 0.00081 | 0.00074 | 0.00078 | ||||
200 | 0.5 | Bais | 0.00254 | 0.00353 | 0.0025 | 0.00153 | 0.00531 | 0.00192 | -0.00862 | ||
MSE | 0.00074 | 0.00076 | 0.00074 | 0.00074 | 0.00077 | 0.00074 | 0.00075 | ||||
0.9 | Bais | 0.0031 | 0.00334 | 0.00309 | 0.00309 | 0.0038 | 0.00294 | 0.00294 | |||
MSE | 0.00075 | 0.00075 | 0.00075 | 0.00074 | 0.00075 | 0.00075 | 0.00074 |
BSEL | BLINEXL | BGEL | |||||||||
n | \omega | c=-7 | c=0.3 | c=7 | q=-7 | q=0.3 | q=7 | ||||
0.0 | Bais | 0.00428 | 0.00602 | 0.00421 | 0.00263 | 0.01709 | 0.00144 | -0.01366 | |||
MSE | 0.0006 | 0.00066 | 0.00059 | 0.00054 | 0.00104 | 0.00055 | 0.00059 | ||||
0.2 | Bais | 0.0041 | 0.00533 | 0.00405 | 0.00293 | 0.01709 | 0.00209 | -0.01366 | |||
MSE | 0.00056 | 0.00061 | 0.00056 | 0.00053 | 0.00104 | 0.00053 | 0.00053 | ||||
50 | 0.5 | Bais | 0.00391 | 0.00462 | 0.00388 | 0.00324 | 0.01031 | 0.00276 | -0.00651 | ||
MSE | 0.00054 | 0.00056 | 0.00053 | 0.00051 | 0.00073 | 0.00051 | 0.00048 | ||||
0.9 | Bais | 0.00373 | 0.00391 | 0.00372 | 0.00356 | 0.0056 | 0.00344 | 0.00015 | |||
MSE | 0.00051 | 0.00051 | 0.00051 | 0.0005 | 0.00056 | 0.0005 | 0.00047 | ||||
0.0 | Bais | 0.00117 | 0.00191 | 0.00114 | 0.00044 | 0.00715 | -0.00015 | -0.00708 | |||
MSE | 0.00022 | 0.00023 | 0.00022 | 0.00021 | 0.00029 | 0.00021 | 0.00024 | ||||
0.2 | Bais | 0.00119 | 0.00171 | 0.00117 | 0.00069 | 0.00715 | 0.00027 | -0.00708 | |||
MSE | 0.00022 | 0.00023 | 0.00022 | 0.00021 | 0.00029 | 0.00021 | 0.00022 | ||||
100 | 0.5 | Bais | 0.00122 | 0.00152 | 0.00121 | 0.00093 | 0.00386 | 0.00069 | -0.0028 | ||
MSE | 0.00022 | 0.00022 | 0.00022 | 0.00022 | 0.00024 | 0.00022 | 0.00021 | ||||
0.9 | Bais | 0.00125 | 0.00132 | 0.00124 | 0.00117 | 0.00195 | 0.00111 | 0.00011 | |||
MSE | 0.00022 | 0.00022 | 0.00022 | 0.00022 | 0.00022 | 0.00022 | 0.00021 | ||||
0.0 | Bais | 0.00095 | 0.00143 | 0.00093 | 0.00047 | 0.00492 | 0.00008 | -0.00448 | |||
MSE | 0.00014 | 0.00014 | 0.00014 | 0.00013 | 0.00017 | 0.00014 | 0.00015 | ||||
0.2 | Bais | 0.00097 | 0.00131 | 0.00096 | 0.00064 | 0.00492 | 0.00036 | -0.00448 | |||
MSE | 0.00014 | 0.00014 | 0.00014 | 0.00014 | 0.00017 | 0.00014 | 0.00014 | ||||
150 | 0.5 | Bais | 0.001 | 0.00119 | 0.00099 | 0.00081 | 0.0027 | 0.00065 | -0.00148 | ||
MSE | 0.00014 | 0.00014 | 0.00014 | 0.00014 | 0.00015 | 0.00014 | 0.00013 | ||||
0.9 | Bais | 0.00102 | 0.00107 | 0.00102 | 0.00097 | 0.00146 | 0.00093 | 0.00035 | |||
MSE | 0.00014 | 0.00014 | 0.00014 | 0.00014 | 0.00014 | 0.00014 | 0.00014 | ||||
0.0 | Bais | 0.00047 | 0.00083 | 0.00046 | 0.00012 | 0.00344 | -0.00018 | -0.00356 | |||
MSE | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.00011 | 0.0001 | 0.0001 | ||||
0.2 | Bais | 0.00049 | 0.00074 | 0.00048 | 0.00024 | 0.00344 | 0.00003 | -0.00356 | |||
MSE | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.00011 | 0.0001 | 0.0001 | ||||
200 | 0.5 | Bais | 0.00051 | 0.00065 | 0.0005 | 0.00037 | 0.00176 | 0.00025 | -0.00127 | ||
MSE | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | ||||
0.9 | Bais | 0.00053 | 0.00056 | 0.00053 | 0.00049 | 0.00085 | 0.00046 | 0.00006 | |||
MSE | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
BSEL | BLINEXL | BGEL | |||||||||
n | \omega | c=-7 | c=0.3 | c=7 | q=-7 | q=0.3 | q=7 | ||||
0.0 | Bais | 0.01328 | 0.02651 | 0.01272 | 0.0004 | 0.03947 | 0.0071 | -0.02832 | |||
MSE | 0.00389 | 0.00446 | 0.00387 | 0.00363 | 0.00493 | 0.00384 | 0.0051 | ||||
0.2 | Bais | 0.00976 | 0.01948 | 0.00936 | 0.00073 | 0.03947 | 0.00542 | -0.02128 | |||
MSE | 0.00388 | 0.00419 | 0.00387 | 0.00373 | 0.00493 | 0.00388 | 0.00474 | ||||
50 | 0.5 | Bais | 0.00624 | 0.01208 | 0.00602 | 0.00108 | 0.0195 | 0.00375 | -0.0129 | ||
MSE | 0.00391 | 0.00402 | 0.0039 | 0.00384 | 0.00397 | 0.00392 | 0.00439 | ||||
0.9 | Bais | 0.00273 | 0.00426 | 0.00267 | 0.00144 | 0.00657 | 0.0021 | -0.00254 | |||
MSE | 0.00396 | 0.00397 | 0.00396 | 0.00395 | 0.00389 | 0.00396 | 0.00408 | ||||
0.0 | Bais | 0.00704 | 0.01378 | 0.00675 | 0.0004 | 0.02096 | 0.00389 | -0.0132 | |||
MSE | 0.00186 | 0.00201 | 0.00185 | 0.00179 | 0.00216 | 0.00184 | 0.00211 | ||||
0.2 | Bais | 0.00509 | 0.00994 | 0.00489 | 0.00044 | 0.02096 | 0.00288 | -0.00948 | |||
MSE | 0.00186 | 0.00194 | 0.00186 | 0.00182 | 0.00216 | 0.00185 | 0.00202 | ||||
100 | 0.5 | Bais | 0.00314 | 0.00599 | 0.00303 | 0.00049 | 0.0095 | 0.00188 | -0.00544 | ||
MSE | 0.00187 | 0.0019 | 0.00187 | 0.00185 | 0.00189 | 0.00187 | 0.00195 | ||||
0.9 | Bais | 0.0012 | 0.00193 | 0.00117 | 0.00053 | 0.00291 | 0.00088 | -0.00102 | |||
MSE | 0.00189 | 0.00189 | 0.00189 | 0.00188 | 0.00188 | 0.00189 | 0.0019 | ||||
0.0 | Bais | 0.00281 | 0.00732 | 0.00261 | -0.00166 | 0.01232 | 0.00068 | -0.01064 | |||
MSE | 0.00132 | 0.00138 | 0.00132 | 0.00131 | 0.00143 | 0.00133 | 0.00149 | ||||
0.2 | Bais | 0.00148 | 0.0047 | 0.00135 | -0.00164 | 0.01232 | -0.00001 | -0.0081 | |||
MSE | 0.00133 | 0.00136 | 0.00133 | 0.00132 | 0.00143 | 0.00134 | 0.00144 | ||||
150 | 0.5 | Bais | 0.00016 | 0.00203 | 0.00008 | -0.00163 | 0.00433 | -0.00069 | -0.00543 | ||
MSE | 0.00134 | 0.00135 | 0.00134 | 0.00134 | 0.00134 | 0.00135 | 0.0014 | ||||
0.9 | Bais | -0.00117 | -0.00069 | -0.00119 | -0.00161 | -0.00007 | -0.00138 | -0.00259 | |||
MSE | 0.00135 | 0.00135 | 0.00135 | 0.00136 | 0.00135 | 0.00136 | 0.00137 | ||||
0.0 | Bais | 0.00374 | 0.00714 | 0.00359 | 0.00036 | 0.01094 | 0.00214 | -0.0063 | |||
MSE | 0.0009 | 0.00095 | 0.0009 | 0.00089 | 0.00099 | 0.0009 | 0.00096 | ||||
0.2 | Bais | 0.00275 | 0.00517 | 0.00265 | 0.00039 | 0.01094 | 0.00164 | -0.00437 | |||
MSE | 0.0009 | 0.00093 | 0.0009 | 0.00089 | 0.00099 | 0.0009 | 0.00094 | ||||
200 | 0.5 | Bais | 0.00177 | 0.00317 | 0.00171 | 0.00042 | 0.00486 | 0.00113 | -0.00236 | ||
MSE | 0.00091 | 0.00091 | 0.00091 | 0.0009 | 0.00092 | 0.00091 | 0.00092 | ||||
0.9 | Bais | 0.00079 | 0.00114 | 0.00078 | 0.00045 | 0.00159 | 0.00063 | -0.00026 | |||
MSE | 0.00091 | 0.00091 | 0.00091 | 0.00091 | 0.00091 | 0.00091 | 0.00091 |
BSEL | BLINEXL | BGEL | |||||||||
n | \omega | c=-7 | c=0.3 | c=7 | q=-7 | q=0.3 | q=7 | ||||
0.0 | Bais | 0.00346 | 0.02075 | 0.00278 | -0.01134 | 0.03946 | -0.00414 | -0.04214 | |||
MSE | 0.00455 | 0.00598 | 0.00451 | 0.00394 | 0.0071 | 0.00435 | 0.00515 | ||||
0.2 | Bais | 0.00777 | 0.01993 | 0.00729 | -0.00327 | 0.03946 | 0.00227 | -0.03116 | |||
MSE | 0.00474 | 0.0058 | 0.00471 | 0.00411 | 0.0071 | 0.00453 | 0.0046 | ||||
50 | 0.5 | Bais | 0.01209 | 0.01907 | 0.01181 | 0.00535 | 0.02745 | 0.00884 | -0.01623 | ||
MSE | 0.00498 | 0.00561 | 0.00495 | 0.00448 | 0.00601 | 0.00481 | 0.00426 | ||||
0.9 | Bais | 0.01641 | 0.01816 | 0.01634 | 0.0146 | 0.02041 | 0.01557 | 0.00666 | |||
MSE | 0.00526 | 0.00542 | 0.00525 | 0.00509 | 0.00552 | 0.00521 | 0.00471 | ||||
0.0 | Bais | -0.00031 | 0.0075 | -0.00064 | -0.00758 | 0.01715 | -0.00405 | -0.02299 | |||
MSE | 0.00199 | 0.00224 | 0.00199 | 0.00189 | 0.00249 | 0.00197 | 0.00227 | ||||
0.2 | Bais | 0.00189 | 0.00736 | 0.00166 | -0.00336 | 0.01715 | -0.00077 | -0.01592 | |||
MSE | 0.00204 | 0.00222 | 0.00203 | 0.00193 | 0.00249 | 0.00201 | 0.00208 | ||||
100 | 0.5 | Bais | 0.0041 | 0.00722 | 0.00396 | 0.001 | 0.01128 | 0.00255 | -0.00747 | ||
MSE | 0.0021 | 0.00221 | 0.00209 | 0.00201 | 0.00229 | 0.00207 | 0.00199 | ||||
0.9 | Bais | 0.0063 | 0.00708 | 0.00627 | 0.0055 | 0.00813 | 0.00591 | 0.00295 | |||
MSE | 0.00217 | 0.00219 | 0.00216 | 0.00214 | 0.00221 | 0.00216 | 0.00209 | ||||
0.0 | Bais | 0.00201 | 0.00719 | 0.00179 | -0.00293 | 0.01369 | -0.0005 | -0.01329 | |||
MSE | 0.00147 | 0.0016 | 0.00146 | 0.00139 | 0.00174 | 0.00144 | 0.00152 | ||||
0.2 | Bais | 0.00349 | 0.00712 | 0.00334 | -0.00004 | 0.01369 | 0.00171 | -0.00811 | |||
MSE | 0.0015 | 0.00159 | 0.00149 | 0.00143 | 0.00174 | 0.00147 | 0.00145 | ||||
150 | 0.5 | Bais | 0.00498 | 0.00705 | 0.00489 | 0.00292 | 0.00974 | 0.00395 | -0.00225 | ||
MSE | 0.00153 | 0.00159 | 0.00153 | 0.00148 | 0.00164 | 0.00151 | 0.00145 | ||||
0.9 | Bais | 0.00646 | 0.00698 | 0.00644 | 0.00593 | 0.00766 | 0.0062 | 0.00447 | |||
MSE | 0.00157 | 0.00158 | 0.00157 | 0.00155 | 0.0016 | 0.00156 | 0.00153 | ||||
0.0 | Bais | -0.00034 | 0.00346 | -0.0005 | -0.00399 | 0.00836 | -0.00221 | -0.01176 | |||
MSE | 0.001 | 0.00106 | 0.001 | 0.00098 | 0.00112 | 0.001 | 0.00108 | ||||
0.2 | Bais | 0.00075 | 0.0034 | 0.00064 | -0.00185 | 0.00836 | -0.00057 | -0.00775 | |||
MSE | 0.00101 | 0.00106 | 0.00101 | 0.00099 | 0.00112 | 0.00101 | 0.00103 | ||||
200 | 0.5 | Bais | 0.00183 | 0.00335 | 0.00177 | 0.00032 | 0.00536 | 0.00107 | -0.00335 | ||
MSE | 0.00103 | 0.00105 | 0.00103 | 0.00101 | 0.00107 | 0.00102 | 0.00101 | ||||
0.9 | Bais | 0.00292 | 0.00329 | 0.0029 | 0.00253 | 0.0038 | 0.00272 | 0.00153 | |||
MSE | 0.00104 | 0.00105 | 0.00104 | 0.00104 | 0.00105 | 0.00104 | 0.00103 |
Model | Abbreviation | CDF | Author |
Exponentiated Weibull distribution | EWD | \left(1-{\rm e}^{-\left(\frac{x}{\alpha }\right)^{\gamma }}\right)^{\lambda } | Weibull [29] |
Modified Weibull extension distribution | MWED | 1-{\rm e}^{\alpha \lambda \left(1-{\rm e}^{\left(\frac{x}{\alpha }\right)^{\gamma }}\right)} | Xie et al. [6] |
Modified Weibull distribution | MWD | 1-{\rm e}^{-\alpha x^{\gamma } {\rm e}^{\lambda x}} | Lai et al. [30] |
Sarhan–Zaindin modified Weibull distribution | SZMWD | 1-{\rm e}^{-\alpha x-\gamma x^{\lambda }} | Sarhan and Zaindin [31] |
Exponentiated Nadarajah-Haghighi distribution | ENHD | \left(1-{\rm e}^{1-(\alpha x+1)^{\gamma }}\right)^{\lambda } | Lemonte [32] |
New extended Weibull distribution | NEWD | 1-{\rm e}^{-\alpha x^{\gamma } {\rm e}^{-\frac{\lambda }{x}}} | Peng X, Yan [33] |
Exponentiated Chen distribution | ExpCD | \left(1-{\rm e}^{\lambda \left(1-{\rm e}^{x^{\gamma }}\right)}\right)^{\alpha } | Chaubey and Zhang [9] |
Alpha logarithmic transformed Weibull distribution | ALTWD | 1-\frac{\log \left(\alpha -(\alpha -1) \left(1-{\rm e}^{-\gamma x^{\lambda }}\right)\right)}{\log (\alpha)} | Nassar et al. [34] |
Logistic Nadarajah-Haghighi distribution | LNHD | \frac{\left((\gamma x+1)^{\alpha }-1\right)^{\lambda }}{\left((\gamma x+1)^{\alpha }-1\right)^{\lambda }+1} | Peña-Ramírez et al. [35] |
Gamma-Chen distribution | GCD | \frac{\Gamma \left(\alpha, -\left(\left(1-{\rm e}^{x^{\gamma }}\right) \lambda \right)\right)}{\Gamma (\alpha)} | Reis et al. [10] |
Extended Chen distribution | ECD | 1-\left(\lambda \left({\rm e}^{x^{\gamma }}-1\right)+1\right)^{-\alpha } | Bhatti et al. [11] |
Modified extended Chen distribution | MECD | \left(\lambda \left({\rm e}^{x^{-\gamma }}-1\right)+1\right)^{-\alpha } | Anafo et al. [12] |
New extended Chen distribution | NECD | 1-{\rm e}^{\left((1-\alpha) \left(1-{\rm e}^{\lambda \left(1-{\rm e}^{x^{\gamma }}\right)}\right)+\lambda \left(1-{\rm e}^{x^{\gamma }}\right)\right)} | Acquah et al. [13] |
MLEs | MCMC | ||||
Parameter | Mean | CIs | Mean | CIs | |
\alpha | 0.03828 | \big[0.00822, \, 0.06834\big] | 0.03644 | \big[0.02674, \, 0.04785\big] | |
\gamma | 0.04539 | \big[0.03570, \, 0.05509\big] | 0.04623 | \big[0.04491, \, 0.04734\big] | |
\lambda | 0.22366 | \big[0.13919, \, 0.30814\big] | 0.22402 | \big[0.22045, \, 0.22778\big] | |
S(x) | 0.9424 | \big[0.89674, \, 0.98805\big] | 0.94511 | \big[0.92853, \, 0.95939\big] | |
h(x) | 0.03023 | \big[0.01280, \, 0.04765\big] | 0.02884 | \big[0.02116, \, 0.03784\big] |
Boot-P | Boot-T | ||||
Parameter | Mean | CIs | Mean | CIs | |
\alpha | 0.03837 | \big[0.01478, \, 0.06898\big] | 0.05773 | \big[0.05044, \, 0.07173\big] | |
\gamma | 0.04639 | \big[0.03811, \, 0.05669\big] | 0.04074 | \big[0.03672, \, 0.04353\big] | |
\lambda | 0.22867 | \big[0.19140, \, 0.28079\big] | 0.21100 | \big[0.17201, \, 0.25403\big] | |
S(x) | 0.94271 | \big[0.89800, \, 0.97764\big] | 0.91318 | \big[0.89157, \, 0.92455\big] | |
h(x) | 0.02977 | \big[0.01342, \, 0.05329\big] | 0.03822 | \big[0.03584, \, 0.04294\big] |
BSEL | BLINEXL | BGEL | ||||||||
Parameters | \omega | c=-7 | c=0.3 | c=7 | q=-7 | q=0.3 | q=7 | |||
0.0 | 0.03644 | 0.03655 | 0.03644 | 0.03634 | 0.03882 | 0.03593 | 0.03324 | |||
0.2 | 0.03681 | 0.03689 | 0.03681 | 0.03673 | 0.03882 | 0.03638 | 0.03388 | |||
\alpha | 0.5 | 0.03736 | 0.03742 | 0.03736 | 0.03731 | 0.03856 | 0.03708 | 0.03508 | ||
0.9 | 0.0381 | 0.03811 | 0.0381 | 0.03808 | 0.03834 | 0.03804 | 0.03744 | |||
0.0 | 0.04623 | 0.04623 | 0.04623 | 0.04623 | 0.04628 | 0.04622 | 0.04616 | |||
0.2 | 0.04606 | 0.04606 | 0.04606 | 0.04606 | 0.04628 | 0.04605 | 0.046 | |||
\gamma | 0.5 | 0.04581 | 0.04581 | 0.04581 | 0.04581 | 0.04585 | 0.0458 | 0.04576 | ||
0.9 | 0.04548 | 0.04548 | 0.04548 | 0.04548 | 0.04549 | 0.04547 | 0.04546 | |||
0.0 | 0.22402 | 0.22403 | 0.22402 | 0.224 | 0.22406 | 0.22401 | 0.22395 | |||
0.2 | 0.22395 | 0.22396 | 0.22395 | 0.22394 | 0.22406 | 0.22394 | 0.22389 | |||
\lambda | 0.5 | 0.22384 | 0.22385 | 0.22384 | 0.22383 | 0.22387 | 0.22384 | 0.22381 | ||
0.9 | 0.2237 | 0.2237 | 0.2237 | 0.2237 | 0.2237 | 0.2237 | 0.22369 | |||
0.0 | 0.94511 | 0.94532 | 0.9451 | 0.94489 | 0.9453 | 0.94506 | 0.94484 | |||
0.2 | 0.94456 | 0.94474 | 0.94456 | 0.94438 | 0.9453 | 0.94453 | 0.94435 | |||
S(x) | 0.5 | 0.94375 | 0.94387 | 0.94375 | 0.94364 | 0.94386 | 0.94373 | 0.94361 | ||
0.9 | 0.94267 | 0.94269 | 0.94267 | 0.94264 | 0.94269 | 0.94266 | 0.94264 | |||
0.0 | 0.02884 | 0.02891 | 0.02884 | 0.02878 | 0.03073 | 0.02843 | 0.0263 | |||
0.2 | 0.02912 | 0.02917 | 0.02912 | 0.02907 | 0.03073 | 0.02878 | 0.02681 | |||
h(x) | 0.5 | 0.02954 | 0.02957 | 0.02953 | 0.0295 | 0.03049 | 0.02931 | 0.02774 | ||
0.9 | 0.03009 | 0.03009 | 0.03009 | 0.03008 | 0.03028 | 0.03004 | 0.02958 |
MRL | Rényi entropy | ||||||||
t | \hat{M}_{X_{\textbf{MLE}}}(t) | \hat{M}_{X_{\textbf{MC}}}(t) | \hat{M}_{X_{\textbf{BP}}}(t) | \hat{M}_{X_{\textbf{BT}}}(t) | \rho | \hat{I}_{R_{\textbf{MLE}}}(\rho) | \hat{I}_{R_{\textbf{MC}}}(\rho) | \hat{I}_{R_{\textbf{BP}}}(\rho) | \hat{I}_{R_{\textbf{BT}}}(\rho) |
0.1 | 47.8786 | 48.3209 | 46.3159 | 43.0059 | 0.05 | 4.90862 | 4.89888 | 4.88590 | 4.94248 |
3 | 48.5382 | 48.8454 | 46.9415 | 44.7115 | 0.1 | 4.82664 | 4.81795 | 4.80363 | 4.85051 |
7 | 46.9675 | 47.1855 | 45.3885 | 43.7523 | 0.5 | 4.64095 | 4.63616 | 4.61766 | 4.61981 |
18 | 40.9398 | 40.9881 | 39.4432 | 38.8195 | 0.95 | 4.49995 | 4.50185 | 4.47948 | 4.39064 |
36 | 30.2408 | 30.0981 | 28.9069 | 29.3765 | 1.05 | 4.43638 | 4.44214 | 4.41888 | 4.27358 |
47 | 24.0695 | 23.8479 | 22.8502 | 23.7994 | 1.1 | 4.38635 | 4.39528 | 4.37209 | 4.1769 |
55 | 19.9546 | 19.6939 | 18.8284 | 20.0391 | 1.14 | 4.32721 | 4.33998 | 4.31786 | 4.05704 |
67 | 14.54 | 14.2504 | 13.57 | 15.0241 | 1.17 | 4.26124 | 4.27835 | 4.25878 | 3.91518 |
79 | 10.1487 | 9.86372 | 9.34976 | 10.8672 | 1.2 | 4.15734 | 4.18144 | 4.16882 | 3.67086 |
86 | 8.07022 | 7.80065 | 7.37329 | 8.85311 | 1.297 | 0.04325 | 0.31359 | 1.80489 | -7.68537 |
Model | \alpha | \gamma | \lambda | \ell | \text{K-S} | P-value | A^* | W^* | AIC | BIC | HQIC |
MCD | 0.03828 | 0.04539 | 0.22367 | -223.576 | 0.13309 | 0.33855 | 1.49466 | 0.20501 | 453.152 | 458.888 | 455.336 |
EWD | 91.7152 | 5.16712 | 0.13253 | -228.506 | 0.20599 | 0.02872 | 3.32948 | 0.54402 | 463.012 | 468.748 | 465.196 |
MWED | 13.7467 | 0.5877 | 0.00876 | -231.647 | 0.15924 | 0.15833 | 2.84918 | 0.37327 | 469.293 | 475.029 | 471.477 |
MWD | 0.0624 | 0.35481 | 0.02332 | -227.155 | 0.13374 | 0.33281 | 1.80574 | 0.26388 | 460.31 | 466.047 | 462.495 |
SZMWD | 0.02138 | 3.6\times10^{-12} | 5.9428 | -229.603 | 0.22203 | 0.01446 | 5.31127 | 0.72025 | 465.206 | 470.942 | 467.39 |
ENHD | 0.00033 | 36.963 | 0.67336 | -233.406 | 0.21206 | 0.02229 | 3.3716 | 0.5945 | 472.811 | 478.547 | 474.996 |
NEWD | 0.02781 | 0.94224 | 0.02025 | -240.979 | 0.19358 | 0.04716 | 3.49506 | 0.53188 | 487.959 | 493.695 | 490.143 |
ExpCD | 0.24482 | 0.5288 | 3.1\times10^{-5} | -226.843 | 0.14152 | 0.26925 | 1.6762 | 0.23859 | 459.686 | 465.423 | 461.871 |
ALTWD | 6.7\times10^{9} | 0.72573 | 0.75982 | -225.448 | 0.18677 | 0.0611 | 3.41212 | 0.48072 | 456.896 | 462.632 | 459.081 |
LNHD | 2552.13 | 1.1\times10^{-5} | 0.75368 | -239.45 | 0.22755 | 0.01128 | 3.76041 | 0.71367 | 484.899 | 490.636 | 487.084 |
GCD | 179.746 | 0.02729 | 91.0347 | -251.22 | 0.22165 | 0.0147 | 4.26388 | 0.7452 | 508.44 | 514.176 | 510.625 |
ECD | 2494.84 | 0.34452 | 8.2\times10^{-6} | -233.172 | 0.16685 | 0.12357 | 2.69969 | 0.38103 | 472.344 | 478.08 | 474.528 |
MECD | 0.34834 | 1.34825 | 450.937 | -250.132 | 0.2294 | 0.01037 | 3.77874 | 0.67492 | 506.263 | 511.999 | 508.448 |
NECD | 0.78773 | 0.33732 | 0.02567 | -233.009 | 0.16164 | 0.14661 | 2.65212 | 0.3678 | 472.017 | 477.753 | 474.202 |
MLEs | MCMC | ||||
Parameter | Mean | CIs | Mean | CIs | |
\alpha | 0.01244 | \big[-0.00432, \, 0.02920\big] | 0.01113 | \big[0.00739, \, 0.01574\big] | |
\gamma | 0.01610 | \big[0.01165, \, 0.02055\big] | 0.01610 | \big[0.01590, \, 0.01634\big] | |
\lambda | 0.23778 | \big[0.15879, \, 0.31677\big] | 0.25096 | \big[0.23929, \, 0.25862\big] | |
S(x) | 0.98130 | \big[0.95568, \, 1.00692\big] | 0.98338 | \big[0.97651, \, 0.98894\big] | |
h(x) | 0.00993 | \big[-0.00110, \, 0.02097\big] | 0.00927 | \big[0.00620, \, 0.01298\big] |
Boot-P | Boot-T | ||||
Parameter | Mean | CIs | Mean | CIs | |
\alpha | 0.04538 | \big[0.00663, \, 0.41552\big] | 0.01285 | \big[0.00709, \, 0.01841\big] | |
\gamma | 0.01456 | \big[0.00542, \, 0.01834\big] | 0.01716 | \big[0.00952, \, 0.01843\big] | |
\lambda | 0.20108 | \big[0.00300, \, 0.27096\big] | 0.29390 | \big[0.02539, \, 0.40543\big] | |
S(x) | 0.93809 | \big[0.48515, \, 0.99007\big] | 0.98063 | \big[0.97190, \, 0.98936\big] | |
h(x) | 0.01234 | \big[0.00419, \, 0.02306\big] | 0.01159 | \big[0.00755, \, 0.01532\big] |
BSEL | BLINEXL | BGEL | ||||||||
Parameters | \omega | c=-7 | c=0.3 | c=7 | q=-7 | q=0.3 | q=7 | |||
0.0 | 0.01113 | 0.01115 | 0.01113 | 0.01111 | 0.01236 | 0.01086 | 0.00946 | |||
0.2 | 0.01139 | 0.0114 | 0.01139 | 0.01138 | 0.01236 | 0.01116 | 0.00972 | |||
\alpha | 0.5 | 0.01178 | 0.01179 | 0.01178 | 0.01177 | 0.0124 | 0.01162 | 0.01024 | ||
0.9 | 0.01231 | 0.01231 | 0.01231 | 0.01231 | 0.01243 | 0.01227 | 0.01165 | |||
0.0 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | 0.01611 | 0.0161 | 0.0161 | |||
0.2 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | 0.01611 | 0.0161 | 0.0161 | |||
\gamma | 0.5 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | ||
0.9 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | |||
0.0 | 0.25096 | 0.25107 | 0.25095 | 0.25084 | 0.25134 | 0.25087 | 0.25041 | |||
0.2 | 0.24832 | 0.24851 | 0.24831 | 0.24813 | 0.25134 | 0.24818 | 0.24744 | |||
\lambda | 0.5 | 0.24437 | 0.24458 | 0.24436 | 0.24416 | 0.24512 | 0.24421 | 0.24345 | ||
0.9 | 0.2391 | 0.23917 | 0.23909 | 0.23903 | 0.23936 | 0.23905 | 0.23883 | |||
0.0 | 0.98338 | 0.98341 | 0.98337 | 0.98334 | 0.98341 | 0.98337 | 0.98333 | |||
0.2 | 0.98296 | 0.98299 | 0.98296 | 0.98293 | 0.98341 | 0.98296 | 0.98292 | |||
S(x) | 0.5 | 0.98234 | 0.98236 | 0.98234 | 0.98232 | 0.98236 | 0.98233 | 0.98231 | ||
0.9 | 0.98151 | 0.98151 | 0.98151 | 0.9815 | 0.98151 | 0.98151 | 0.9815 | |||
0.0 | 0.00927 | 0.00929 | 0.00927 | 0.00926 | 0.01025 | 0.00906 | 0.00793 | |||
0.2 | 0.00941 | 0.00941 | 0.00941 | 0.0094 | 0.01025 | 0.00923 | 0.00813 | |||
h(x) | 0.5 | 0.0096 | 0.00961 | 0.0096 | 0.0096 | 0.0101 | 0.00948 | 0.00852 | ||
0.9 | 0.00986 | 0.00987 | 0.00986 | 0.00986 | 0.00996 | 0.00984 | 0.00948 |
MRL | Rényi entropy | ||||||||
t | \hat{M}_{X_{\textbf{MLE}}}(t) | \hat{M}_{X_{\textbf{MC}}}(t) | \hat{M}_{X_{\textbf{BP}}}(t) | \hat{M}_{X_{\textbf{BT}}}(t) | \rho | \hat{I}_{R_{\textbf{MLE}}}(\rho) | \hat{I}_{R_{\textbf{MC}}}(\rho) | \hat{I}_{R_{\textbf{BP}}}(\rho) | \hat{I}_{R_{\textbf{BT}}}(\rho) |
2 | 185.68 | 182.774 | 122.322 | 114.115 | 0.05 | 6.11361 | 6.12668 | 6.00771 | 6.00235 |
23 | 176.927 | 174.005 | 122.457 | 106.483 | 0.1 | 6.04549 | 6.05904 | 5.91615 | 5.91246 |
30 | 172.942 | 170.153 | 120.197 | 103.509 | 0.5 | 5.90156 | 5.91919 | 5.67348 | 5.69585 |
65 | 151.346 | 149.506 | 105.213 | 88.8658 | 0.75 | 5.86021 | 5.88203 | 5.55805 | 5.63642 |
88 | 136.565 | 135.454 | 94.0043 | 79.7009 | 0.95 | 5.82477 | 5.85202 | 5.41355 | 5.59515 |
147 | 99.0509 | 99.6887 | 65.2195 | 57.9184 | 1.05 | 5.8001 | 5.83224 | 5.27971 | 5.57287 |
212 | 62.0075 | 63.7823 | 38.3393 | 36.9219 | 1.15 | 5.75875 | 5.80137 | 4.97211 | 5.54557 |
266 | 37.6572 | 39.5497 | 22.2458 | 22.7113 | 1.25 | 5.62521 | 5.72194 | 1.84899 | 5.50297 |
293 | 28.1902 | 29.9186 | 16.4039 | 17.0268 | 1.3 | 5.12429 | 5.54309 | -13.7509 | 5.4637 |
300 | 26.038 | 27.7078 | 15.1097 | 15.7213 | 1.33 | 2.11833 | 5.03057 | -23.567 | 5.42279 |
Model | \alpha | \gamma | \lambda | \ell | \text{K-S} | P-value | A^* | W^* | AIC | BIC | HQIC |
MCD | 0.01244 | 0.0161 | 0.23778 | -174.798 | 0.15872 | 0.43642 | 1.34189 | 0.19434 | 355.595 | 359.799 | 356.94 |
EWD | 323.87 | 6.64787 | 0.13725 | -177.22 | 0.23369 | 0.0755 | 2.14356 | 0.34271 | 360.44 | 364.644 | 361.785 |
MWED | 85.1553 | 0.80479 | 0.00162 | -179.206 | 0.1933 | 0.21226 | 2.02396 | 0.27698 | 364.413 | 368.616 | 365.757 |
MWD | 0.01796 | 0.45363 | 0.00713 | -178.064 | 0.18046 | 0.28262 | 1.53354 | 0.22922 | 362.127 | 366.331 | 363.472 |
SZMWD | 0.00223 | 4.5\times10^{-13} | 5.02732 | -175.747 | 0.16851 | 0.36181 | 2.00039 | 0.24917 | 357.495 | 361.699 | 358.84 |
ENHD | 0.00005 | 70.2516 | 0.94626 | -181.082 | 0.23237 | 0.07834 | 1.98779 | 0.34077 | 368.164 | 372.368 | 369.509 |
NEWD | 0.00051 | 1.44294 | 4.23584 | -185.993 | 0.2198 | 0.11017 | 2.7857 | 0.34492 | 377.987 | 382.191 | 379.332 |
ExpCD | 0.27993 | 0.43182 | 1.2\times10^{-5} | -177.673 | 0.19256 | 0.21591 | 1.49685 | 0.22888 | 361.345 | 365.549 | 362.69 |
ALTWD | 3.7\times10^{6} | 0.03066 | 1.07231 | -176.204 | 0.20509 | 0.16024 | 2.25124 | 0.30822 | 358.407 | 362.611 | 359.752 |
LNHD | 3329.5 | 1.6\times10^{-6} | 1.0893 | -185.175 | 0.21233 | 0.1337 | 1.92729 | 0.33754 | 376.349 | 380.553 | 377.694 |
GCD | 187.181 | 0.03519 | 82.7541 | -189.995 | 0.20968 | 0.14296 | 2.34507 | 0.418 | 385.99 | 390.193 | 387.334 |
ECD | 438.538 | 0.31131 | 0.00001 | -181.039 | 0.20587 | 0.15719 | 1.83489 | 0.27395 | 368.078 | 372.282 | 369.423 |
MECD | 0.18024 | 4.69419 | 6.4\times10^{11} | -181.096 | 0.21816 | 0.11502 | 1.70224 | 0.29189 | 368.193 | 372.397 | 369.538 |
NECD | 0.75238 | 0.30632 | 0.00691 | -180.885 | 0.19931 | 0.18432 | 1.83022 | 0.26586 | 367.771 | 371.974 | 369.116 |
\alpha | \gamma | \lambda | \mu_{1}^{'} | \mu_{2}^{'} | \mu_{3}^{'} | \mu_{4}^{'} | Variance | SK | KU |
0.005 | 0.05 | 0.6 | 13.8919 | 221.33 | 3820.78 | 69869.7 | 28.3468 | -0.27487 | 2.6252 |
0.01 | 0.05 | 0.6 | 10.8699 | 139.955 | 1980.23 | 29941.7 | 21.8012 | -0.14749 | 2.48003 |
2.5 | 0.05 | 0.6 | 0.17946 | 0.08393 | 0.06045 | 0.05701 | 0.05172 | 2.28031 | 9.99219 |
8.5 | 0.05 | 0.6 | 0.03337 | 0.00363 | 0.00069 | 0.00019 | 0.00252 | 3.20996 | 18.6808 |
12.5 | 0.05 | 0.6 | 0.01873 | 0.00121 | 0.00014 | 0.00002 | 0.00086 | 3.4785 | 21.9745 |
0.05 | 0.01 | 0.6 | 5.32591 | 37.6848 | 307.028 | 2749.55 | 9.31943 | 0.2479 | 2.40194 |
0.05 | 0.1 | 0.6 | 5.21106 | 36.3474 | 292.825 | 2597.57 | 9.1922 | 0.2732 | 2.41148 |
0.05 | 0.6 | 0.6 | 3.36323 | 14.5046 | 70.27 | 366.975 | 3.19327 | 0.00146 | 2.17677 |
0.05 | 0.7 | 0.6 | 3.0149 | 11.5151 | 49.1126 | 224.945 | 2.42551 | -0.06084 | 2.17804 |
0.05 | 7.5 | 0.6 | 0.33831 | 0.13413 | 0.05773 | 0.02628 | 0.01967 | -0.34755 | 2.49154 |
0.5 | 0.05 | 0.01 | 7.58978 | 192.348 | 5774.72 | 193139. | 134.743 | 1.45101 | 4.09513 |
0.5 | 0.05 | 0.1 | 5.42 | 118.097 | 3299.9 | 105529. | 88.7206 | 2.03199 | 6.63337 |
0.5 | 0.05 | 0.9 | 0.92172 | 1.24406 | 2.02079 | 3.69775 | 0.39449 | 0.59283 | 2.72154 |
0.5 | 0.05 | 1.5 | 0.8876 | 0.95825 | 1.15228 | 1.48947 | 0.17042 | -0.01116 | 2.27333 |
0.5 | 0.05 | 3.5 | 0.91325 | 0.88495 | 0.89096 | 0.92264 | 0.05093 | -0.8901 | 3.69432 |
MRL | MTTF | |||||||
(\alpha, \, \gamma, \, \lambda) | n | t=0.1 | t=0.25 | t=0.4 | t=0.9 | t=1.5 | ||
50 | 2.60597 | 2.52678 | 2.45297 | 2.18303 | 1.88464 | 2.63912 | ||
(0.22248) | (0.23116) | (0.21865) | (0.21054) | (0.21082) | (0.22409) | |||
150 | 2.61128 | 2.5335 | 2.45315 | 2.18143 | 1.89022 | 2.64464 | ||
(0.1316) | (0.13039) | (0.1291) | (0.12584) | (0.1195) | (0.13285) | |||
(0.1, \, 0.3, \, 0.7) | 250 | 2.60598 | 2.52576 | 2.52576 | 2.18685 | 1.89222 | 2.63926 | |
(0.09915) | (0.09924) | (0.09924) | (0.09548) | (0.09315) | (0.10003) | |||
350 | 2.60625 | 2.53115 | 2.45205 | 2.18706 | 1.89143 | 2.64066 | ||
(0.08648) | (0.08422) | (0.08338) | (0.08205) | (0.08094) | (0.08705) | |||
450 | 2.60728 | 2.52918 | 2.52918 | 2.18827 | 1.89012 | 2.64188 | ||
(0.07497) | (0.07534) | (0.07534) | (0.07005) | (0.07043) | (0.07555) | |||
50 | 2.75849 | 2.68387 | 2.58162 | 2.23433 | 1.84612 | 2.79497 | ||
(0.19717) | (0.1933) | (0.18279) | (0.17367) | (0.16343) | (0.20433) | |||
150 | 2.7616 | 2.67429 | 2.56997 | 2.23198 | 1.84866 | 2.79698 | ||
(0.1131) | (0.1124) | (0.10701) | (0.10148) | (0.09569) | (0.11655) | |||
(0.05, \, 0.8, \, 0.5) | 250 | 2.76378 | 2.66893 | 2.56935 | 2.2357 | 1.84827 | 2.80033 | |
(0.08914) | (0.08605) | (0.08498) | (0.07661) | (0.07316) | (0.09193) | |||
350 | 2.76533 | 2.66884 | 2.57279 | 2.23756 | 1.847 | 2.80093 | ||
(0.07301) | (0.07376) | (0.06896) | (0.06506) | (0.06186) | (0.07443) | |||
450 | 2.76165 | 2.67192 | 2.57152 | 2.23481 | 1.84873 | 2.79799 | ||
(0.06531) | (0.06386) | (0.06221) | (0.05932) | (0.05413) | (0.06705) | |||
50 | 0.6629 | 0.65275 | 0.62618 | 0.51821 | 0.39241 | 0.61476 | ||
(0.08957) | (0.09478) | (0.08666) | (0.12123) | (0.16865) | (0.08428) | |||
150 | 0.66787 | 0.65108 | 0.62702 | 0.52379 | 0.39969 | 0.61852 | ||
(0.05097) | (0.05414) | (0.05706) | (0.06844) | (0.08996) | (0.0479) | |||
(0.5, \, 0.8, \, 0.5) | 250 | 0.66542 | 0.65257 | 0.62691 | 0.52351 | 0.39679 | 0.6169 | |
(0.03936) | (0.04194) | (0.04426) | (0.05191) | (0.07032) | (0.03631) | |||
350 | 0.66706 | 0.65238 | 0.62806 | 0.52317 | 0.39847 | 0.61792 | ||
(0.03363) | (0.03433) | (0.03809) | (0.04445) | (0.05975) | (0.03131) | |||
450 | 0.66569 | 0.65299 | 0.62707 | 0.52219 | 0.39836 | 0.61669 | ||
(0.03014) | (0.03127) | (0.03237) | (0.03864) | (0.05212) | (0.0277) |
MLEs | MCMC | Boot-P | Boot-T | |||||||||
Parameter | n | Bais | MSE | Bais | MSE | Bais | MSE | Bais | MSE | |||
\alpha | 0.00366 | 0.00933 | -0.00133 | 0.00921 | 0.01479 | 0.02178 | -0.01045 | 0.09226 | ||||
\gamma | 0.01552 | 0.00341 | 0.00337 | 0.00368 | 0.02639 | 0.00811 | 0.01019 | 0.04692 | ||||
\lambda | 50 | 0.00366 | 0.0005 | 0.00428 | 0.0006 | 0.00652 | 0.00098 | -0.00025 | 0.02511 | |||
S(x) | 0.00156 | 0.00398 | 0.01328 | 0.00389 | -0.00047 | 0.00829 | -0.00028 | 0.06576 | ||||
h(x) | 0.01785 | 0.00536 | 0.00346 | 0.00455 | 0.03707 | 0.01415 | 0.00554 | 0.06868 | ||||
\alpha | 0.00214 | 0.00434 | -0.00192 | 0.00414 | 0.00237 | 0.00815 | -0.00416 | 0.05789 | ||||
\gamma | 0.00619 | 0.00166 | 0.00222 | 0.00163 | 0.01411 | 0.00316 | 0.004 | 0.03953 | ||||
\lambda | 100 | 0.00126 | 0.00022 | 0.00117 | 0.00022 | 0.00218 | 0.00042 | -0.00058 | 0.01391 | |||
S(x) | 0.00055 | 0.00189 | 0.00704 | 0.00186 | 0.00175 | 0.00358 | -0.00025 | 0.04499 | ||||
h(x) | 0.00703 | 0.00219 | -0.00031 | 0.00199 | 0.01364 | 0.00471 | 0.00118 | 0.03927 | ||||
\alpha | 0.00445 | 0.00313 | 0.00163 | 0.00302 | 0.00708 | 0.00608 | -0.00036 | 0.0448 | ||||
\gamma | 0.00371 | 0.00101 | 0.00117 | 0.001 | 0.00651 | 0.002 | 0.00231 | 0.03077 | ||||
\lambda | 150 | 0.00103 | 0.00014 | 0.00095 | 0.00014 | 0.00198 | 0.00029 | -0.00019 | 0.0135 | |||
S(x) | -0.00161 | 0.00136 | 0.00281 | 0.00132 | -0.00188 | 0.00259 | -0.00225 | 0.03784 | ||||
h(x) | 0.00696 | 0.00158 | 0.00201 | 0.00147 | 0.01165 | 0.00316 | 0.00254 | 0.03371 | ||||
\alpha | 0.00066 | 0.00207 | -0.00138 | 0.00202 | 0.00216 | 0.00425 | -0.00241 | 0.04174 | ||||
\gamma | 0.00328 | 0.00075 | 0.00143 | 0.00074 | 0.00608 | 0.00145 | 0.00254 | 0.03099 | ||||
\lambda | 200 | 0.00053 | 0.0001 | 0.00047 | 0.0001 | 0.0008 | 0.0002 | -0.00034 | 0.01045 | |||
S(x) | 0.00046 | 0.00091 | 0.00374 | 0.0009 | 0.0004 | 0.00185 | 0.00007 | 0.0307 | ||||
h(x) | 0.00328 | 0.00105 | -0.00034 | 0.001 | 0.00632 | 0.0022 | 0.00048 | 0.03235 |
BSEL | BLINEXL | BGEL | |||||||||
n | \omega | c=-7 | c=0.3 | c=7 | q=-7 | q=0.3 | q=7 | ||||
0.0 | Bais | -0.00133 | 0.03469 | -0.0027 | -0.03051 | 0.0522 | -0.01284 | -0.07194 | |||
MSE | 0.00921 | 0.01321 | 0.00913 | 0.00837 | 0.01357 | 0.00906 | 0.01263 | ||||
0.2 | Bais | 0.00017 | 0.02629 | -0.0008 | -0.0212 | 0.0522 | -0.00799 | -0.05782 | |||
MSE | 0.00922 | 0.01202 | 0.00916 | 0.00832 | 0.01357 | 0.00906 | 0.01119 | ||||
50 | 0.5 | Bais | 0.00166 | 0.0172 | 0.00111 | -0.01115 | 0.02658 | -0.00305 | -0.03879 | ||
MSE | 0.00925 | 0.01084 | 0.00921 | 0.00852 | 0.01069 | 0.00913 | 0.00986 | ||||
0.9 | Bais | 0.00316 | 0.00723 | 0.00302 | -0.00022 | 0.01006 | 0.00196 | -0.0101 | |||
MSE | 0.00931 | 0.0097 | 0.0093 | 0.00906 | 0.00959 | 0.00927 | 0.00914 | ||||
0.0 | Bais | -0.00192 | 0.01424 | -0.00257 | -0.01664 | 0.02418 | -0.00758 | -0.03679 | |||
MSE | 0.00414 | 0.00481 | 0.00413 | 0.00404 | 0.005 | 0.00414 | 0.00515 | ||||
0.2 | Bais | -0.0007 | 0.01073 | -0.00116 | -0.01128 | 0.02418 | -0.00469 | -0.02753 | |||
MSE | 0.0042 | 0.00464 | 0.00419 | 0.00404 | 0.005 | 0.00418 | 0.00468 | ||||
100 | 0.5 | Bais | 0.00052 | 0.00711 | 0.00025 | -0.00569 | 0.01167 | -0.00178 | -0.01654 | ||
MSE | 0.00425 | 0.00449 | 0.00425 | 0.00411 | 0.0045 | 0.00423 | 0.00435 | ||||
0.9 | Bais | 0.00174 | 0.0034 | 0.00167 | 0.00014 | 0.00463 | 0.00116 | -0.00309 | |||
MSE | 0.00431 | 0.00437 | 0.00431 | 0.00426 | 0.00436 | 0.00431 | 0.00427 | ||||
0.0 | Bais | 0.00163 | 0.01231 | 0.00119 | -0.00841 | 0.01913 | -0.00216 | -0.02174 | |||
MSE | 0.00302 | 0.00338 | 0.00301 | 0.0029 | 0.00351 | 0.00299 | 0.00332 | ||||
0.2 | Bais | 0.00248 | 0.01 | 0.00217 | -0.00468 | 0.01913 | -0.00019 | -0.01499 | |||
MSE | 0.00305 | 0.0033 | 0.00304 | 0.00293 | 0.00351 | 0.00302 | 0.00314 | ||||
150 | 0.5 | Bais | 0.00332 | 0.00765 | 0.00315 | -0.00084 | 0.01064 | 0.00179 | -0.0074 | ||
MSE | 0.00308 | 0.00322 | 0.00308 | 0.00299 | 0.00324 | 0.00306 | 0.00305 | ||||
0.9 | Bais | 0.00417 | 0.00526 | 0.00413 | 0.00311 | 0.00604 | 0.00379 | 0.00127 | |||
MSE | 0.00312 | 0.00315 | 0.00312 | 0.00309 | 0.00315 | 0.00311 | 0.00308 | ||||
0.0 | Bais | -0.00138 | 0.00647 | -0.00171 | -0.00889 | 0.01172 | -0.00423 | -0.01887 | |||
MSE | 0.00202 | 0.00216 | 0.00202 | 0.002 | 0.00222 | 0.00202 | 0.00229 | ||||
0.2 | Bais | -0.00077 | 0.00476 | -0.001 | -0.0061 | 0.01172 | -0.00277 | -0.01364 | |||
MSE | 0.00203 | 0.00213 | 0.00203 | 0.002 | 0.00222 | 0.00203 | 0.00216 | ||||
200 | 0.5 | Bais | -0.00016 | 0.00301 | -0.00029 | -0.00324 | 0.00526 | -0.0013 | -0.00792 | ||
MSE | 0.00205 | 0.0021 | 0.00204 | 0.00202 | 0.0021 | 0.00204 | 0.00207 | ||||
0.9 | Bais | 0.00045 | 0.00125 | 0.00042 | -0.00033 | 0.00183 | 0.00017 | -0.0016 | |||
MSE | 0.00206 | 0.00207 | 0.00206 | 0.00205 | 0.00207 | 0.00206 | 0.00205 |
BSEL | BLINEXL | BGEL | |||||||||
n | \omega | c=-7 | c=0.3 | c=7 | q=-7 | q=0.3 | q=7 | ||||
0.0 | Bais | 0.00337 | 0.01615 | 0.0028 | -0.01049 | 0.0342 | -0.01527 | -0.13227 | |||
MSE | 0.00368 | 0.00394 | 0.00368 | 0.00391 | 0.0044 | 0.00662 | 0.03407 | ||||
0.2 | Bais | 0.00702 | 0.01603 | 0.00661 | -0.00342 | 0.0342 | -0.0084 | -0.12589 | |||
MSE | 0.00353 | 0.00375 | 0.00352 | 0.00362 | 0.0044 | 0.00597 | 0.03353 | ||||
50 | 0.5 | Bais | 0.01066 | 0.01584 | 0.01042 | 0.0042 | 0.02384 | -0.00049 | -0.13227 | ||
MSE | 0.00344 | 0.00359 | 0.00343 | 0.00342 | 0.00375 | 0.00519 | 0.03286 | ||||
0.9 | Bais | 0.0143 | 0.01561 | 0.01424 | 0.01424 | 0.01774 | 0.00981 | 0.00981 | |||
MSE | 0.00341 | 0.00345 | 0.00341 | 0.00338 | 0.00348 | 0.00407 | 0.03168 | ||||
0.0 | Bais | 0.00222 | 0.00741 | 0.002 | -0.00303 | 0.01601 | -0.00116 | -0.02388 | |||
MSE | 0.00163 | 0.00173 | 0.00163 | 0.0016 | 0.00187 | 0.00165 | 0.00299 | ||||
0.2 | Bais | 0.00341 | 0.00705 | 0.00325 | -0.00033 | 0.01601 | 0.00101 | -0.01773 | |||
MSE | 0.00164 | 0.00171 | 0.00163 | 0.00159 | 0.00187 | 0.00164 | 0.00274 | ||||
100 | 0.5 | Bais | 0.0046 | 0.00668 | 0.00451 | 0.00242 | 0.01036 | 0.00321 | -0.02388 | ||
MSE | 0.00164 | 0.00168 | 0.00164 | 0.00161 | 0.00172 | 0.00164 | 0.00251 | ||||
0.9 | Bais | 0.00579 | 0.00631 | 0.00577 | 0.00577 | 0.00727 | 0.00544 | 0.00544 | |||
MSE | 0.00165 | 0.00166 | 0.00165 | 0.00164 | 0.00167 | 0.00165 | 0.00231 | ||||
0.0 | Bais | 0.00117 | 0.00454 | 0.00103 | -0.00221 | 0.01034 | -0.00096 | -0.01314 | |||
MSE | 0.001 | 0.00104 | 0.001 | 0.00098 | 0.0011 | 0.001 | 0.00122 | ||||
0.2 | Bais | 0.00194 | 0.00429 | 0.00183 | -0.00046 | 0.01034 | 0.00043 | -0.00889 | |||
MSE | 0.001 | 0.00103 | 0.001 | 0.00098 | 0.0011 | 0.001 | 0.00112 | ||||
150 | 0.5 | Bais | 0.0027 | 0.00405 | 0.00264 | 0.00131 | 0.00647 | 0.00183 | -0.01314 | ||
MSE | 0.001 | 0.00102 | 0.001 | 0.00099 | 0.00103 | 0.001 | 0.00105 | ||||
0.9 | Bais | 0.00346 | 0.0038 | 0.00345 | 0.00345 | 0.00442 | 0.00324 | 0.00324 | |||
MSE | 0.00101 | 0.00101 | 0.00101 | 0.001 | 0.00101 | 0.00101 | 0.00101 | ||||
0.0 | Bais | 0.00143 | 0.00389 | 0.00132 | -0.00105 | 0.00821 | -0.00012 | -0.00862 | |||
MSE | 0.00074 | 0.00077 | 0.00074 | 0.00073 | 0.00081 | 0.00074 | 0.00083 | ||||
0.2 | Bais | 0.00198 | 0.00371 | 0.00191 | 0.00024 | 0.00821 | 0.0009 | -0.00545 | |||
MSE | 0.00074 | 0.00076 | 0.00074 | 0.00073 | 0.00081 | 0.00074 | 0.00078 | ||||
200 | 0.5 | Bais | 0.00254 | 0.00353 | 0.0025 | 0.00153 | 0.00531 | 0.00192 | -0.00862 | ||
MSE | 0.00074 | 0.00076 | 0.00074 | 0.00074 | 0.00077 | 0.00074 | 0.00075 | ||||
0.9 | Bais | 0.0031 | 0.00334 | 0.00309 | 0.00309 | 0.0038 | 0.00294 | 0.00294 | |||
MSE | 0.00075 | 0.00075 | 0.00075 | 0.00074 | 0.00075 | 0.00075 | 0.00074 |
BSEL | BLINEXL | BGEL | |||||||||
n | \omega | c=-7 | c=0.3 | c=7 | q=-7 | q=0.3 | q=7 | ||||
0.0 | Bais | 0.00428 | 0.00602 | 0.00421 | 0.00263 | 0.01709 | 0.00144 | -0.01366 | |||
MSE | 0.0006 | 0.00066 | 0.00059 | 0.00054 | 0.00104 | 0.00055 | 0.00059 | ||||
0.2 | Bais | 0.0041 | 0.00533 | 0.00405 | 0.00293 | 0.01709 | 0.00209 | -0.01366 | |||
MSE | 0.00056 | 0.00061 | 0.00056 | 0.00053 | 0.00104 | 0.00053 | 0.00053 | ||||
50 | 0.5 | Bais | 0.00391 | 0.00462 | 0.00388 | 0.00324 | 0.01031 | 0.00276 | -0.00651 | ||
MSE | 0.00054 | 0.00056 | 0.00053 | 0.00051 | 0.00073 | 0.00051 | 0.00048 | ||||
0.9 | Bais | 0.00373 | 0.00391 | 0.00372 | 0.00356 | 0.0056 | 0.00344 | 0.00015 | |||
MSE | 0.00051 | 0.00051 | 0.00051 | 0.0005 | 0.00056 | 0.0005 | 0.00047 | ||||
0.0 | Bais | 0.00117 | 0.00191 | 0.00114 | 0.00044 | 0.00715 | -0.00015 | -0.00708 | |||
MSE | 0.00022 | 0.00023 | 0.00022 | 0.00021 | 0.00029 | 0.00021 | 0.00024 | ||||
0.2 | Bais | 0.00119 | 0.00171 | 0.00117 | 0.00069 | 0.00715 | 0.00027 | -0.00708 | |||
MSE | 0.00022 | 0.00023 | 0.00022 | 0.00021 | 0.00029 | 0.00021 | 0.00022 | ||||
100 | 0.5 | Bais | 0.00122 | 0.00152 | 0.00121 | 0.00093 | 0.00386 | 0.00069 | -0.0028 | ||
MSE | 0.00022 | 0.00022 | 0.00022 | 0.00022 | 0.00024 | 0.00022 | 0.00021 | ||||
0.9 | Bais | 0.00125 | 0.00132 | 0.00124 | 0.00117 | 0.00195 | 0.00111 | 0.00011 | |||
MSE | 0.00022 | 0.00022 | 0.00022 | 0.00022 | 0.00022 | 0.00022 | 0.00021 | ||||
0.0 | Bais | 0.00095 | 0.00143 | 0.00093 | 0.00047 | 0.00492 | 0.00008 | -0.00448 | |||
MSE | 0.00014 | 0.00014 | 0.00014 | 0.00013 | 0.00017 | 0.00014 | 0.00015 | ||||
0.2 | Bais | 0.00097 | 0.00131 | 0.00096 | 0.00064 | 0.00492 | 0.00036 | -0.00448 | |||
MSE | 0.00014 | 0.00014 | 0.00014 | 0.00014 | 0.00017 | 0.00014 | 0.00014 | ||||
150 | 0.5 | Bais | 0.001 | 0.00119 | 0.00099 | 0.00081 | 0.0027 | 0.00065 | -0.00148 | ||
MSE | 0.00014 | 0.00014 | 0.00014 | 0.00014 | 0.00015 | 0.00014 | 0.00013 | ||||
0.9 | Bais | 0.00102 | 0.00107 | 0.00102 | 0.00097 | 0.00146 | 0.00093 | 0.00035 | |||
MSE | 0.00014 | 0.00014 | 0.00014 | 0.00014 | 0.00014 | 0.00014 | 0.00014 | ||||
0.0 | Bais | 0.00047 | 0.00083 | 0.00046 | 0.00012 | 0.00344 | -0.00018 | -0.00356 | |||
MSE | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.00011 | 0.0001 | 0.0001 | ||||
0.2 | Bais | 0.00049 | 0.00074 | 0.00048 | 0.00024 | 0.00344 | 0.00003 | -0.00356 | |||
MSE | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.00011 | 0.0001 | 0.0001 | ||||
200 | 0.5 | Bais | 0.00051 | 0.00065 | 0.0005 | 0.00037 | 0.00176 | 0.00025 | -0.00127 | ||
MSE | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | ||||
0.9 | Bais | 0.00053 | 0.00056 | 0.00053 | 0.00049 | 0.00085 | 0.00046 | 0.00006 | |||
MSE | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
BSEL | BLINEXL | BGEL | |||||||||
n | \omega | c=-7 | c=0.3 | c=7 | q=-7 | q=0.3 | q=7 | ||||
0.0 | Bais | 0.01328 | 0.02651 | 0.01272 | 0.0004 | 0.03947 | 0.0071 | -0.02832 | |||
MSE | 0.00389 | 0.00446 | 0.00387 | 0.00363 | 0.00493 | 0.00384 | 0.0051 | ||||
0.2 | Bais | 0.00976 | 0.01948 | 0.00936 | 0.00073 | 0.03947 | 0.00542 | -0.02128 | |||
MSE | 0.00388 | 0.00419 | 0.00387 | 0.00373 | 0.00493 | 0.00388 | 0.00474 | ||||
50 | 0.5 | Bais | 0.00624 | 0.01208 | 0.00602 | 0.00108 | 0.0195 | 0.00375 | -0.0129 | ||
MSE | 0.00391 | 0.00402 | 0.0039 | 0.00384 | 0.00397 | 0.00392 | 0.00439 | ||||
0.9 | Bais | 0.00273 | 0.00426 | 0.00267 | 0.00144 | 0.00657 | 0.0021 | -0.00254 | |||
MSE | 0.00396 | 0.00397 | 0.00396 | 0.00395 | 0.00389 | 0.00396 | 0.00408 | ||||
0.0 | Bais | 0.00704 | 0.01378 | 0.00675 | 0.0004 | 0.02096 | 0.00389 | -0.0132 | |||
MSE | 0.00186 | 0.00201 | 0.00185 | 0.00179 | 0.00216 | 0.00184 | 0.00211 | ||||
0.2 | Bais | 0.00509 | 0.00994 | 0.00489 | 0.00044 | 0.02096 | 0.00288 | -0.00948 | |||
MSE | 0.00186 | 0.00194 | 0.00186 | 0.00182 | 0.00216 | 0.00185 | 0.00202 | ||||
100 | 0.5 | Bais | 0.00314 | 0.00599 | 0.00303 | 0.00049 | 0.0095 | 0.00188 | -0.00544 | ||
MSE | 0.00187 | 0.0019 | 0.00187 | 0.00185 | 0.00189 | 0.00187 | 0.00195 | ||||
0.9 | Bais | 0.0012 | 0.00193 | 0.00117 | 0.00053 | 0.00291 | 0.00088 | -0.00102 | |||
MSE | 0.00189 | 0.00189 | 0.00189 | 0.00188 | 0.00188 | 0.00189 | 0.0019 | ||||
0.0 | Bais | 0.00281 | 0.00732 | 0.00261 | -0.00166 | 0.01232 | 0.00068 | -0.01064 | |||
MSE | 0.00132 | 0.00138 | 0.00132 | 0.00131 | 0.00143 | 0.00133 | 0.00149 | ||||
0.2 | Bais | 0.00148 | 0.0047 | 0.00135 | -0.00164 | 0.01232 | -0.00001 | -0.0081 | |||
MSE | 0.00133 | 0.00136 | 0.00133 | 0.00132 | 0.00143 | 0.00134 | 0.00144 | ||||
150 | 0.5 | Bais | 0.00016 | 0.00203 | 0.00008 | -0.00163 | 0.00433 | -0.00069 | -0.00543 | ||
MSE | 0.00134 | 0.00135 | 0.00134 | 0.00134 | 0.00134 | 0.00135 | 0.0014 | ||||
0.9 | Bais | -0.00117 | -0.00069 | -0.00119 | -0.00161 | -0.00007 | -0.00138 | -0.00259 | |||
MSE | 0.00135 | 0.00135 | 0.00135 | 0.00136 | 0.00135 | 0.00136 | 0.00137 | ||||
0.0 | Bais | 0.00374 | 0.00714 | 0.00359 | 0.00036 | 0.01094 | 0.00214 | -0.0063 | |||
MSE | 0.0009 | 0.00095 | 0.0009 | 0.00089 | 0.00099 | 0.0009 | 0.00096 | ||||
0.2 | Bais | 0.00275 | 0.00517 | 0.00265 | 0.00039 | 0.01094 | 0.00164 | -0.00437 | |||
MSE | 0.0009 | 0.00093 | 0.0009 | 0.00089 | 0.00099 | 0.0009 | 0.00094 | ||||
200 | 0.5 | Bais | 0.00177 | 0.00317 | 0.00171 | 0.00042 | 0.00486 | 0.00113 | -0.00236 | ||
MSE | 0.00091 | 0.00091 | 0.00091 | 0.0009 | 0.00092 | 0.00091 | 0.00092 | ||||
0.9 | Bais | 0.00079 | 0.00114 | 0.00078 | 0.00045 | 0.00159 | 0.00063 | -0.00026 | |||
MSE | 0.00091 | 0.00091 | 0.00091 | 0.00091 | 0.00091 | 0.00091 | 0.00091 |
BSEL | BLINEXL | BGEL | |||||||||
n | \omega | c=-7 | c=0.3 | c=7 | q=-7 | q=0.3 | q=7 | ||||
0.0 | Bais | 0.00346 | 0.02075 | 0.00278 | -0.01134 | 0.03946 | -0.00414 | -0.04214 | |||
MSE | 0.00455 | 0.00598 | 0.00451 | 0.00394 | 0.0071 | 0.00435 | 0.00515 | ||||
0.2 | Bais | 0.00777 | 0.01993 | 0.00729 | -0.00327 | 0.03946 | 0.00227 | -0.03116 | |||
MSE | 0.00474 | 0.0058 | 0.00471 | 0.00411 | 0.0071 | 0.00453 | 0.0046 | ||||
50 | 0.5 | Bais | 0.01209 | 0.01907 | 0.01181 | 0.00535 | 0.02745 | 0.00884 | -0.01623 | ||
MSE | 0.00498 | 0.00561 | 0.00495 | 0.00448 | 0.00601 | 0.00481 | 0.00426 | ||||
0.9 | Bais | 0.01641 | 0.01816 | 0.01634 | 0.0146 | 0.02041 | 0.01557 | 0.00666 | |||
MSE | 0.00526 | 0.00542 | 0.00525 | 0.00509 | 0.00552 | 0.00521 | 0.00471 | ||||
0.0 | Bais | -0.00031 | 0.0075 | -0.00064 | -0.00758 | 0.01715 | -0.00405 | -0.02299 | |||
MSE | 0.00199 | 0.00224 | 0.00199 | 0.00189 | 0.00249 | 0.00197 | 0.00227 | ||||
0.2 | Bais | 0.00189 | 0.00736 | 0.00166 | -0.00336 | 0.01715 | -0.00077 | -0.01592 | |||
MSE | 0.00204 | 0.00222 | 0.00203 | 0.00193 | 0.00249 | 0.00201 | 0.00208 | ||||
100 | 0.5 | Bais | 0.0041 | 0.00722 | 0.00396 | 0.001 | 0.01128 | 0.00255 | -0.00747 | ||
MSE | 0.0021 | 0.00221 | 0.00209 | 0.00201 | 0.00229 | 0.00207 | 0.00199 | ||||
0.9 | Bais | 0.0063 | 0.00708 | 0.00627 | 0.0055 | 0.00813 | 0.00591 | 0.00295 | |||
MSE | 0.00217 | 0.00219 | 0.00216 | 0.00214 | 0.00221 | 0.00216 | 0.00209 | ||||
0.0 | Bais | 0.00201 | 0.00719 | 0.00179 | -0.00293 | 0.01369 | -0.0005 | -0.01329 | |||
MSE | 0.00147 | 0.0016 | 0.00146 | 0.00139 | 0.00174 | 0.00144 | 0.00152 | ||||
0.2 | Bais | 0.00349 | 0.00712 | 0.00334 | -0.00004 | 0.01369 | 0.00171 | -0.00811 | |||
MSE | 0.0015 | 0.00159 | 0.00149 | 0.00143 | 0.00174 | 0.00147 | 0.00145 | ||||
150 | 0.5 | Bais | 0.00498 | 0.00705 | 0.00489 | 0.00292 | 0.00974 | 0.00395 | -0.00225 | ||
MSE | 0.00153 | 0.00159 | 0.00153 | 0.00148 | 0.00164 | 0.00151 | 0.00145 | ||||
0.9 | Bais | 0.00646 | 0.00698 | 0.00644 | 0.00593 | 0.00766 | 0.0062 | 0.00447 | |||
MSE | 0.00157 | 0.00158 | 0.00157 | 0.00155 | 0.0016 | 0.00156 | 0.00153 | ||||
0.0 | Bais | -0.00034 | 0.00346 | -0.0005 | -0.00399 | 0.00836 | -0.00221 | -0.01176 | |||
MSE | 0.001 | 0.00106 | 0.001 | 0.00098 | 0.00112 | 0.001 | 0.00108 | ||||
0.2 | Bais | 0.00075 | 0.0034 | 0.00064 | -0.00185 | 0.00836 | -0.00057 | -0.00775 | |||
MSE | 0.00101 | 0.00106 | 0.00101 | 0.00099 | 0.00112 | 0.00101 | 0.00103 | ||||
200 | 0.5 | Bais | 0.00183 | 0.00335 | 0.00177 | 0.00032 | 0.00536 | 0.00107 | -0.00335 | ||
MSE | 0.00103 | 0.00105 | 0.00103 | 0.00101 | 0.00107 | 0.00102 | 0.00101 | ||||
0.9 | Bais | 0.00292 | 0.00329 | 0.0029 | 0.00253 | 0.0038 | 0.00272 | 0.00153 | |||
MSE | 0.00104 | 0.00105 | 0.00104 | 0.00104 | 0.00105 | 0.00104 | 0.00103 |
Model | Abbreviation | CDF | Author |
Exponentiated Weibull distribution | EWD | \left(1-{\rm e}^{-\left(\frac{x}{\alpha }\right)^{\gamma }}\right)^{\lambda } | Weibull [29] |
Modified Weibull extension distribution | MWED | 1-{\rm e}^{\alpha \lambda \left(1-{\rm e}^{\left(\frac{x}{\alpha }\right)^{\gamma }}\right)} | Xie et al. [6] |
Modified Weibull distribution | MWD | 1-{\rm e}^{-\alpha x^{\gamma } {\rm e}^{\lambda x}} | Lai et al. [30] |
Sarhan–Zaindin modified Weibull distribution | SZMWD | 1-{\rm e}^{-\alpha x-\gamma x^{\lambda }} | Sarhan and Zaindin [31] |
Exponentiated Nadarajah-Haghighi distribution | ENHD | \left(1-{\rm e}^{1-(\alpha x+1)^{\gamma }}\right)^{\lambda } | Lemonte [32] |
New extended Weibull distribution | NEWD | 1-{\rm e}^{-\alpha x^{\gamma } {\rm e}^{-\frac{\lambda }{x}}} | Peng X, Yan [33] |
Exponentiated Chen distribution | ExpCD | \left(1-{\rm e}^{\lambda \left(1-{\rm e}^{x^{\gamma }}\right)}\right)^{\alpha } | Chaubey and Zhang [9] |
Alpha logarithmic transformed Weibull distribution | ALTWD | 1-\frac{\log \left(\alpha -(\alpha -1) \left(1-{\rm e}^{-\gamma x^{\lambda }}\right)\right)}{\log (\alpha)} | Nassar et al. [34] |
Logistic Nadarajah-Haghighi distribution | LNHD | \frac{\left((\gamma x+1)^{\alpha }-1\right)^{\lambda }}{\left((\gamma x+1)^{\alpha }-1\right)^{\lambda }+1} | Peña-Ramírez et al. [35] |
Gamma-Chen distribution | GCD | \frac{\Gamma \left(\alpha, -\left(\left(1-{\rm e}^{x^{\gamma }}\right) \lambda \right)\right)}{\Gamma (\alpha)} | Reis et al. [10] |
Extended Chen distribution | ECD | 1-\left(\lambda \left({\rm e}^{x^{\gamma }}-1\right)+1\right)^{-\alpha } | Bhatti et al. [11] |
Modified extended Chen distribution | MECD | \left(\lambda \left({\rm e}^{x^{-\gamma }}-1\right)+1\right)^{-\alpha } | Anafo et al. [12] |
New extended Chen distribution | NECD | 1-{\rm e}^{\left((1-\alpha) \left(1-{\rm e}^{\lambda \left(1-{\rm e}^{x^{\gamma }}\right)}\right)+\lambda \left(1-{\rm e}^{x^{\gamma }}\right)\right)} | Acquah et al. [13] |
MLEs | MCMC | ||||
Parameter | Mean | CIs | Mean | CIs | |
\alpha | 0.03828 | \big[0.00822, \, 0.06834\big] | 0.03644 | \big[0.02674, \, 0.04785\big] | |
\gamma | 0.04539 | \big[0.03570, \, 0.05509\big] | 0.04623 | \big[0.04491, \, 0.04734\big] | |
\lambda | 0.22366 | \big[0.13919, \, 0.30814\big] | 0.22402 | \big[0.22045, \, 0.22778\big] | |
S(x) | 0.9424 | \big[0.89674, \, 0.98805\big] | 0.94511 | \big[0.92853, \, 0.95939\big] | |
h(x) | 0.03023 | \big[0.01280, \, 0.04765\big] | 0.02884 | \big[0.02116, \, 0.03784\big] |
Boot-P | Boot-T | ||||
Parameter | Mean | CIs | Mean | CIs | |
\alpha | 0.03837 | \big[0.01478, \, 0.06898\big] | 0.05773 | \big[0.05044, \, 0.07173\big] | |
\gamma | 0.04639 | \big[0.03811, \, 0.05669\big] | 0.04074 | \big[0.03672, \, 0.04353\big] | |
\lambda | 0.22867 | \big[0.19140, \, 0.28079\big] | 0.21100 | \big[0.17201, \, 0.25403\big] | |
S(x) | 0.94271 | \big[0.89800, \, 0.97764\big] | 0.91318 | \big[0.89157, \, 0.92455\big] | |
h(x) | 0.02977 | \big[0.01342, \, 0.05329\big] | 0.03822 | \big[0.03584, \, 0.04294\big] |
BSEL | BLINEXL | BGEL | ||||||||
Parameters | \omega | c=-7 | c=0.3 | c=7 | q=-7 | q=0.3 | q=7 | |||
0.0 | 0.03644 | 0.03655 | 0.03644 | 0.03634 | 0.03882 | 0.03593 | 0.03324 | |||
0.2 | 0.03681 | 0.03689 | 0.03681 | 0.03673 | 0.03882 | 0.03638 | 0.03388 | |||
\alpha | 0.5 | 0.03736 | 0.03742 | 0.03736 | 0.03731 | 0.03856 | 0.03708 | 0.03508 | ||
0.9 | 0.0381 | 0.03811 | 0.0381 | 0.03808 | 0.03834 | 0.03804 | 0.03744 | |||
0.0 | 0.04623 | 0.04623 | 0.04623 | 0.04623 | 0.04628 | 0.04622 | 0.04616 | |||
0.2 | 0.04606 | 0.04606 | 0.04606 | 0.04606 | 0.04628 | 0.04605 | 0.046 | |||
\gamma | 0.5 | 0.04581 | 0.04581 | 0.04581 | 0.04581 | 0.04585 | 0.0458 | 0.04576 | ||
0.9 | 0.04548 | 0.04548 | 0.04548 | 0.04548 | 0.04549 | 0.04547 | 0.04546 | |||
0.0 | 0.22402 | 0.22403 | 0.22402 | 0.224 | 0.22406 | 0.22401 | 0.22395 | |||
0.2 | 0.22395 | 0.22396 | 0.22395 | 0.22394 | 0.22406 | 0.22394 | 0.22389 | |||
\lambda | 0.5 | 0.22384 | 0.22385 | 0.22384 | 0.22383 | 0.22387 | 0.22384 | 0.22381 | ||
0.9 | 0.2237 | 0.2237 | 0.2237 | 0.2237 | 0.2237 | 0.2237 | 0.22369 | |||
0.0 | 0.94511 | 0.94532 | 0.9451 | 0.94489 | 0.9453 | 0.94506 | 0.94484 | |||
0.2 | 0.94456 | 0.94474 | 0.94456 | 0.94438 | 0.9453 | 0.94453 | 0.94435 | |||
S(x) | 0.5 | 0.94375 | 0.94387 | 0.94375 | 0.94364 | 0.94386 | 0.94373 | 0.94361 | ||
0.9 | 0.94267 | 0.94269 | 0.94267 | 0.94264 | 0.94269 | 0.94266 | 0.94264 | |||
0.0 | 0.02884 | 0.02891 | 0.02884 | 0.02878 | 0.03073 | 0.02843 | 0.0263 | |||
0.2 | 0.02912 | 0.02917 | 0.02912 | 0.02907 | 0.03073 | 0.02878 | 0.02681 | |||
h(x) | 0.5 | 0.02954 | 0.02957 | 0.02953 | 0.0295 | 0.03049 | 0.02931 | 0.02774 | ||
0.9 | 0.03009 | 0.03009 | 0.03009 | 0.03008 | 0.03028 | 0.03004 | 0.02958 |
MRL | Rényi entropy | ||||||||
t | \hat{M}_{X_{\textbf{MLE}}}(t) | \hat{M}_{X_{\textbf{MC}}}(t) | \hat{M}_{X_{\textbf{BP}}}(t) | \hat{M}_{X_{\textbf{BT}}}(t) | \rho | \hat{I}_{R_{\textbf{MLE}}}(\rho) | \hat{I}_{R_{\textbf{MC}}}(\rho) | \hat{I}_{R_{\textbf{BP}}}(\rho) | \hat{I}_{R_{\textbf{BT}}}(\rho) |
0.1 | 47.8786 | 48.3209 | 46.3159 | 43.0059 | 0.05 | 4.90862 | 4.89888 | 4.88590 | 4.94248 |
3 | 48.5382 | 48.8454 | 46.9415 | 44.7115 | 0.1 | 4.82664 | 4.81795 | 4.80363 | 4.85051 |
7 | 46.9675 | 47.1855 | 45.3885 | 43.7523 | 0.5 | 4.64095 | 4.63616 | 4.61766 | 4.61981 |
18 | 40.9398 | 40.9881 | 39.4432 | 38.8195 | 0.95 | 4.49995 | 4.50185 | 4.47948 | 4.39064 |
36 | 30.2408 | 30.0981 | 28.9069 | 29.3765 | 1.05 | 4.43638 | 4.44214 | 4.41888 | 4.27358 |
47 | 24.0695 | 23.8479 | 22.8502 | 23.7994 | 1.1 | 4.38635 | 4.39528 | 4.37209 | 4.1769 |
55 | 19.9546 | 19.6939 | 18.8284 | 20.0391 | 1.14 | 4.32721 | 4.33998 | 4.31786 | 4.05704 |
67 | 14.54 | 14.2504 | 13.57 | 15.0241 | 1.17 | 4.26124 | 4.27835 | 4.25878 | 3.91518 |
79 | 10.1487 | 9.86372 | 9.34976 | 10.8672 | 1.2 | 4.15734 | 4.18144 | 4.16882 | 3.67086 |
86 | 8.07022 | 7.80065 | 7.37329 | 8.85311 | 1.297 | 0.04325 | 0.31359 | 1.80489 | -7.68537 |
Model | \alpha | \gamma | \lambda | \ell | \text{K-S} | P-value | A^* | W^* | AIC | BIC | HQIC |
MCD | 0.03828 | 0.04539 | 0.22367 | -223.576 | 0.13309 | 0.33855 | 1.49466 | 0.20501 | 453.152 | 458.888 | 455.336 |
EWD | 91.7152 | 5.16712 | 0.13253 | -228.506 | 0.20599 | 0.02872 | 3.32948 | 0.54402 | 463.012 | 468.748 | 465.196 |
MWED | 13.7467 | 0.5877 | 0.00876 | -231.647 | 0.15924 | 0.15833 | 2.84918 | 0.37327 | 469.293 | 475.029 | 471.477 |
MWD | 0.0624 | 0.35481 | 0.02332 | -227.155 | 0.13374 | 0.33281 | 1.80574 | 0.26388 | 460.31 | 466.047 | 462.495 |
SZMWD | 0.02138 | 3.6\times10^{-12} | 5.9428 | -229.603 | 0.22203 | 0.01446 | 5.31127 | 0.72025 | 465.206 | 470.942 | 467.39 |
ENHD | 0.00033 | 36.963 | 0.67336 | -233.406 | 0.21206 | 0.02229 | 3.3716 | 0.5945 | 472.811 | 478.547 | 474.996 |
NEWD | 0.02781 | 0.94224 | 0.02025 | -240.979 | 0.19358 | 0.04716 | 3.49506 | 0.53188 | 487.959 | 493.695 | 490.143 |
ExpCD | 0.24482 | 0.5288 | 3.1\times10^{-5} | -226.843 | 0.14152 | 0.26925 | 1.6762 | 0.23859 | 459.686 | 465.423 | 461.871 |
ALTWD | 6.7\times10^{9} | 0.72573 | 0.75982 | -225.448 | 0.18677 | 0.0611 | 3.41212 | 0.48072 | 456.896 | 462.632 | 459.081 |
LNHD | 2552.13 | 1.1\times10^{-5} | 0.75368 | -239.45 | 0.22755 | 0.01128 | 3.76041 | 0.71367 | 484.899 | 490.636 | 487.084 |
GCD | 179.746 | 0.02729 | 91.0347 | -251.22 | 0.22165 | 0.0147 | 4.26388 | 0.7452 | 508.44 | 514.176 | 510.625 |
ECD | 2494.84 | 0.34452 | 8.2\times10^{-6} | -233.172 | 0.16685 | 0.12357 | 2.69969 | 0.38103 | 472.344 | 478.08 | 474.528 |
MECD | 0.34834 | 1.34825 | 450.937 | -250.132 | 0.2294 | 0.01037 | 3.77874 | 0.67492 | 506.263 | 511.999 | 508.448 |
NECD | 0.78773 | 0.33732 | 0.02567 | -233.009 | 0.16164 | 0.14661 | 2.65212 | 0.3678 | 472.017 | 477.753 | 474.202 |
MLEs | MCMC | ||||
Parameter | Mean | CIs | Mean | CIs | |
\alpha | 0.01244 | \big[-0.00432, \, 0.02920\big] | 0.01113 | \big[0.00739, \, 0.01574\big] | |
\gamma | 0.01610 | \big[0.01165, \, 0.02055\big] | 0.01610 | \big[0.01590, \, 0.01634\big] | |
\lambda | 0.23778 | \big[0.15879, \, 0.31677\big] | 0.25096 | \big[0.23929, \, 0.25862\big] | |
S(x) | 0.98130 | \big[0.95568, \, 1.00692\big] | 0.98338 | \big[0.97651, \, 0.98894\big] | |
h(x) | 0.00993 | \big[-0.00110, \, 0.02097\big] | 0.00927 | \big[0.00620, \, 0.01298\big] |
Boot-P | Boot-T | ||||
Parameter | Mean | CIs | Mean | CIs | |
\alpha | 0.04538 | \big[0.00663, \, 0.41552\big] | 0.01285 | \big[0.00709, \, 0.01841\big] | |
\gamma | 0.01456 | \big[0.00542, \, 0.01834\big] | 0.01716 | \big[0.00952, \, 0.01843\big] | |
\lambda | 0.20108 | \big[0.00300, \, 0.27096\big] | 0.29390 | \big[0.02539, \, 0.40543\big] | |
S(x) | 0.93809 | \big[0.48515, \, 0.99007\big] | 0.98063 | \big[0.97190, \, 0.98936\big] | |
h(x) | 0.01234 | \big[0.00419, \, 0.02306\big] | 0.01159 | \big[0.00755, \, 0.01532\big] |
BSEL | BLINEXL | BGEL | ||||||||
Parameters | \omega | c=-7 | c=0.3 | c=7 | q=-7 | q=0.3 | q=7 | |||
0.0 | 0.01113 | 0.01115 | 0.01113 | 0.01111 | 0.01236 | 0.01086 | 0.00946 | |||
0.2 | 0.01139 | 0.0114 | 0.01139 | 0.01138 | 0.01236 | 0.01116 | 0.00972 | |||
\alpha | 0.5 | 0.01178 | 0.01179 | 0.01178 | 0.01177 | 0.0124 | 0.01162 | 0.01024 | ||
0.9 | 0.01231 | 0.01231 | 0.01231 | 0.01231 | 0.01243 | 0.01227 | 0.01165 | |||
0.0 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | 0.01611 | 0.0161 | 0.0161 | |||
0.2 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | 0.01611 | 0.0161 | 0.0161 | |||
\gamma | 0.5 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | ||
0.9 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | 0.0161 | |||
0.0 | 0.25096 | 0.25107 | 0.25095 | 0.25084 | 0.25134 | 0.25087 | 0.25041 | |||
0.2 | 0.24832 | 0.24851 | 0.24831 | 0.24813 | 0.25134 | 0.24818 | 0.24744 | |||
\lambda | 0.5 | 0.24437 | 0.24458 | 0.24436 | 0.24416 | 0.24512 | 0.24421 | 0.24345 | ||
0.9 | 0.2391 | 0.23917 | 0.23909 | 0.23903 | 0.23936 | 0.23905 | 0.23883 | |||
0.0 | 0.98338 | 0.98341 | 0.98337 | 0.98334 | 0.98341 | 0.98337 | 0.98333 | |||
0.2 | 0.98296 | 0.98299 | 0.98296 | 0.98293 | 0.98341 | 0.98296 | 0.98292 | |||
S(x) | 0.5 | 0.98234 | 0.98236 | 0.98234 | 0.98232 | 0.98236 | 0.98233 | 0.98231 | ||
0.9 | 0.98151 | 0.98151 | 0.98151 | 0.9815 | 0.98151 | 0.98151 | 0.9815 | |||
0.0 | 0.00927 | 0.00929 | 0.00927 | 0.00926 | 0.01025 | 0.00906 | 0.00793 | |||
0.2 | 0.00941 | 0.00941 | 0.00941 | 0.0094 | 0.01025 | 0.00923 | 0.00813 | |||
h(x) | 0.5 | 0.0096 | 0.00961 | 0.0096 | 0.0096 | 0.0101 | 0.00948 | 0.00852 | ||
0.9 | 0.00986 | 0.00987 | 0.00986 | 0.00986 | 0.00996 | 0.00984 | 0.00948 |
MRL | Rényi entropy | ||||||||
t | \hat{M}_{X_{\textbf{MLE}}}(t) | \hat{M}_{X_{\textbf{MC}}}(t) | \hat{M}_{X_{\textbf{BP}}}(t) | \hat{M}_{X_{\textbf{BT}}}(t) | \rho | \hat{I}_{R_{\textbf{MLE}}}(\rho) | \hat{I}_{R_{\textbf{MC}}}(\rho) | \hat{I}_{R_{\textbf{BP}}}(\rho) | \hat{I}_{R_{\textbf{BT}}}(\rho) |
2 | 185.68 | 182.774 | 122.322 | 114.115 | 0.05 | 6.11361 | 6.12668 | 6.00771 | 6.00235 |
23 | 176.927 | 174.005 | 122.457 | 106.483 | 0.1 | 6.04549 | 6.05904 | 5.91615 | 5.91246 |
30 | 172.942 | 170.153 | 120.197 | 103.509 | 0.5 | 5.90156 | 5.91919 | 5.67348 | 5.69585 |
65 | 151.346 | 149.506 | 105.213 | 88.8658 | 0.75 | 5.86021 | 5.88203 | 5.55805 | 5.63642 |
88 | 136.565 | 135.454 | 94.0043 | 79.7009 | 0.95 | 5.82477 | 5.85202 | 5.41355 | 5.59515 |
147 | 99.0509 | 99.6887 | 65.2195 | 57.9184 | 1.05 | 5.8001 | 5.83224 | 5.27971 | 5.57287 |
212 | 62.0075 | 63.7823 | 38.3393 | 36.9219 | 1.15 | 5.75875 | 5.80137 | 4.97211 | 5.54557 |
266 | 37.6572 | 39.5497 | 22.2458 | 22.7113 | 1.25 | 5.62521 | 5.72194 | 1.84899 | 5.50297 |
293 | 28.1902 | 29.9186 | 16.4039 | 17.0268 | 1.3 | 5.12429 | 5.54309 | -13.7509 | 5.4637 |
300 | 26.038 | 27.7078 | 15.1097 | 15.7213 | 1.33 | 2.11833 | 5.03057 | -23.567 | 5.42279 |
Model | \alpha | \gamma | \lambda | \ell | \text{K-S} | P-value | A^* | W^* | AIC | BIC | HQIC |
MCD | 0.01244 | 0.0161 | 0.23778 | -174.798 | 0.15872 | 0.43642 | 1.34189 | 0.19434 | 355.595 | 359.799 | 356.94 |
EWD | 323.87 | 6.64787 | 0.13725 | -177.22 | 0.23369 | 0.0755 | 2.14356 | 0.34271 | 360.44 | 364.644 | 361.785 |
MWED | 85.1553 | 0.80479 | 0.00162 | -179.206 | 0.1933 | 0.21226 | 2.02396 | 0.27698 | 364.413 | 368.616 | 365.757 |
MWD | 0.01796 | 0.45363 | 0.00713 | -178.064 | 0.18046 | 0.28262 | 1.53354 | 0.22922 | 362.127 | 366.331 | 363.472 |
SZMWD | 0.00223 | 4.5\times10^{-13} | 5.02732 | -175.747 | 0.16851 | 0.36181 | 2.00039 | 0.24917 | 357.495 | 361.699 | 358.84 |
ENHD | 0.00005 | 70.2516 | 0.94626 | -181.082 | 0.23237 | 0.07834 | 1.98779 | 0.34077 | 368.164 | 372.368 | 369.509 |
NEWD | 0.00051 | 1.44294 | 4.23584 | -185.993 | 0.2198 | 0.11017 | 2.7857 | 0.34492 | 377.987 | 382.191 | 379.332 |
ExpCD | 0.27993 | 0.43182 | 1.2\times10^{-5} | -177.673 | 0.19256 | 0.21591 | 1.49685 | 0.22888 | 361.345 | 365.549 | 362.69 |
ALTWD | 3.7\times10^{6} | 0.03066 | 1.07231 | -176.204 | 0.20509 | 0.16024 | 2.25124 | 0.30822 | 358.407 | 362.611 | 359.752 |
LNHD | 3329.5 | 1.6\times10^{-6} | 1.0893 | -185.175 | 0.21233 | 0.1337 | 1.92729 | 0.33754 | 376.349 | 380.553 | 377.694 |
GCD | 187.181 | 0.03519 | 82.7541 | -189.995 | 0.20968 | 0.14296 | 2.34507 | 0.418 | 385.99 | 390.193 | 387.334 |
ECD | 438.538 | 0.31131 | 0.00001 | -181.039 | 0.20587 | 0.15719 | 1.83489 | 0.27395 | 368.078 | 372.282 | 369.423 |
MECD | 0.18024 | 4.69419 | 6.4\times10^{11} | -181.096 | 0.21816 | 0.11502 | 1.70224 | 0.29189 | 368.193 | 372.397 | 369.538 |
NECD | 0.75238 | 0.30632 | 0.00691 | -180.885 | 0.19931 | 0.18432 | 1.83022 | 0.26586 | 367.771 | 371.974 | 369.116 |