Processing math: 58%
Research article Special Issues

Modified Chen distribution: Properties, estimation, and applications in reliability analysis

  • This article proposed a flexible three-parameter distribution known as the modified Chen distribution (MCD). The MCD is capable of modeling failure rates with both monotonic and non-monotonic behaviors, including the bathtub curve commonly used to represent device performance in reliability engineering. We examined its statistical properties, such as moments, mean time to failure, mean residual life, Rényi entropy, and order statistics. Model parameters, along with survival and hazard functions, were estimated by utilizing maximum likelihood estimators and two types of bootstrap confidence intervals. Bayesian estimates of the model parameters, along with the survival and hazard functions and their corresponding credible intervals, were derived via the Markov chain Monte Carlo method under balanced squared error loss, balanced linear-exponential loss, and balanced general entropy loss. We also provided a simulated dataset analysis for illustration. Furthermore, the MCD's performance was compared with other popular distributions across two well-known failure time datasets. The findings suggested that the MCD offered the best fit for these datasets, highlighting its potential applicability to real-world problems and its suitability as a model for analyzing and predicting device failure times.

    Citation: M. G. M. Ghazal. Modified Chen distribution: Properties, estimation, and applications in reliability analysis[J]. AIMS Mathematics, 2024, 9(12): 34906-34946. doi: 10.3934/math.20241662

    Related Papers:

    [1] Rashad M. EL-Sagheer, Mohamed S. Eliwa, Khaled M. Alqahtani, Mahmoud El-Morshedy . Bayesian and non-Bayesian inferential approaches under lower-recorded data with application to model COVID-19 data. AIMS Mathematics, 2022, 7(9): 15965-15981. doi: 10.3934/math.2022873
    [2] M. G. M. Ghazal, Yusra A. Tashkandy, Oluwafemi Samson Balogun, M. E. Bakr . Exponentiated extended extreme value distribution: Properties, estimation, and applications in applied fields. AIMS Mathematics, 2024, 9(7): 17634-17656. doi: 10.3934/math.2024857
    [3] Ahmed Z. Afify, Rehab Alsultan, Abdulaziz S. Alghamdi, Hisham A. Mahran . A new flexible Weibull distribution for modeling real-life data: Improved estimators, properties, and applications. AIMS Mathematics, 2025, 10(3): 5880-5927. doi: 10.3934/math.2025270
    [4] Refah Alotaibi, Mazen Nassar, Zareen A. Khan, Ahmed Elshahhat . Statistical analysis of stress–strength in a newly inverted Chen model from adaptive progressive type-Ⅱ censoring and modelling on light-emitting diodes and pump motors. AIMS Mathematics, 2024, 9(12): 34311-34355. doi: 10.3934/math.20241635
    [5] Hisham Mahran, Mahmoud M. Mansour, Enayat M. Abd Elrazik, Ahmed Z. Afify . A new one-parameter flexible family with variable failure rate shapes: Properties, inference, and real-life applications. AIMS Mathematics, 2024, 9(5): 11910-11940. doi: 10.3934/math.2024582
    [6] Sajid Mehboob Zaidi, Mashail M. AL Sobhi, M. El-Morshedy, Ahmed Z. Afify . A new generalized family of distributions: Properties and applications. AIMS Mathematics, 2021, 6(1): 456-476. doi: 10.3934/math.2021028
    [7] Fiaz Ahmad Bhatti, G. G. Hamedani, Mashail M. Al Sobhi, Mustafa Ç. Korkmaz . On the Burr XII-Power Cauchy distribution: Properties and applications. AIMS Mathematics, 2021, 6(7): 7070-7092. doi: 10.3934/math.2021415
    [8] Refah Alotaibi, Hassan Okasha, Hoda Rezk, Abdullah M. Almarashi, Mazen Nassar . On a new flexible Lomax distribution: statistical properties and estimation procedures with applications to engineering and medical data. AIMS Mathematics, 2021, 6(12): 13976-13999. doi: 10.3934/math.2021808
    [9] Mohieddine Rahmouni, Dalia Ziedan . The Weibull-generalized shifted geometric distribution: properties, estimation, and applications. AIMS Mathematics, 2025, 10(4): 9773-9804. doi: 10.3934/math.2025448
    [10] Essam A. Ahmed, Laila A. Al-Essa . Inference of stress-strength reliability based on adaptive progressive type-Ⅱ censing from Chen distribution with application to carbon fiber data. AIMS Mathematics, 2024, 9(8): 20482-20515. doi: 10.3934/math.2024996
  • This article proposed a flexible three-parameter distribution known as the modified Chen distribution (MCD). The MCD is capable of modeling failure rates with both monotonic and non-monotonic behaviors, including the bathtub curve commonly used to represent device performance in reliability engineering. We examined its statistical properties, such as moments, mean time to failure, mean residual life, Rényi entropy, and order statistics. Model parameters, along with survival and hazard functions, were estimated by utilizing maximum likelihood estimators and two types of bootstrap confidence intervals. Bayesian estimates of the model parameters, along with the survival and hazard functions and their corresponding credible intervals, were derived via the Markov chain Monte Carlo method under balanced squared error loss, balanced linear-exponential loss, and balanced general entropy loss. We also provided a simulated dataset analysis for illustration. Furthermore, the MCD's performance was compared with other popular distributions across two well-known failure time datasets. The findings suggested that the MCD offered the best fit for these datasets, highlighting its potential applicability to real-world problems and its suitability as a model for analyzing and predicting device failure times.



    MCD Modified Chen distribution
    HR Hazard rate
    CD Chen distribution
    MWED Modified Weibull extension distribution
    ExpCD Exponentiated Chen distribution
    GCD Gamma-Chen distribution
    ECD Extended Chen distribution
    MECD Modified extended Chen distribution
    NECD New extended Chen distribution
    CDF Cumulative distribution function
    PDF Probability density function
    SK Skewness
    KU Kurtosis
    MTTF Mean time to failure
    Γ(.) Gamma function
    MRL Mean residual life
    MSEs Mean squared errors
    MLEs Maximum likelihood estimators
    ACIs Asymptotic confidence intervals
    CIs Confidence intervals
    Boot-P Bootstrap-p
    Boot-T Bootstrap-t
    MCMC Markov chain Monte Carlo
    BSEL Balanced squared error loss
    BLINEXL Balanced linear-exponential loss
    BGEL Balanced general entropy loss
    M-H Metropolis-Hastings
    Log-likelihood
    K-S Kolmogorov-Smirnov
    A Anderson-Darling
    W Cramér-von Mises
    AIC Akaike information criterion
    BIC Bayesian information criterion
    HQIC Hannan-Quinn information criterion
    TTT-Transform Total time on test transform
    EWD Exponentiated Weibull distribution
    MWD Modified Weibull distribution
    SZMWD Sarhan–Zaindin modified Weibull distribution
    ENHD Exponentiated Nadarajah-Haghighi distribution
    NEWD New extended Weibull distribution
    ALTWD Alpha logarithmic transformed Weibull distribution
    LNHD Logistic Nadarajah-Haghighi distribution

    In survival analysis, the hazard rate (HR) function plays a critical role in studying a product's lifecycle. A bathtub-shaped HR function illustrates a pattern over time that begins with a high initial HR, followed by a period of low, steady HR, and then an increase later in the lifecycle. This pattern is relevant in fields such as product reliability, warranty analysis, infrastructure planning, healthcare systems, manufacturing, aerospace, aviation, and telecommunications. Understanding the HR pattern is essential for determining optimal maintenance strategies. For instance, electronic components or machinery may exhibit a high initial HR due to manufacturing defects or early-life failures, which then decreases to a stable rate during their useful life. Toward the end of the lifecycle, the HR may rise again due to wear and aging. Similarly, manufacturing equipment may experience high early HRs from issues like malfunctioning components or calibration errors, stabilize, and then increase again due to wear and tear or obsolescence. Recognizing this pattern helps in scheduling preventive maintenance, optimizing production efficiency, and reducing downtime [1,2,3,4].

    Practitioners analyze statistical probability distributions to determine whether a device exhibits bathtub curve behavior, with a focus on warranty periods and optimal maintenance schedules. Classical probability distributions, like the Weibull, lognormal, and exponential, are often employed for their mathematical flexibility. However, these distributions may not accurately fit data that exhibit non-monotonic behavior, such as the bathtub curve. This limitation can introduce uncertainty in data interpretation and may lead to inconclusive results in the analysis due to the specific characteristics of these distributions.

    The Chen distribution (CD) [5], introduced by Chen in 2000, is a life distribution widely used in survival analysis and modeling. It is defined by two parameters and is adaptable for various applications. The model also provides closed-form confidence intervals for the shape parameter and joint confidence regions for both parameters. However, the CD has limitations in accurately modeling certain survival datasets, particularly due to its asymmetric HR, which does not conform to a bathtub shape, and its lack of a scale parameter.

    To address these limitations, researchers have developed modified versions of the CD to improve its flexibility in describing diverse data types. For instance, Xie et al. [6] introduced the modified Weibull extension distribution (MWED) by incorporating a scale parameter. Pappas et al. [7] further expanded on this by adding a shape parameter to the MWED, resulting in the Marshall-Olkin extended CD. Sarhan and Apaloo [8] introduced the exponentiated MWED, a four-parameter distribution that extends the MWED. Chaubey and Zhang [9] proposed the exponentiated CD (ExpCD), a three-parameter extension of the CD. Recently, Reis et al. [10] presented the gamma-CD (GCD), and Bhatti et al. [11] developed another flexible model, also named the extended CD (ECD), derived from the generalized Burr-Hatke differential equation. Additionally, Anafo et al. [12] proposed the modified ECD (MECD), and Acquah et al. [13] introduced the new ECD (NECD), a three-parameter distribution.

    While these modifications have improved data-fitting capabilities for specific applications, they have failed to accurately represent complex hazard behaviors, particularly non-monotonic patterns such as bathtub-shaped HRs. One significant issue is their inability to model the bathtub curve accurately, often producing hazard functions that resemble 'V' or 'J' shapes, which incorrectly suggest a short operational life for the device. This misrepresentation biases the data, leading to inadequate estimates of device reliability. The research gap lies in the absence of a three-parameter distribution capable of effectively modeling all three phases of a product's lifecycle-early failure, stable operation, and wear-out-without introducing excessive mathematical complexity or practical limitations. Therefore, it is essential to explore alternative methodologies or develop hybrid distributions that better align with the characteristics of the bathtub curve.

    In recent years, several models have been developed to represent reliability by combining two distinct classical distributions, even when they belong to the same distribution family. Examples of these models include the additive Chen-Weibull distribution [14], Weibull-CD [15], additive Chen-Gompertz distribution [16], additive CD [17], and additive Chen-Perks distribution [18]. These models are capable of providing a bathtub-shaped hazard function. However, by merging two classical distributions, each with at least two parameters, these models typically involve four or five parameters, increasing their complexity and making parameter estimation more challenging. This highlights the need for a distribution that can effectively handle system reliability with fewer parameters, balancing flexibility and simplicity.

    In this article, we present a novel, flexible three-parameter distribution known as the modified CD (MCD). The MCD addresses critical shortcomings of existing models by incorporating an additional parameter that significantly enhances flexibility while maintaining interpretability. This novel three-parameter distribution overcomes the absence of a scale parameter in the original CD and enables the modeling of both monotonic and non-monotonic hazard functions, including the three phases of the bathtub curve-early failure, stable operation, and wear-out. The MCD's highly adaptable HR function exhibits a bathtub shape, offering a versatile and practical solution readily applicable to real-world scenarios. Its simplicity facilitates ease of parameter estimation, making it an attractive option for reliability engineers, and it consistently provides a better fit compared to the other three-parameter models. This unique combination of flexibility, simplicity, and practical applicability distinguishes the MCD from previous modifications, making it a valuable contribution to the field of reliability analysis.

    The article is organized as follows: Section 2 introduces the new distribution. Section 3 delves into the statistical properties of the distribution. Section 4 details the parameter estimation methods, including maximum likelihood estimators, two bootstrap confidence intervals, and Bayesian estimates via the Markov chain Monte Carlo (MCMC) method under balanced loss functions. Section 5 presents the results of a simulation study. In Section 6, the applications of the MCD to two real datasets are discussed, highlighting its importance and flexibility. Finally, Section 7 provides the conclusions and future work regarding the MCD.

    In this section, we introduce a new three-parameter MCD, obtained by modifying the cumulative distribution function (CDF) of the CD [5]. The CDF of the MCD, parameterized by the vector ψ_=(α,γ,λ), is defined as follows:

    F(x;ψ_)=1eα(2eγxexλ),x0,α>0,γ,λ0, (2.1)

    where α is the location parameter, allowing the distribution to adjust its position; γ is the scale parameter, which adjusts the scale of the distribution, effectively stretching or compressing the survival function along the time axis; and λ is the shape parameter, which governs the overall shape of the distribution, influencing how rapidly the hazard rate changes.

    The probability density function (PDF) and the survival function S(x) are defined as follows:

    f(x;ψ_)=α(γeγx+λxλ1exλ)eα(2eγxexλ), (2.2)

    and

    S(x;ψ_)=eα(2eγxexλ). (2.3)

    The HR and cumulative hazard functions are expressed as follows:

    h(x;ψ_)=α(γeγx+λxλ1exλ), (2.4)

    and

    H(x;ψ_)=α(2eγxexλ). (2.5)

    Different shapes of the PDF of the MCD are shown in Figure 1. The PDF of the MCD can be unimodal, decreasing, or increasing. Equation (2.4) demonstrates that the HR function increases when λ1 and displays a bathtub shape when 0<λ<1. For 0<λ<1, the HR function presents a bathtub shape if h(x;ψ_)=0, with x=x being the root of the equation:

    αγ2eγx+αλ(λxλ+λ1)xλ2exλ=0. (2.6)
    Figure 1.  Some plots of the PDF for the MCD.

    The HR function decreases when h(x;ψ_)<0 for x<x and increases when h(x;ψ_)>0 for x>x. Therefore, the HR function exhibits different behaviors depending on the value of λ, summarized as follows:

    ● For λ1, the HR function increases steadily throughout its entire range (refer to Figure 2(a)).

    Figure 2.  Some plots of the HR function for the MCD.

    ● For 0<λ<1, the HR function exhibits a bathtub-like shape (refer to Figure 2(b)(d)).

    The pth quantile (xp) of the MCD(ψ_) is calculated as the real solution to the following nonlinear equation:

    exλp+eγxp+log(1p)1α2=0. (3.1)

    By setting p=0.25,0.5,0.75, we can determine the first, second, and third quartiles of the MCD.

    The mode of the MCD is obtained by solving the following nonlinear equation:

    α(γ2eγx+λ(λ1)xλ2exλ+λ2x2λ2exλα(γeγx+λxλ1exλ)2)eα(2eγxexλ)=0. (3.2)

    Equations (3.1) and (3.2) lack simple closed form solutions, necessitating the use of numerical methods.

    Theorem 3.1. Given that X follows the MCD(ψ_), the rth moment of X, for r=1,2, is defined as

    μr=reαi=0m=0(1)iimαiγmi!m!(m+r)μr+m,CD, (3.3)

    where μm+r,CD is the (m+r)th noncentral moment of the CD.

    Proof. See Appendix A.

    Using the first four ordinary moments of the MCD, the measures of skewness (SK) and kurtosis (KU) can be determined as follows:

    SK=μ33μ1μ2+2(μ1)3(μ2(μ1)2)32,

    and

    KU=μ44μ1μ3+6(μ1)2μ23(μ1)4(μ2(μ1)2)2.

    Table 1 presents the values of the first four moments, variance, SK, and KU for the MCD, taking into account different combinations of α,γ, and λ.

    Table 1.  The numerical values for μ1,μ2,μ3,μ4, SK and KU of the MCD for various choices of α,γ, and λ.
    α γ λ μ1 μ2 μ3 μ4 Variance SK KU
    0.005 0.05 0.6 13.8919 221.33 3820.78 69869.7 28.3468 -0.27487 2.6252
    0.01 0.05 0.6 10.8699 139.955 1980.23 29941.7 21.8012 -0.14749 2.48003
    2.5 0.05 0.6 0.17946 0.08393 0.06045 0.05701 0.05172 2.28031 9.99219
    8.5 0.05 0.6 0.03337 0.00363 0.00069 0.00019 0.00252 3.20996 18.6808
    12.5 0.05 0.6 0.01873 0.00121 0.00014 0.00002 0.00086 3.4785 21.9745
    0.05 0.01 0.6 5.32591 37.6848 307.028 2749.55 9.31943 0.2479 2.40194
    0.05 0.1 0.6 5.21106 36.3474 292.825 2597.57 9.1922 0.2732 2.41148
    0.05 0.6 0.6 3.36323 14.5046 70.27 366.975 3.19327 0.00146 2.17677
    0.05 0.7 0.6 3.0149 11.5151 49.1126 224.945 2.42551 -0.06084 2.17804
    0.05 7.5 0.6 0.33831 0.13413 0.05773 0.02628 0.01967 -0.34755 2.49154
    0.5 0.05 0.01 7.58978 192.348 5774.72 193139. 134.743 1.45101 4.09513
    0.5 0.05 0.1 5.42 118.097 3299.9 105529. 88.7206 2.03199 6.63337
    0.5 0.05 0.9 0.92172 1.24406 2.02079 3.69775 0.39449 0.59283 2.72154
    0.5 0.05 1.5 0.8876 0.95825 1.15228 1.48947 0.17042 -0.01116 2.27333
    0.5 0.05 3.5 0.91325 0.88495 0.89096 0.92264 0.05093 -0.8901 3.69432

     | Show Table
    DownLoad: CSV

    Theorem 3.2. Assume X is a continuous random variable following the MCD(ψ_). The incomplete moment of X is then given by:

    ms(x)=αγe2αi,j,k=0(1)i+jαi+jjki!j!k!((1+i)γ)(s+kλ+1)γ1+αλe2αi,j,k,l=0(1)i+jαi+jjki!j!k!l!(iγ)(s+(k+l+1)λ)γ2,

    where

    γ1=Γ(s+kλ+1)Γ(s+kλ+1,(1+i)γt),(s+kλ+1)>0,

    and

    γ2=Γ(s+(k+l+1)λ)Γ(s+(k+l+1)λ,iγt),(s+(k+l+1)λ)>0.

    Proof. See Appendix A.

    Theorem 3.3. Given that X follows the MCD(ψ_), the mean time to failure (MTTF) of the MCD is expressed as:

    MTTF=eαλi,j,k=0kl=0(kl)(1)i+klαi+k(iγ)ji!j!k!(lk)j+1λΓ(j+1λ), (3.4)

    where Γ(.) denotes the gamma function.

    Proof. See Appendix A.

    Theorem 3.4. The mean residual life (MRL) of the MCD(ψ_) is expressed as

    MX(t)=eαλS(t;ψ_)i,j,k=0kl=0(kl)(1)i+klαi+k(iγ)ji!j!k!(lk)j+1λΓ(j+1λ). (3.5)

    Proof. See Appendix A.

    Table 2 presents the outcomes of a Monte Carlo simulation for the MRL (MX(t)) and MTTF. We generated N=2000 random samples with sizes of 50,150,250,350, and 450 from the MCD, using various parameter values. The MX(t) was evaluated at time points t=0.1,0.25,0.4,0.9, and 1.5. It was observed that the expected remaining lifetime (MRL) of an individual or system approaches the MTTF as t approaches zero, i.e., MX(t) MTTF as t0, confirming that MTTF=MX(t)|t=0. Additionally, we noticed that MX(t) decreases as t increases for a fixed n, and the mean squared errors (MSEs) (in parentheses) decreases as n increases (see Figure 3). Moreover, the MTTF remained relatively stable across different sample sizes. Figure 4 also presents the trace plots and density estimates for MRL and MTTF produced by the Monte Carlo simulation.

    Table 2.  The numerical results for MRL and MTTF generated by the Monte Carlo simulation, with their respective MSE displayed in parentheses.
    MRL MTTF
    (α,γ,λ) n t=0.1 t=0.25 t=0.4 t=0.9 t=1.5
    50 2.60597 2.52678 2.45297 2.18303 1.88464 2.63912
    (0.22248) (0.23116) (0.21865) (0.21054) (0.21082) (0.22409)
    150 2.61128 2.5335 2.45315 2.18143 1.89022 2.64464
    (0.1316) (0.13039) (0.1291) (0.12584) (0.1195) (0.13285)
    (0.1,0.3,0.7) 250 2.60598 2.52576 2.52576 2.18685 1.89222 2.63926
    (0.09915) (0.09924) (0.09924) (0.09548) (0.09315) (0.10003)
    350 2.60625 2.53115 2.45205 2.18706 1.89143 2.64066
    (0.08648) (0.08422) (0.08338) (0.08205) (0.08094) (0.08705)
    450 2.60728 2.52918 2.52918 2.18827 1.89012 2.64188
    (0.07497) (0.07534) (0.07534) (0.07005) (0.07043) (0.07555)
    50 2.75849 2.68387 2.58162 2.23433 1.84612 2.79497
    (0.19717) (0.1933) (0.18279) (0.17367) (0.16343) (0.20433)
    150 2.7616 2.67429 2.56997 2.23198 1.84866 2.79698
    (0.1131) (0.1124) (0.10701) (0.10148) (0.09569) (0.11655)
    (0.05,0.8,0.5) 250 2.76378 2.66893 2.56935 2.2357 1.84827 2.80033
    (0.08914) (0.08605) (0.08498) (0.07661) (0.07316) (0.09193)
    350 2.76533 2.66884 2.57279 2.23756 1.847 2.80093
    (0.07301) (0.07376) (0.06896) (0.06506) (0.06186) (0.07443)
    450 2.76165 2.67192 2.57152 2.23481 1.84873 2.79799
    (0.06531) (0.06386) (0.06221) (0.05932) (0.05413) (0.06705)
    50 0.6629 0.65275 0.62618 0.51821 0.39241 0.61476
    (0.08957) (0.09478) (0.08666) (0.12123) (0.16865) (0.08428)
    150 0.66787 0.65108 0.62702 0.52379 0.39969 0.61852
    (0.05097) (0.05414) (0.05706) (0.06844) (0.08996) (0.0479)
    (0.5,0.8,0.5) 250 0.66542 0.65257 0.62691 0.52351 0.39679 0.6169
    (0.03936) (0.04194) (0.04426) (0.05191) (0.07032) (0.03631)
    350 0.66706 0.65238 0.62806 0.52317 0.39847 0.61792
    (0.03363) (0.03433) (0.03809) (0.04445) (0.05975) (0.03131)
    450 0.66569 0.65299 0.62707 0.52219 0.39836 0.61669
    (0.03014) (0.03127) (0.03237) (0.03864) (0.05212) (0.0277)

     | Show Table
    DownLoad: CSV
    Figure 3.  The MSEs for MRL and MTTF, generated by the Monte Carlo simulation for the MCD, for different values of n when (a) α=0.1,γ=0.3,λ=0.7, (b) α=0.05,γ=0.8,λ=0.5, and (c) α=0.5,γ=0.8,λ=0.5.
    Figure 4.  Trace plots and density estimates from the Monte Carlo simulation were generated for the MCD with n=450 and t=0.9 using parameters α=0.1, γ=0.3, and λ=0.7.

    Theorem 3.5. Given that X follows the MCD(ψ_), the Rényi entropy of X is given by

    IR(ρ)=11ρlogρi=0j,k,l=0(ρi)(1)i+kαρ+j+kγρiρj+kλi(i+k)le2ραj!k!l!((ijρ)γ)(i+l)λi+1×Γ((i+l)λi+1).

    Proof. See Appendix A.

    Theorem 3.6. Consider an ordered sample {Xi}ni=1,n1 from the MCD(ψ_). The rth moments of the lth order statistic are given as

    μ(r)l:n(x)=l1j=0(1)jn!j!(nl)!(lj1)!(n+j+1l)μr(x;α,γ,λ), (3.6)

    where μr(x;α,γ,λ) is provided in Eq (3.3), with the parameters α=(n+j+1l)α,γ,λ.

    Proof. See Appendix A.

    In this subsection, we estimate the parameters α,γ, and λ of the MCD using maximum likelihood estimators (MLEs), along with the functions S(x) and h(x). Additionally, we calculate asymptotic confidence intervals (ACIs) for α,γ,λ,S(x), and h(x) by leveraging the normality property of the corresponding MLEs.

    Consider x_=(x1,,xn) as an observed sample drawn from the MCD with an unknown parameter vector ψ_=(α,γ,λ)T. Based on Eq (2.2), the likelihood function of MCD can be expressed as follows:

    L(D|ψ_)=αneαni=1(2eγxiexλi)ni=1(γeγxi+λxλ1iexλi). (4.1)

    The log-likelihood function can then be derived as:

    (D|ψ_)=nlog(α)+αni=1(2eγxiexλi)+ni=1log(γeγxi+λxλ1iexλi). (4.2)

    To obtain the MLEs of ψ_, we begin by computing the first partial derivatives of (D|ψ_) with respect to α,γ, and λ. The resulting likelihood equations are as follows:

    (D|ψ_)α=nα+ni=1(2eγxiexλi), (4.3)
    (D|ψ_)γ=αni=1xieγxi+ni=1(1+γxi)eγxiγeγxi+λxλ1iexλi, (4.4)

    and

    (D|ψ_)λ=αni=1xλiexλilog(xi)+ni=1(1+λ(1+xλi)log(xi))xλ1iexλiγeγxi+λxλ1iexλi. (4.5)

    By setting these expressions to zero, the MLEs for the parameters ˆψ_=(ˆα,ˆγ,ˆλ)T can be determined by solving the system of nonlinear Eqs (4.3)–(4.5) for α,γ, and λ. Since these equations do not have an analytical solution, numerical methods, such as the Newton–Raphson method, are necessary to find the estimates. Mathematica software provides subroutines for nonlinear optimization problems, and we utilized the FindRoot[{eqn1,eqn2,},{{x,x0},{y,y0},}] package for this purpose.

    The MLEs for S(x) and h(x) are given by:

    ˆS(x)=eˆα(2eˆγxexˆλ),

    and

    ˆh(x)=ˆα(ˆγeˆγx+λxˆλ1exˆλ).

    To obtain the CIs for the parameters α,γ, and λ, we require the distributions of the MLEs ˆα,ˆγ, and ˆλ. Since these MLEs do not have closed-form solutions, determining their exact distributions is not feasible. Therefore, we derive ACIs based on the asymptotic normality of these parameters. Under standard regularity conditions, n(ψ_ˆψ_) is asymptotically distributed as a multivariate normal N3(0,J1(ψ_)), where

    J(ψ_)=[2α22αγ2αλ2γ22γλ2λ2],

    where the formulas for the second partial derivatives are provided in Appendix B. The approximate variance-covariance matrix can be evaluated at ˆψ_=(ˆα,ˆγ,ˆλ)T, the MLE of (ˆα,ˆγ,ˆλ)T:

    ˆV=[^Var(ˆα)Cov(ˆα, ˆγ)Cov(ˆα, ˆλ).^Var(ˆγ)Cov(ˆγ, ˆλ)..^Var(ˆλ)]J1(ˆψ_). (4.6)

    Thus, the (1τ)100% symmetric approximate normal CIs for ψ_=(α,γ,λ) are given by

    (ˆψ_izτ2^Var(ˆψ_ii),ˆψ_i+zτ2^Var(ˆψ_ii)),

    where i=1,2,3 and zτ2 is the upper τ2 point of the standard normal distribution.

    To derive the ACIs for S(x) and h(x), we apply the delta method to compute their variances, as described by Greene [19]. Let A1=(S(x)αS(x)γS(x)λ) and A2=(h(x)αh(x)γh(x)λ), where S(x)α,S(x)γ,S(x)λ,h(x)α,h(x)γ, and h(x)λ are the first derivatives of S(x) and h(x) with respect to the parameters α,γ, and λ, respectively. The approximate asymptotic variances of ˆS(x) and ˆh(x) are given by

    ^Var(ˆS(x))=(A1ˆVAT1)(ˆα,ˆγ,ˆλ),^Var(ˆh(x))=(A2ˆVAT2)(ˆα,ˆγ,ˆλ),

    where ATk is the transpose of Ak, for k=1,2. These results yield the ACIs for S(x) and h(x) as

    (ˆS(x)Zτ2^Var(ˆS(x))),(ˆh(x)Zτ2^Var(ˆh(x))).

    In this subsection, we present two parametric bootstrap methods for constructing CIs for α,γ,λ,S(x), and h(x). These methods are the percentile bootstrap-p (Boot-P) CI, introduced by Efron [20], and the bootstrap-t (Boot-T) CI, proposed by Hall [21]. The following algorithms outline the process of estimating CIs using both approaches.

    Algorithm 1: Boot-P method

    1. Begin by using the original dataset x_=X1:n,X2:n,,Xn:n to compute ˆα,ˆγ, and ˆλ by maximizing Eqs (4.3)–(4.5).

    2. Generate a bootstrap sample x_=X1:n,X2:n,,Xn:n by performing resampling with replacement.

    3. Calculate the MLEs from the bootstrap sample and denote this estimate as ˆφ, where φ=(α,γ,λ,S(x),h(x)).

    4. Repeat Steps 2 and 3 NBoot times, producing a series of estimates ˆφ1,ˆφ2,,ˆφNBoot, where ˆφl=(ˆαl,ˆγl,ˆλl,ˆSl(x),ˆhl(x)) for l=1,2,,NBoot.

    5. Arrange the series of estimates ˆφl,l=1,2,,NBoot in ascending order, and then compute ˆφ(1),ˆφ(2),,ˆφ(NBoot).

    6. Define ˆG1(u)=P(ˆφu) as the CDF of ˆφ. Idintify ˆφNBootP=ˆG11(u) for a given value of u. The approximate bootstrap-P 100(1τ)% CIs for ˆφ are then given by:

    (ˆφNBootP(τ2),ˆφNBootP(1τ2)).

    Algorithm 2: Boot-T method

    1. Follow Steps 1 through 3 as described in the Boot-P method.

    2. Compute the Tφ statistic defined as: Tφ=(ˆφˆφ)^Var(ˆφ), where ^Var(ˆφ) is determined using Eq (4.6).

    3. Repeat Steps 1 and 2 for NBoot iterations, calculating Tφ1,Tφ2,,TφNBoot.

    4. Arrange the sequence Tφ1,Tφ2,,TφNBoot in ascending order to obtain Tφ(1),Tφ(2),,Tφ(NBoot).

    5. Define ˆG2(u)=P(Tu) as the CDF of T. For a given u, set ˆφNBootT=ˆφ+ˆG12(u)^Var(ˆφ). The approximate bootstrap-T 100(1τ)% CIs for ˆφ are then:

    (ˆφNBootT(τ2),ˆφNBootT(1τ2)).

    In this subsection, we derive Bayesian estimates and the corresponding CIs for the unknown parameters α,γ, and λ, as well as for the functions S(x) and h(x). Additionally, we apply Bayes estimation using the MCMC method under balanced loss functions, including balanced squared error loss (BSEL), balanced linear-exponential loss (BLINEXL), and balanced general entropy loss (BGEL).

    In Bayesian analysis, specifying a loss function is crucial for determining the optimal estimate of an unknown parameter. To comprehensively compare Bayes estimates, we use three types of loss functions: BSEL, BLINEXL, and BGEL. For further research on the balanced loss function, refer to references [22,23,24,25,26].

    Assume that the parameters α,γ, and λ are independent random variables, and according to the literature [27,28], they follow gamma prior distributions:

    {π1(α)αc11ed1α,c1,d1>0,π2(γ)γc21ed2γ,c2,d2>0,π3(λ)λc31ed3λ,c3,d3>0.

    As a result, the joint prior distribution π(ψ_) for α,γ and λ is

    π(ψ_)αc11γc21λc21e(d1α+d2γ+d3λ). (4.7)

    The posterior distribution of α,γ, and λ, denoted as π(ψ_|D), can be derived by integrating the likelihood function from Eq (4.1) with the joint prior distribution from Eq (4.7). By applying Bayes' theorem, the posterior distribution π(ψ_|D) for ψ_|D is given by:

    π(ψ_|D)=L(D|ψ_)×π(ψ_)ψ_L(D|ψ_)×π(ψ_)dψ_,

    where ψ_L(D|ψ_)×π(ψ_)dψ_ represents the normalizing constant of the posterior distribution of ψ_, also known as the marginal distribution of D. Since this constant is not required for Bayesian inference using MCMC methods, the posterior distribution is typically expressed as:

    π(ψ_|D)L(D|ψ_)×π(ψ_). (4.8)

    By substituting Eqs (4.1), (4.7), and (4.8), the joint posterior distribution of ψ_|D is given by:

    π(ψ_|D)αn+c11γc21λc21e(d1α+d2γ+d3λ)×eαni=1(2eγxiexλi)ni=1(γeγxi+λxλ1iexλi). (4.9)

    The MCMC technique is utilized to generate samples from Eq (4.9). These samples are then used to compute the Bayes estimates of α,γ and λ, as well as related functions like S(x) and h(x), and to construct the CIs. The Gibbs within Metropolis sampler is applied to perform the MCMC technique, which requires deriving the full set of conditional posterior distributions. The marginal posterior density for α,γ, and λ is derived from Eq (4.9) as follows:

    π1(α|D)αn+c11eα(d1ni=1(2eγxiexλi)), (4.10)
    π2(γ|α,λ,D)γc21e(d2γ+αni=1eγxi)ni=1(γeγxi+λxλ1iexλi), (4.11)

    and

    π3(λ|α,γ,D)λc31e(d3λ+αni=1exλi)ni=1(γeγxi+λxλ1iexλi). (4.12)

    The conditional posterior density of α follows a gamma distribution with a shape parameter of (n+c1) and a scale parameter of (d1ni=1(2eγxiexλi)). Consequently, samples of α can be generated using any gamma distribution generation method. Although the conditional posteriors of γ and λ do not follow standard forms, they resemble a normal distribution, as shown in Figure 5, making Gibbs sampling impractical. Therefore, the Metropolis-Hastings (M-H) sampler is necessary for implementing the MCMC methodology. We will outline the steps involved in the M-H within the Gibbs sampling method as presented in Algorithm 3.

    Figure 5.  Posterior density function for the parameters γ and λ.

    Algorithm 3: M-H within Gibbs sampling

    1. Begin by selecting initial values for the chain (α0,γ0,λ0) and define M as the burn-in period.

    2. Set the iteration counter to j=1.

    3. Generate αj from a Gamma distribution with parameters (n+c1,d1ni=1(2eγxiexλi)).

    4. Using the M-H algorithm, generate γ(j) and λ(j) from Eqs (4.11) and (4.12) utilizing normal proposal distributions N(γ(j1),Var(γ)) and N(λ(j1),Var(λ)), where Var(γ) and Var(λ) are obtained using Eq (4.6).

    ● Generate proposals γ from N(γ(j1),Var(γ)) and λ from N(λ(j1),Var(λ)).

    ● Calculate the acceptance probabilities:

    ρ1=min[1,π2(γ|αj,λj1,D)π2(γj1|αj,λj1,D)],
    ρ2=min[1,π3(λ|αj,γj,D)π3(λj1|αj,γj,D)].

    ● Generate u from a Uniform (0,1) distribution.

    ● If uρ1, accept the proposal and set γ(j)=γ; otherwise, set γ(j)=γ(j1).

    ● If uρ2, accept the proposal and set λ(j)=λ; otherwise, set λ(j)=λ(j1).

    5. Compute S(x) and h(x) as follows:

    {S(j)(x)=eα(j)(2eγ(j)xexλ(j)),h(j)(x)=α(j)(γ(j)eγ(j)x+λ(j)xλ(j)1exλ(j)).

    6. Set j=j+1.

    7. Repeat Steps 3–6 for N iterations to generate

    (α(1),γ(1),λ(1),S(1)(x),h(1)(x)),,(α(N),γ(N),λ(N),S(N)(x),h(N)(x)).

    8. Calculate the Bayes estimates of φ=(α,,γ,,λ,,S(x),,h(x)) after the burn-in period M as:

    ˆφSE=1NMNj=M+1φ(j).

    9. Determine the Bayes estimates of φ under the BSEL, as introduced by Jozani [23], as follows:

    ˆφBSE=ωˆφ+1ωNMNj=M+1φ(j),0ω1,

    10. Obtain the Bayes estimates of φ under the BLINEXL, as presented by Jozani [22], as follows:

    ˆφBLINEX=1cln[ωecˆφ+1ωNMNj=M+1ecφ(j)],c0.

    11. Compute the Bayes estimates of φ using the BGEL, as outlined by Jozani [25], as follows:

    ˆφBGE=[ω(ˆφ)q+1ωNMNj=M+1(φ(j))q]q,q0.

    12. To calculate the CIs for α,γ,λ,S(x), and h(x), first sort the generated values α(l),γ(l),λ(l),S(l)(x), and h(l)(x) for l=1,,N in ascending order as follows: {α(1)<<α(N)}, {γ(1)<<γ(N)}, {λ(1)<<λ(N)}, {S(1)(x)<<S(N)(x)}, and {h(1)(x)<<h(N)(x)}. Then, the (1τ)100% CIs for φ=(α,γ,λ,S(x),h(x)) are given by (φ(Nτ2),φ(N(1τ2))).

    This section outlines a simulation study evaluating the performance of the MLEs, along with two bootstrap CIs (Boot-P and Boot-T) and Bayesian estimators using MCMC under BSEL, BLINEXL, and BGEL, to estimate the parameters of the MCD, as well as S(x) and h(x). The following steps are employed for the simulation study:

    1. Set initial values for the parameters α,γ, and λ, and assume the samples sizes n=50,100,150, and 200.

    2. Generate a random sample x1,,xn of size n from Eq (3.1).

    3. Replicate each sample N=1000 times.

    4. Calculate the bias and MSE for the parameters α,γ, and λ, as well as for S(x) and h(x), according to the procedures detailed in Subsection 4.1.

    5. Apply Algorithm 1 of the Boot-B to calculate the bias and MSE for the parameters α,γ, and λ, as well as for S(x) and h(x).

    6. Use Algorithm 2 of the Boot-T to compute the bias and MSE for the parameters α, γ, and λ, as well as for S(x) and h(x).

    7. Use Algorithm 3 to calculate the bias and MSE for the parameters α, γ, and λ, as well as S(x) and h(x), utilizing chosen hyperparameter values to generate posterior samples from each marginal posterior distribution.

    8. Compute the bias and MSEs using the results from Step 7 based on BSEL, BLINEXL, and BGEL.

    All simulations were performed using Wolfram Mathematica, generating 11000 MCMC samples and discarding the first 1000 samples as the 'burn-in' period.

    The bias and MSE of the MCD parameter estimates across various sample sizes using MLE, Bayes MCMC, Boot-P, and Boot-T are presented in Table 3. The table indicates that the MLEs and Bayes MCMC demonstrate similar efficiency. Additionally, Boot-P outperforms Boot-T by exhibiting smaller MSE for α,γ,λ,S(x), and h(x). Tables 48 provide numerical results on bias and MSE for α,γ,λ,S(x), and h(x) based on Bayes estimates under BSEL, BLINEXL, and BGEL. The results indicate that Bayes estimates under these loss functions maintain low bias and MSE across all scenarios. Furthermore, both bias and MSE tend to decrease as the sample size increases, indicating the consistency of the estimates. When ω=0, Bayes estimates yield better results for α,γ,λ,S(x), and h(x) by achieving smaller MSEs. Bayes estimates under BLINEXL with c=0.7 consistently produce better estimates with smaller MSE when ω=0, while BGEL with q=0.7 offers improved estimates with smaller MSE when ω=0.9. Finally, Figure 6 presents trace plots and density estimates derived from the Monte Carlo simulation conducted for the MCD, utilizing n=450 and t=0.9, with parameters α=0.1, γ=0.3, and λ=0.7.

    Table 3.  Simulation results for the Bias and MSE of the MCD parameters α, γ, and λ, as well as S(x) and h(x), across various sample sizes.
    MLEs MCMC Boot-P Boot-T
    Parameter n Bais MSE Bais MSE Bais MSE Bais MSE
    α 0.00366 0.00933 -0.00133 0.00921 0.01479 0.02178 -0.01045 0.09226
    γ 0.01552 0.00341 0.00337 0.00368 0.02639 0.00811 0.01019 0.04692
    λ 50 0.00366 0.0005 0.00428 0.0006 0.00652 0.00098 -0.00025 0.02511
    S(x) 0.00156 0.00398 0.01328 0.00389 -0.00047 0.00829 -0.00028 0.06576
    h(x) 0.01785 0.00536 0.00346 0.00455 0.03707 0.01415 0.00554 0.06868
    α 0.00214 0.00434 -0.00192 0.00414 0.00237 0.00815 -0.00416 0.05789
    γ 0.00619 0.00166 0.00222 0.00163 0.01411 0.00316 0.004 0.03953
    λ 100 0.00126 0.00022 0.00117 0.00022 0.00218 0.00042 -0.00058 0.01391
    S(x) 0.00055 0.00189 0.00704 0.00186 0.00175 0.00358 -0.00025 0.04499
    h(x) 0.00703 0.00219 -0.00031 0.00199 0.01364 0.00471 0.00118 0.03927
    α 0.00445 0.00313 0.00163 0.00302 0.00708 0.00608 -0.00036 0.0448
    γ 0.00371 0.00101 0.00117 0.001 0.00651 0.002 0.00231 0.03077
    λ 150 0.00103 0.00014 0.00095 0.00014 0.00198 0.00029 -0.00019 0.0135
    S(x) -0.00161 0.00136 0.00281 0.00132 -0.00188 0.00259 -0.00225 0.03784
    h(x) 0.00696 0.00158 0.00201 0.00147 0.01165 0.00316 0.00254 0.03371
    α 0.00066 0.00207 -0.00138 0.00202 0.00216 0.00425 -0.00241 0.04174
    γ 0.00328 0.00075 0.00143 0.00074 0.00608 0.00145 0.00254 0.03099
    λ 200 0.00053 0.0001 0.00047 0.0001 0.0008 0.0002 -0.00034 0.01045
    S(x) 0.00046 0.00091 0.00374 0.0009 0.0004 0.00185 0.00007 0.0307
    h(x) 0.00328 0.00105 -0.00034 0.001 0.00632 0.0022 0.00048 0.03235

     | Show Table
    DownLoad: CSV
    Table 4.  Simulation results for the bias and MSE of α using Bayes estimates under the BSEL, BLINEXL, and BGEL.
    BSEL BLINEXL BGEL
    n ω c=7 c=0.3 c=7 q=7 q=0.3 q=7
    0.0 Bais -0.00133 0.03469 -0.0027 -0.03051 0.0522 -0.01284 -0.07194
    MSE 0.00921 0.01321 0.00913 0.00837 0.01357 0.00906 0.01263
    0.2 Bais 0.00017 0.02629 -0.0008 -0.0212 0.0522 -0.00799 -0.05782
    MSE 0.00922 0.01202 0.00916 0.00832 0.01357 0.00906 0.01119
    50 0.5 Bais 0.00166 0.0172 0.00111 -0.01115 0.02658 -0.00305 -0.03879
    MSE 0.00925 0.01084 0.00921 0.00852 0.01069 0.00913 0.00986
    0.9 Bais 0.00316 0.00723 0.00302 -0.00022 0.01006 0.00196 -0.0101
    MSE 0.00931 0.0097 0.0093 0.00906 0.00959 0.00927 0.00914
    0.0 Bais -0.00192 0.01424 -0.00257 -0.01664 0.02418 -0.00758 -0.03679
    MSE 0.00414 0.00481 0.00413 0.00404 0.005 0.00414 0.00515
    0.2 Bais -0.0007 0.01073 -0.00116 -0.01128 0.02418 -0.00469 -0.02753
    MSE 0.0042 0.00464 0.00419 0.00404 0.005 0.00418 0.00468
    100 0.5 Bais 0.00052 0.00711 0.00025 -0.00569 0.01167 -0.00178 -0.01654
    MSE 0.00425 0.00449 0.00425 0.00411 0.0045 0.00423 0.00435
    0.9 Bais 0.00174 0.0034 0.00167 0.00014 0.00463 0.00116 -0.00309
    MSE 0.00431 0.00437 0.00431 0.00426 0.00436 0.00431 0.00427
    0.0 Bais 0.00163 0.01231 0.00119 -0.00841 0.01913 -0.00216 -0.02174
    MSE 0.00302 0.00338 0.00301 0.0029 0.00351 0.00299 0.00332
    0.2 Bais 0.00248 0.01 0.00217 -0.00468 0.01913 -0.00019 -0.01499
    MSE 0.00305 0.0033 0.00304 0.00293 0.00351 0.00302 0.00314
    150 0.5 Bais 0.00332 0.00765 0.00315 -0.00084 0.01064 0.00179 -0.0074
    MSE 0.00308 0.00322 0.00308 0.00299 0.00324 0.00306 0.00305
    0.9 Bais 0.00417 0.00526 0.00413 0.00311 0.00604 0.00379 0.00127
    MSE 0.00312 0.00315 0.00312 0.00309 0.00315 0.00311 0.00308
    0.0 Bais -0.00138 0.00647 -0.00171 -0.00889 0.01172 -0.00423 -0.01887
    MSE 0.00202 0.00216 0.00202 0.002 0.00222 0.00202 0.00229
    0.2 Bais -0.00077 0.00476 -0.001 -0.0061 0.01172 -0.00277 -0.01364
    MSE 0.00203 0.00213 0.00203 0.002 0.00222 0.00203 0.00216
    200 0.5 Bais -0.00016 0.00301 -0.00029 -0.00324 0.00526 -0.0013 -0.00792
    MSE 0.00205 0.0021 0.00204 0.00202 0.0021 0.00204 0.00207
    0.9 Bais 0.00045 0.00125 0.00042 -0.00033 0.00183 0.00017 -0.0016
    MSE 0.00206 0.00207 0.00206 0.00205 0.00207 0.00206 0.00205

     | Show Table
    DownLoad: CSV
    Table 5.  Simulation results for the bias and MSE of γ using Bayes estimates under the BSEL, BLINEXL, and BGEL.
    BSEL BLINEXL BGEL
    n ω c=7 c=0.3 c=7 q=7 q=0.3 q=7
    0.0 Bais 0.00337 0.01615 0.0028 -0.01049 0.0342 -0.01527 -0.13227
    MSE 0.00368 0.00394 0.00368 0.00391 0.0044 0.00662 0.03407
    0.2 Bais 0.00702 0.01603 0.00661 -0.00342 0.0342 -0.0084 -0.12589
    MSE 0.00353 0.00375 0.00352 0.00362 0.0044 0.00597 0.03353
    50 0.5 Bais 0.01066 0.01584 0.01042 0.0042 0.02384 -0.00049 -0.13227
    MSE 0.00344 0.00359 0.00343 0.00342 0.00375 0.00519 0.03286
    0.9 Bais 0.0143 0.01561 0.01424 0.01424 0.01774 0.00981 0.00981
    MSE 0.00341 0.00345 0.00341 0.00338 0.00348 0.00407 0.03168
    0.0 Bais 0.00222 0.00741 0.002 -0.00303 0.01601 -0.00116 -0.02388
    MSE 0.00163 0.00173 0.00163 0.0016 0.00187 0.00165 0.00299
    0.2 Bais 0.00341 0.00705 0.00325 -0.00033 0.01601 0.00101 -0.01773
    MSE 0.00164 0.00171 0.00163 0.00159 0.00187 0.00164 0.00274
    100 0.5 Bais 0.0046 0.00668 0.00451 0.00242 0.01036 0.00321 -0.02388
    MSE 0.00164 0.00168 0.00164 0.00161 0.00172 0.00164 0.00251
    0.9 Bais 0.00579 0.00631 0.00577 0.00577 0.00727 0.00544 0.00544
    MSE 0.00165 0.00166 0.00165 0.00164 0.00167 0.00165 0.00231
    0.0 Bais 0.00117 0.00454 0.00103 -0.00221 0.01034 -0.00096 -0.01314
    MSE 0.001 0.00104 0.001 0.00098 0.0011 0.001 0.00122
    0.2 Bais 0.00194 0.00429 0.00183 -0.00046 0.01034 0.00043 -0.00889
    MSE 0.001 0.00103 0.001 0.00098 0.0011 0.001 0.00112
    150 0.5 Bais 0.0027 0.00405 0.00264 0.00131 0.00647 0.00183 -0.01314
    MSE 0.001 0.00102 0.001 0.00099 0.00103 0.001 0.00105
    0.9 Bais 0.00346 0.0038 0.00345 0.00345 0.00442 0.00324 0.00324
    MSE 0.00101 0.00101 0.00101 0.001 0.00101 0.00101 0.00101
    0.0 Bais 0.00143 0.00389 0.00132 -0.00105 0.00821 -0.00012 -0.00862
    MSE 0.00074 0.00077 0.00074 0.00073 0.00081 0.00074 0.00083
    0.2 Bais 0.00198 0.00371 0.00191 0.00024 0.00821 0.0009 -0.00545
    MSE 0.00074 0.00076 0.00074 0.00073 0.00081 0.00074 0.00078
    200 0.5 Bais 0.00254 0.00353 0.0025 0.00153 0.00531 0.00192 -0.00862
    MSE 0.00074 0.00076 0.00074 0.00074 0.00077 0.00074 0.00075
    0.9 Bais 0.0031 0.00334 0.00309 0.00309 0.0038 0.00294 0.00294
    MSE 0.00075 0.00075 0.00075 0.00074 0.00075 0.00075 0.00074

     | Show Table
    DownLoad: CSV
    Table 6.  Simulation results for the bias and MSE of λ using Bayes estimates under the BSEL, BLINEXL, and BGEL.
    BSEL BLINEXL BGEL
    n ω c=7 c=0.3 c=7 q=7 q=0.3 q=7
    0.0 Bais 0.00428 0.00602 0.00421 0.00263 0.01709 0.00144 -0.01366
    MSE 0.0006 0.00066 0.00059 0.00054 0.00104 0.00055 0.00059
    0.2 Bais 0.0041 0.00533 0.00405 0.00293 0.01709 0.00209 -0.01366
    MSE 0.00056 0.00061 0.00056 0.00053 0.00104 0.00053 0.00053
    50 0.5 Bais 0.00391 0.00462 0.00388 0.00324 0.01031 0.00276 -0.00651
    MSE 0.00054 0.00056 0.00053 0.00051 0.00073 0.00051 0.00048
    0.9 Bais 0.00373 0.00391 0.00372 0.00356 0.0056 0.00344 0.00015
    MSE 0.00051 0.00051 0.00051 0.0005 0.00056 0.0005 0.00047
    0.0 Bais 0.00117 0.00191 0.00114 0.00044 0.00715 -0.00015 -0.00708
    MSE 0.00022 0.00023 0.00022 0.00021 0.00029 0.00021 0.00024
    0.2 Bais 0.00119 0.00171 0.00117 0.00069 0.00715 0.00027 -0.00708
    MSE 0.00022 0.00023 0.00022 0.00021 0.00029 0.00021 0.00022
    100 0.5 Bais 0.00122 0.00152 0.00121 0.00093 0.00386 0.00069 -0.0028
    MSE 0.00022 0.00022 0.00022 0.00022 0.00024 0.00022 0.00021
    0.9 Bais 0.00125 0.00132 0.00124 0.00117 0.00195 0.00111 0.00011
    MSE 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00021
    0.0 Bais 0.00095 0.00143 0.00093 0.00047 0.00492 0.00008 -0.00448
    MSE 0.00014 0.00014 0.00014 0.00013 0.00017 0.00014 0.00015
    0.2 Bais 0.00097 0.00131 0.00096 0.00064 0.00492 0.00036 -0.00448
    MSE 0.00014 0.00014 0.00014 0.00014 0.00017 0.00014 0.00014
    150 0.5 Bais 0.001 0.00119 0.00099 0.00081 0.0027 0.00065 -0.00148
    MSE 0.00014 0.00014 0.00014 0.00014 0.00015 0.00014 0.00013
    0.9 Bais 0.00102 0.00107 0.00102 0.00097 0.00146 0.00093 0.00035
    MSE 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014
    0.0 Bais 0.00047 0.00083 0.00046 0.00012 0.00344 -0.00018 -0.00356
    MSE 0.0001 0.0001 0.0001 0.0001 0.00011 0.0001 0.0001
    0.2 Bais 0.00049 0.00074 0.00048 0.00024 0.00344 0.00003 -0.00356
    MSE 0.0001 0.0001 0.0001 0.0001 0.00011 0.0001 0.0001
    200 0.5 Bais 0.00051 0.00065 0.0005 0.00037 0.00176 0.00025 -0.00127
    MSE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
    0.9 Bais 0.00053 0.00056 0.00053 0.00049 0.00085 0.00046 0.00006
    MSE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

     | Show Table
    DownLoad: CSV
    Table 7.  Simulation results for the bias and MSE of S(x) with x=0.7 using Bayes estimates under the BSEL, BLINEXL, and BGEL.
    BSEL BLINEXL BGEL
    n ω c=7 c=0.3 c=7 q=7 q=0.3 q=7
    0.0 Bais 0.01328 0.02651 0.01272 0.0004 0.03947 0.0071 -0.02832
    MSE 0.00389 0.00446 0.00387 0.00363 0.00493 0.00384 0.0051
    0.2 Bais 0.00976 0.01948 0.00936 0.00073 0.03947 0.00542 -0.02128
    MSE 0.00388 0.00419 0.00387 0.00373 0.00493 0.00388 0.00474
    50 0.5 Bais 0.00624 0.01208 0.00602 0.00108 0.0195 0.00375 -0.0129
    MSE 0.00391 0.00402 0.0039 0.00384 0.00397 0.00392 0.00439
    0.9 Bais 0.00273 0.00426 0.00267 0.00144 0.00657 0.0021 -0.00254
    MSE 0.00396 0.00397 0.00396 0.00395 0.00389 0.00396 0.00408
    0.0 Bais 0.00704 0.01378 0.00675 0.0004 0.02096 0.00389 -0.0132
    MSE 0.00186 0.00201 0.00185 0.00179 0.00216 0.00184 0.00211
    0.2 Bais 0.00509 0.00994 0.00489 0.00044 0.02096 0.00288 -0.00948
    MSE 0.00186 0.00194 0.00186 0.00182 0.00216 0.00185 0.00202
    100 0.5 Bais 0.00314 0.00599 0.00303 0.00049 0.0095 0.00188 -0.00544
    MSE 0.00187 0.0019 0.00187 0.00185 0.00189 0.00187 0.00195
    0.9 Bais 0.0012 0.00193 0.00117 0.00053 0.00291 0.00088 -0.00102
    MSE 0.00189 0.00189 0.00189 0.00188 0.00188 0.00189 0.0019
    0.0 Bais 0.00281 0.00732 0.00261 -0.00166 0.01232 0.00068 -0.01064
    MSE 0.00132 0.00138 0.00132 0.00131 0.00143 0.00133 0.00149
    0.2 Bais 0.00148 0.0047 0.00135 -0.00164 0.01232 -0.00001 -0.0081
    MSE 0.00133 0.00136 0.00133 0.00132 0.00143 0.00134 0.00144
    150 0.5 Bais 0.00016 0.00203 0.00008 -0.00163 0.00433 -0.00069 -0.00543
    MSE 0.00134 0.00135 0.00134 0.00134 0.00134 0.00135 0.0014
    0.9 Bais -0.00117 -0.00069 -0.00119 -0.00161 -0.00007 -0.00138 -0.00259
    MSE 0.00135 0.00135 0.00135 0.00136 0.00135 0.00136 0.00137
    0.0 Bais 0.00374 0.00714 0.00359 0.00036 0.01094 0.00214 -0.0063
    MSE 0.0009 0.00095 0.0009 0.00089 0.00099 0.0009 0.00096
    0.2 Bais 0.00275 0.00517 0.00265 0.00039 0.01094 0.00164 -0.00437
    MSE 0.0009 0.00093 0.0009 0.00089 0.00099 0.0009 0.00094
    200 0.5 Bais 0.00177 0.00317 0.00171 0.00042 0.00486 0.00113 -0.00236
    MSE 0.00091 0.00091 0.00091 0.0009 0.00092 0.00091 0.00092
    0.9 Bais 0.00079 0.00114 0.00078 0.00045 0.00159 0.00063 -0.00026
    MSE 0.00091 0.00091 0.00091 0.00091 0.00091 0.00091 0.00091

     | Show Table
    DownLoad: CSV
    Table 8.  Simulation results for the bias and MSE of H(x) with x=0.7 using Bayes estimates under the BSEL, BLINEXL, and BGEL.
    BSEL BLINEXL BGEL
    n ω c=7 c=0.3 c=7 q=7 q=0.3 q=7
    0.0 Bais 0.00346 0.02075 0.00278 -0.01134 0.03946 -0.00414 -0.04214
    MSE 0.00455 0.00598 0.00451 0.00394 0.0071 0.00435 0.00515
    0.2 Bais 0.00777 0.01993 0.00729 -0.00327 0.03946 0.00227 -0.03116
    MSE 0.00474 0.0058 0.00471 0.00411 0.0071 0.00453 0.0046
    50 0.5 Bais 0.01209 0.01907 0.01181 0.00535 0.02745 0.00884 -0.01623
    MSE 0.00498 0.00561 0.00495 0.00448 0.00601 0.00481 0.00426
    0.9 Bais 0.01641 0.01816 0.01634 0.0146 0.02041 0.01557 0.00666
    MSE 0.00526 0.00542 0.00525 0.00509 0.00552 0.00521 0.00471
    0.0 Bais -0.00031 0.0075 -0.00064 -0.00758 0.01715 -0.00405 -0.02299
    MSE 0.00199 0.00224 0.00199 0.00189 0.00249 0.00197 0.00227
    0.2 Bais 0.00189 0.00736 0.00166 -0.00336 0.01715 -0.00077 -0.01592
    MSE 0.00204 0.00222 0.00203 0.00193 0.00249 0.00201 0.00208
    100 0.5 Bais 0.0041 0.00722 0.00396 0.001 0.01128 0.00255 -0.00747
    MSE 0.0021 0.00221 0.00209 0.00201 0.00229 0.00207 0.00199
    0.9 Bais 0.0063 0.00708 0.00627 0.0055 0.00813 0.00591 0.00295
    MSE 0.00217 0.00219 0.00216 0.00214 0.00221 0.00216 0.00209
    0.0 Bais 0.00201 0.00719 0.00179 -0.00293 0.01369 -0.0005 -0.01329
    MSE 0.00147 0.0016 0.00146 0.00139 0.00174 0.00144 0.00152
    0.2 Bais 0.00349 0.00712 0.00334 -0.00004 0.01369 0.00171 -0.00811
    MSE 0.0015 0.00159 0.00149 0.00143 0.00174 0.00147 0.00145
    150 0.5 Bais 0.00498 0.00705 0.00489 0.00292 0.00974 0.00395 -0.00225
    MSE 0.00153 0.00159 0.00153 0.00148 0.00164 0.00151 0.00145
    0.9 Bais 0.00646 0.00698 0.00644 0.00593 0.00766 0.0062 0.00447
    MSE 0.00157 0.00158 0.00157 0.00155 0.0016 0.00156 0.00153
    0.0 Bais -0.00034 0.00346 -0.0005 -0.00399 0.00836 -0.00221 -0.01176
    MSE 0.001 0.00106 0.001 0.00098 0.00112 0.001 0.00108
    0.2 Bais 0.00075 0.0034 0.00064 -0.00185 0.00836 -0.00057 -0.00775
    MSE 0.00101 0.00106 0.00101 0.00099 0.00112 0.00101 0.00103
    200 0.5 Bais 0.00183 0.00335 0.00177 0.00032 0.00536 0.00107 -0.00335
    MSE 0.00103 0.00105 0.00103 0.00101 0.00107 0.00102 0.00101
    0.9 Bais 0.00292 0.00329 0.0029 0.00253 0.0038 0.00272 0.00153
    MSE 0.00104 0.00105 0.00104 0.00104 0.00105 0.00104 0.00103

     | Show Table
    DownLoad: CSV
    Figure 6.  Trace plots and density estimates from the Monte Carlo simulation were generated for the MCD, using n=450 and t=0.9, with parameters α=0.1, γ=0.3, and λ=0.7.

    This section illustrates the application of the MCD using two real datasets from reliability engineering. The first dataset is the Aarset data [36], which contains the lifetimes of fifty devices. The second dataset is the Meeker-Escobar data [37], which represents the failure and operating times of thirty devices. These datasets were chosen because their underlying distributions exhibit a characteristic bathtub shape (see Figures 7 and 10). This makes them widely recognized as benchmark datasets in the literature for evaluating the fit of distributions with a bathtub-shaped HR function. Additionally, they enable practitioners to effectively utilize the HR function for predictive maintenance and reliability analysis in engineering applications. We compared the MCD with competing models listed in Table 9, using various metrics such as Log-likelihood (), Kolmogorov-Smirnov (K-S) statistics with their corresponding P-values, Anderson-Darling (A), Cramér-von Mises (W), and several information criteria including the Akaike information criterion (AIC), Bayesian information criterion (BIC), and Hannan-Quinn information criterion (HQIC). All computations were carried out using Wolfram Mathematica 12.3 software.

    Figure 7.  TTT-transform plot of the MCD for fitting to Aarset data.
    Table 9.  The competitive models.
    Model Abbreviation CDF Author
    Exponentiated Weibull distribution EWD (1e(xα)γ)λ Weibull [29]
    Modified Weibull extension distribution MWED 1eαλ(1e(xα)γ) Xie et al. [6]
    Modified Weibull distribution MWD 1eαxγeλx Lai et al. [30]
    Sarhan–Zaindin modified Weibull distribution SZMWD 1eαxγxλ Sarhan and Zaindin [31]
    Exponentiated Nadarajah-Haghighi distribution ENHD (1e1(αx+1)γ)λ Lemonte [32]
    New extended Weibull distribution NEWD 1eαxγeλx Peng X, Yan [33]
    Exponentiated Chen distribution ExpCD (1eλ(1exγ))α Chaubey and Zhang [9]
    Alpha logarithmic transformed Weibull distribution ALTWD 1log(α(α1)(1eγxλ))log(α) Nassar et al. [34]
    Logistic Nadarajah-Haghighi distribution LNHD ((γx+1)α1)λ((γx+1)α1)λ+1 Peña-Ramírez et al. [35]
    Gamma-Chen distribution GCD Γ(α,((1exγ)λ))Γ(α) Reis et al. [10]
    Extended Chen distribution ECD 1(λ(exγ1)+1)α Bhatti et al. [11]
    Modified extended Chen distribution MECD (λ(exγ1)+1)α Anafo et al. [12]
    New extended Chen distribution NECD 1e((1α)(1eλ(1exγ))+λ(1exγ)) Acquah et al. [13]

     | Show Table
    DownLoad: CSV

    The Aarset dataset [36], which represents the failure times of fifty electronic devices, has been extensively analyzed in the literature, with the latest studies referenced in [38,39,40]. As demonstrated by the scaled total time on test transform (TTT-transform) plot in Figure 7, the dataset exhibits a bathtub-shaped HR. Table 10 provides estimates for MLEs and Bayes MCMC, along with their 95% CIs, for α,γ,λ,S(x), and h(x) applied to the Aarset data. Additionally, Table 11 presents estimates for Boot-P and Boot-T methods, including their corresponding 95% CIs, for α,γ,λ,S(x), and h(x).

    Table 10.  Estimates for MLEs and Bayes MCMC, along with their 95% CIs, for α,γ,λ,S(x), and h(x) applied to the Aarset data.
    MLEs MCMC
    Parameter Mean CIs Mean CIs
    α 0.03828 [0.00822,0.06834] 0.03644 [0.02674,0.04785]
    γ 0.04539 [0.03570,0.05509] 0.04623 [0.04491,0.04734]
    λ 0.22366 [0.13919,0.30814] 0.22402 [0.22045,0.22778]
    S(x) 0.9424 [0.89674,0.98805] 0.94511 [0.92853,0.95939]
    h(x) 0.03023 [0.01280,0.04765] 0.02884 [0.02116,0.03784]

     | Show Table
    DownLoad: CSV
    Table 11.  Estimates for Boot-P and Boot-T, along with their 95% CIs, for α,γ,λ,S(x), and h(x) applied to the Aarset data.
    Boot-P Boot-T
    Parameter Mean CIs Mean CIs
    α 0.03837 [0.01478,0.06898] 0.05773 [0.05044,0.07173]
    γ 0.04639 [0.03811,0.05669] 0.04074 [0.03672,0.04353]
    λ 0.22867 [0.19140,0.28079] 0.21100 [0.17201,0.25403]
    S(x) 0.94271 [0.89800,0.97764] 0.91318 [0.89157,0.92455]
    h(x) 0.02977 [0.01342,0.05329] 0.03822 [0.03584,0.04294]

     | Show Table
    DownLoad: CSV

    Bayes estimates derived from BSEL, BLINEXL, and BGEL functions, with various values of c,q, and ω for the parameters α,γ,λ, as well as S(x) and h(x), are summarized in Table 12. Further, Table 13 describes the MRL at specific time points and the Rényi entropy at different ρ values for the fitted MCD. Observations from Table 13 indicate that the MRL tends to increase and then decrease as time progresses, reflecting its inverse relationship with the bathtub-shaped HR of the MCD. The calculated MTTF values are 46.4929, 46.9939, 44.9965, and 41.0331 for the MLE, Bayes MCMC, Boot-P, and Boot-T methods, respectively.

    Table 12.  Bayes MCMC estimates using BSEL, BLINEXL, and BGEL for the Aarset data.
    BSEL BLINEXL BGEL
    Parameters ω c=7 c=0.3 c=7 q=7 q=0.3 q=7
    0.0 0.03644 0.03655 0.03644 0.03634 0.03882 0.03593 0.03324
    0.2 0.03681 0.03689 0.03681 0.03673 0.03882 0.03638 0.03388
    α 0.5 0.03736 0.03742 0.03736 0.03731 0.03856 0.03708 0.03508
    0.9 0.0381 0.03811 0.0381 0.03808 0.03834 0.03804 0.03744
    0.0 0.04623 0.04623 0.04623 0.04623 0.04628 0.04622 0.04616
    0.2 0.04606 0.04606 0.04606 0.04606 0.04628 0.04605 0.046
    γ 0.5 0.04581 0.04581 0.04581 0.04581 0.04585 0.0458 0.04576
    0.9 0.04548 0.04548 0.04548 0.04548 0.04549 0.04547 0.04546
    0.0 0.22402 0.22403 0.22402 0.224 0.22406 0.22401 0.22395
    0.2 0.22395 0.22396 0.22395 0.22394 0.22406 0.22394 0.22389
    λ 0.5 0.22384 0.22385 0.22384 0.22383 0.22387 0.22384 0.22381
    0.9 0.2237 0.2237 0.2237 0.2237 0.2237 0.2237 0.22369
    0.0 0.94511 0.94532 0.9451 0.94489 0.9453 0.94506 0.94484
    0.2 0.94456 0.94474 0.94456 0.94438 0.9453 0.94453 0.94435
    S(x) 0.5 0.94375 0.94387 0.94375 0.94364 0.94386 0.94373 0.94361
    0.9 0.94267 0.94269 0.94267 0.94264 0.94269 0.94266 0.94264
    0.0 0.02884 0.02891 0.02884 0.02878 0.03073 0.02843 0.0263
    0.2 0.02912 0.02917 0.02912 0.02907 0.03073 0.02878 0.02681
    h(x) 0.5 0.02954 0.02957 0.02953 0.0295 0.03049 0.02931 0.02774
    0.9 0.03009 0.03009 0.03009 0.03008 0.03028 0.03004 0.02958

     | Show Table
    DownLoad: CSV
    Table 13.  Estimates using MLEs, Bayes MCMC, Boot-P, and Boot-T for the MRL and Rényi entropy of the fitted MCD model applied to the Aarset data.
    MRL Rényi entropy
    t ˆMXMLE(t) ˆMXMC(t) ˆMXBP(t) ˆMXBT(t) ρ ˆIRMLE(ρ) ˆIRMC(ρ) ˆIRBP(ρ) ˆIRBT(ρ)
    0.1 47.8786 48.3209 46.3159 43.0059 0.05 4.90862 4.89888 4.88590 4.94248
    3 48.5382 48.8454 46.9415 44.7115 0.1 4.82664 4.81795 4.80363 4.85051
    7 46.9675 47.1855 45.3885 43.7523 0.5 4.64095 4.63616 4.61766 4.61981
    18 40.9398 40.9881 39.4432 38.8195 0.95 4.49995 4.50185 4.47948 4.39064
    36 30.2408 30.0981 28.9069 29.3765 1.05 4.43638 4.44214 4.41888 4.27358
    47 24.0695 23.8479 22.8502 23.7994 1.1 4.38635 4.39528 4.37209 4.1769
    55 19.9546 19.6939 18.8284 20.0391 1.14 4.32721 4.33998 4.31786 4.05704
    67 14.54 14.2504 13.57 15.0241 1.17 4.26124 4.27835 4.25878 3.91518
    79 10.1487 9.86372 9.34976 10.8672 1.2 4.15734 4.18144 4.16882 3.67086
    86 8.07022 7.80065 7.37329 8.85311 1.297 0.04325 0.31359 1.80489 -7.68537

     | Show Table
    DownLoad: CSV

    Table 14 compares the MLEs, , K-S statistics, P-values, A, W, AIC, BIC, and HQIC for the MCD and other competitive models. The MCD shows the smallest values for K-S, A, W, AIC, BIC, and HQIC, and the highest and P-value, highlighting its superior fit to the Aarset data compared to other models. Figure 7 shows the empirical and fitted scaled TTT-transform plot for the MCD, while Figure 8 depicts the survival, hazard, and cumulative hazard functions of the MCD in comparison to competitive models. Figure 8 offers a graphical depiction of the devices' behavior over time. Figure 8(a), (b) illustrates the lifetimes of the Aarset data in relation to the MCD's survival equation and competing models, which are crucial in reliability engineering for estimating lifetimes and maintenance times to enhance product life. Notably, the MCD shows a better fit with Kaplan-Meier empirical reliability compared to other distributions, suggesting it more accurately describes lifetimes, maintenance times, and MTTF. Figure 8(c), (d) depicts the failure patterns, showing that the MCD aligns more closely with Kaplan-Meier empirical behavior compared to other distributions, suggesting it provides a more accurate representation of device failures. This information is valuable for product engineers aiming to improve designs, reduce costs, and estimate maintenance expenses. Finally, Figure 9 presents boxplots for the Aarset data and samples generated from competing distributions, showing that the MCD's boxplot more accurately reflects the range and variability of the Aarset data compared to other models. Consequently, the graphical results (Figures 8 and 9) support the numerical findings, endorsing the MCD as a suitable model for analyzing and predicting device failure times.

    Table 14.  The MLEs of the unknown parameters, , K-S with its corresponding P-value, A, W, AIC, BIC, and HQIC for the fitted models using the Aarset data.
    Model α γ λ K-S P-value A W AIC BIC HQIC
    MCD 0.03828 0.04539 0.22367 -223.576 0.13309 0.33855 1.49466 0.20501 453.152 458.888 455.336
    EWD 91.7152 5.16712 0.13253 -228.506 0.20599 0.02872 3.32948 0.54402 463.012 468.748 465.196
    MWED 13.7467 0.5877 0.00876 -231.647 0.15924 0.15833 2.84918 0.37327 469.293 475.029 471.477
    MWD 0.0624 0.35481 0.02332 -227.155 0.13374 0.33281 1.80574 0.26388 460.31 466.047 462.495
    SZMWD 0.02138 3.6×1012 5.9428 -229.603 0.22203 0.01446 5.31127 0.72025 465.206 470.942 467.39
    ENHD 0.00033 36.963 0.67336 -233.406 0.21206 0.02229 3.3716 0.5945 472.811 478.547 474.996
    NEWD 0.02781 0.94224 0.02025 -240.979 0.19358 0.04716 3.49506 0.53188 487.959 493.695 490.143
    ExpCD 0.24482 0.5288 3.1×105 -226.843 0.14152 0.26925 1.6762 0.23859 459.686 465.423 461.871
    ALTWD 6.7×109 0.72573 0.75982 -225.448 0.18677 0.0611 3.41212 0.48072 456.896 462.632 459.081
    LNHD 2552.13 1.1×105 0.75368 -239.45 0.22755 0.01128 3.76041 0.71367 484.899 490.636 487.084
    GCD 179.746 0.02729 91.0347 -251.22 0.22165 0.0147 4.26388 0.7452 508.44 514.176 510.625
    ECD 2494.84 0.34452 8.2×106 -233.172 0.16685 0.12357 2.69969 0.38103 472.344 478.08 474.528
    MECD 0.34834 1.34825 450.937 -250.132 0.2294 0.01037 3.77874 0.67492 506.263 511.999 508.448
    NECD 0.78773 0.33732 0.02567 -233.009 0.16164 0.14661 2.65212 0.3678 472.017 477.753 474.202

     | Show Table
    DownLoad: CSV
    Figure 8.  The estimated (a, b) survival functions and (c, d) HR functions of the MCD and competing models for fitting to the Aarset data.
    Figure 9.  Box plots of the Aarset data and samples generated from the trained MCD and competitive models.

    The second application, referred to as the Meeker-Escobar data [37], includes the failure and running times of thirty electronic devices. This dataset has been extensively analyzed by numerous researchers [39,41]. As indicated by the scaled TTT-transform plot in Figure 10, the dataset exhibits a bathtub-shaped HR. Table 17 presents MLEs, Bayes MCMC estimates, and their 95% CIs for the parameters α,γ,λ, as well as S(x) and h(x), based on the Meeker-Escobar data. Additionally, Table 15 provides estimates for the Boot-P and Boot-T methods, along with their corresponding 95% CIs for α,γ,λ,S(x), and h(x).

    Figure 10.  TTT-transform plot of the MCD for fitting to Meeker-Escobar data.
    Table 15.  Estimates for MLEs and Bayes MCMC, along with their 95% CIs, for α,γ,λ,S(x), and h(x) applied to the Meeker-Escobar data.
    MLEs MCMC
    Parameter Mean CIs Mean CIs
    α 0.01244 [0.00432,0.02920] 0.01113 [0.00739,0.01574]
    γ 0.01610 [0.01165,0.02055] 0.01610 [0.01590,0.01634]
    λ 0.23778 [0.15879,0.31677] 0.25096 [0.23929,0.25862]
    S(x) 0.98130 [0.95568,1.00692] 0.98338 [0.97651,0.98894]
    h(x) 0.00993 [0.00110,0.02097] 0.00927 [0.00620,0.01298]

     | Show Table
    DownLoad: CSV

    Table 16 summarizes the results of Bayes estimates using the BSEL, BLINEXL, and BGEL functions, with varying values of c for BLINEXL, q for BGEL, and different values of ω for α,γ,λ, as well as S(x) and h(x) applied to the Meeker-Escobar data. Furthermore, Table 18 presents the MRL at specific time points and the Rényi entropy for different values of ρ for the fitted MCD. The table shows that the MRL for the MLE, Bayes MCMC, Boot-P, and Boot-T methods decreases over time, consistent with the empirical MRL curve. The calculated MTTF values are 182.437,180.078,112.624, and 112.547 for the MLE, Bayes MCMC, Boot-P, and Boot-T methods, respectively.

    Table 16.  Estimates for Boot-P and Boot-T, along with their 95% CIs, for α,γ,λ,S(x), and h(x) applied to the Meeker-Escobar data.
    Boot-P Boot-T
    Parameter Mean CIs Mean CIs
    α 0.04538 [0.00663,0.41552] 0.01285 [0.00709,0.01841]
    γ 0.01456 [0.00542,0.01834] 0.01716 [0.00952,0.01843]
    λ 0.20108 [0.00300,0.27096] 0.29390 [0.02539,0.40543]
    S(x) 0.93809 [0.48515,0.99007] 0.98063 [0.97190,0.98936]
    h(x) 0.01234 [0.00419,0.02306] 0.01159 [0.00755,0.01532]

     | Show Table
    DownLoad: CSV
    Table 17.  Bayes MCMC estimates using BSEL, BLINEXL, and BGEL functions for the Meeker-Escobar data.
    BSEL BLINEXL BGEL
    Parameters ω c=7 c=0.3 c=7 q=7 q=0.3 q=7
    0.0 0.01113 0.01115 0.01113 0.01111 0.01236 0.01086 0.00946
    0.2 0.01139 0.0114 0.01139 0.01138 0.01236 0.01116 0.00972
    α 0.5 0.01178 0.01179 0.01178 0.01177 0.0124 0.01162 0.01024
    0.9 0.01231 0.01231 0.01231 0.01231 0.01243 0.01227 0.01165
    0.0 0.0161 0.0161 0.0161 0.0161 0.01611 0.0161 0.0161
    0.2 0.0161 0.0161 0.0161 0.0161 0.01611 0.0161 0.0161
    γ 0.5 0.0161 0.0161 0.0161 0.0161 0.0161 0.0161 0.0161
    0.9 0.0161 0.0161 0.0161 0.0161 0.0161 0.0161 0.0161
    0.0 0.25096 0.25107 0.25095 0.25084 0.25134 0.25087 0.25041
    0.2 0.24832 0.24851 0.24831 0.24813 0.25134 0.24818 0.24744
    λ 0.5 0.24437 0.24458 0.24436 0.24416 0.24512 0.24421 0.24345
    0.9 0.2391 0.23917 0.23909 0.23903 0.23936 0.23905 0.23883
    0.0 0.98338 0.98341 0.98337 0.98334 0.98341 0.98337 0.98333
    0.2 0.98296 0.98299 0.98296 0.98293 0.98341 0.98296 0.98292
    S(x) 0.5 0.98234 0.98236 0.98234 0.98232 0.98236 0.98233 0.98231
    0.9 0.98151 0.98151 0.98151 0.9815 0.98151 0.98151 0.9815
    0.0 0.00927 0.00929 0.00927 0.00926 0.01025 0.00906 0.00793
    0.2 0.00941 0.00941 0.00941 0.0094 0.01025 0.00923 0.00813
    h(x) 0.5 0.0096 0.00961 0.0096 0.0096 0.0101 0.00948 0.00852
    0.9 0.00986 0.00987 0.00986 0.00986 0.00996 0.00984 0.00948

     | Show Table
    DownLoad: CSV
    Table 18.  Estimates using MLEs, Bayes MCMC, Boot-P, and Boot-T for the MRL and Rényi entropy of the fitted MCD model applied to the Meeker-Escobar data.
    MRL Rényi entropy
    t ˆMXMLE(t) ˆMXMC(t) ˆMXBP(t) ˆMXBT(t) ρ ˆIRMLE(ρ) ˆIRMC(ρ) ˆIRBP(ρ) ˆIRBT(ρ)
    2 185.68 182.774 122.322 114.115 0.05 6.11361 6.12668 6.00771 6.00235
    23 176.927 174.005 122.457 106.483 0.1 6.04549 6.05904 5.91615 5.91246
    30 172.942 170.153 120.197 103.509 0.5 5.90156 5.91919 5.67348 5.69585
    65 151.346 149.506 105.213 88.8658 0.75 5.86021 5.88203 5.55805 5.63642
    88 136.565 135.454 94.0043 79.7009 0.95 5.82477 5.85202 5.41355 5.59515
    147 99.0509 99.6887 65.2195 57.9184 1.05 5.8001 5.83224 5.27971 5.57287
    212 62.0075 63.7823 38.3393 36.9219 1.15 5.75875 5.80137 4.97211 5.54557
    266 37.6572 39.5497 22.2458 22.7113 1.25 5.62521 5.72194 1.84899 5.50297
    293 28.1902 29.9186 16.4039 17.0268 1.3 5.12429 5.54309 -13.7509 5.4637
    300 26.038 27.7078 15.1097 15.7213 1.33 2.11833 5.03057 -23.567 5.42279

     | Show Table
    DownLoad: CSV

    Table 19 compares the MLEs, , K-S statistics, P-values, A, W, AIC, BIC, and HQIC for the MCD and other competitive models. The MCD shows the lowest values for K-S, A, W, AIC, BIC, and HQIC, along with the highest and P-value, indicating a better fit to the Meeker-Escobar data compared to the other models. Figure 10 shows the empirical and fitted scaled TTT-transform plot for the MCD, while Figure 11 illustrates the survival, hazard, and cumulative hazard functions of the MCD in comparison to competitive models fitted to the Meeker-Escobar data. Figure 11(a), (b) highlights the lifetimes of the Meeker-Escobar data relative to the MCD's survival equation and competing models. The Kaplan-Meier empirical reliability indicates that the MCD provides a superior fit compared to other analyzed distributions, offering a more accurate representation of lifetimes, maintenance times, and MTTF. Figure 11(c), (d) illustrates the failure patterns, showing that the MCD aligns more closely with empirical behavior compared to other distributions, providing a more accurate representation of device failures. Finally, Figure 12 shows boxplots for the Meeker-Escobar data and samples from competing distributions, with the MCD's boxplot closely resembling the range and variability of the Meeker-Escobar data, indicating a more accurate representation of device failure times compared to other fitted distributions. Thus, Figures 11 and 12 reinforce the numerical results, supporting the MCD as a suitable model for analyzing and predicting device failure times. This suggests that the MCD is more appropriate for modeling device failures over its lifespan, making it a valuable tool for reliability engineering practitioners.

    Table 19.  The MLEs of the unknown parameters, , K-S with its corresponding P-value, A, W, AIC, BIC, and HQIC for the fitted models using the Meeker-Escobar data.
    Model α γ λ K-S P-value A W AIC BIC HQIC
    MCD 0.01244 0.0161 0.23778 -174.798 0.15872 0.43642 1.34189 0.19434 355.595 359.799 356.94
    EWD 323.87 6.64787 0.13725 -177.22 0.23369 0.0755 2.14356 0.34271 360.44 364.644 361.785
    MWED 85.1553 0.80479 0.00162 -179.206 0.1933 0.21226 2.02396 0.27698 364.413 368.616 365.757
    MWD 0.01796 0.45363 0.00713 -178.064 0.18046 0.28262 1.53354 0.22922 362.127 366.331 363.472
    SZMWD 0.00223 4.5×1013 5.02732 -175.747 0.16851 0.36181 2.00039 0.24917 357.495 361.699 358.84
    ENHD 0.00005 70.2516 0.94626 -181.082 0.23237 0.07834 1.98779 0.34077 368.164 372.368 369.509
    NEWD 0.00051 1.44294 4.23584 -185.993 0.2198 0.11017 2.7857 0.34492 377.987 382.191 379.332
    ExpCD 0.27993 0.43182 1.2×105 -177.673 0.19256 0.21591 1.49685 0.22888 361.345 365.549 362.69
    ALTWD 3.7×106 0.03066 1.07231 -176.204 0.20509 0.16024 2.25124 0.30822 358.407 362.611 359.752
    LNHD 3329.5 1.6×106 1.0893 -185.175 0.21233 0.1337 1.92729 0.33754 376.349 380.553 377.694
    GCD 187.181 0.03519 82.7541 -189.995 0.20968 0.14296 2.34507 0.418 385.99 390.193 387.334
    ECD 438.538 0.31131 0.00001 -181.039 0.20587 0.15719 1.83489 0.27395 368.078 372.282 369.423
    MECD 0.18024 4.69419 6.4×1011 -181.096 0.21816 0.11502 1.70224 0.29189 368.193 372.397 369.538
    NECD 0.75238 0.30632 0.00691 -180.885 0.19931 0.18432 1.83022 0.26586 367.771 371.974 369.116

     | Show Table
    DownLoad: CSV
    Figure 11.  The estimated (a, b) survival functions and (c, d) HR functions of the MCD and competing models for fitting to the Meeker-Escobar.
    Figure 12.  Box plots of the Meeker-Escobar data and samples generated from the trained MCD and competitive models.

    In this paper, we introduced and examined a novel lifetime distribution called the MCD for use as a reliability and survival model. The HR function of this distribution is straightforward and capable of encompassing both increasing and bathtub-shaped HRs. We studied several statistical properties of this distribution, such as moments, MTTF, MRL, Rényi entropy, and order statistics. These properties establish a robust mathematical framework for understanding the MCD's behavior and its real-world applications. The unknown model parameters, along with the survival and hazard functions, were estimated using maximum likelihood, two parametric bootstrap methods (Boot-P and Boot-T), and Bayesian methods via MCMC with SEL, BSEL, BLINEXL, and BGEL loss functions. The MCD's flexibility with various estimation methods and loss functions makes it a versatile and powerful tool for reliability practitioners. Additionally, ACIs for the parameters, as well as survival and hazard functions, were obtained using various methods. A simulation study was conducted to evaluate the performance of the proposed methods. It found that MLE and Bayesian MCMC exhibited similar efficiency, whereas the Boot-P method consistently outperformed Boot-T by demonstrating lower MSE across diverse parameter combinations and sample sizes. To demonstrate the flexibility of the MCD, we analyzed two real-world reliability datasets (Aarset and Meeker-Escobar). In both cases, the MCD demonstrably outperforms competing distributions, evidenced by superior fit statistics (AIC, BIC, HQIC, K-S) and graphical analysis. This superior performance underscores the MCD's ability to provide more accurate and reliable estimates of device lifetimes, MTTF, and failure patterns, ultimately leading to better decision-making in maintenance planning, warranty analysis, and system design.

    In future research, it may be beneficial to apply the MCD to censored datasets, such as those involving type-Ⅱ progressive censoring, joint progressive type-Ⅱ censoring schemes, and generalized hybrid censoring schemes. Additionally, the MCD could be adapted for use in accelerated life tests, a method commonly employed in reliability engineering to gather information quickly by accelerating a variable that significantly influences the lifespan of the devices under study.

    Proof of Theorem 3.1. The rth noncentral moment of the MCD(ψ_) can be expressed using Eq (2.3) as follows:

    μr=0S(x;ψ_)dxr=0eα(2eγxexλ)dxr.

    By applying the Taylor expansion for ex, the rth noncentral moment of the MCD(ψ_) can be expressed as a linear combination of the moments of the CD, as shown below.

    μr=e2αi=0(1)iαii!0eiγxeαxλdxr=e2αi=0m=0(1)iimαiγmi!m!0xmeαxλdxr=reαi=0m=0(1)iimαiγmi!m!(r+m)0eα(1exλ)dxr+m=reαi=0m=0(1)iimαiγmi!m!(m+r)μr+m,CD,

    where μm+r,CD represents the (m+r)th noncentral moment of the CD.

    Proof of Theorem 3.2. Incomplete moments are determined using the following equation:

    ms(x)=t0f(x)dx=αt0xs(γeγx+λxλ1exλ)eα(2eγxexλ)dx.

    By applying the series expansions for eαeγx and eαexλ, we derive the following results:

    ms(x)=αe2αi,j=0(1)i+jαi+ji!j!t0xs(γeγx+λxλ1exλ)eiγx+jxλdx.

    Additionally, by using the series expansions for ejxλ and exλ, we obtain

    ms(x)=αγe2αi,j,k=0(1)i+jαi+jjki!j!k!t0xs+kλe(1+i)γxdx+αλe2αi,j,k,l=0(1)i+jαi+jjki!j!k!l!t0xs+(k+l+1)λ1eiγxdx.

    After solving the integrals mentioned above, we obtain the result stated in Theorem 3.2.

    Proof of Theorem 3.3. The MTTF of the MCD is obtained as

    MTTF=E[X]=0S(x;ψ_)dx=0eα(2eγxexλ)dxr=eαi,j=0(1)iαi(iγ)ji!j!0xjeα(1exλ)dx=eαi,j,j=0kl=0(kl)(1)i+klαi+k(iγ)ji!j!k!0xje(lk)xλdx=eαλi,j,k=0kl=0(kl)(1)i+klαi+k(iγ)ji!j!k!(lk)j+1λΓ(j+1λ).

    Proof of Theorem 3.4. The MRL of the MCD is expressed as

    MX(t)=E[Xt|x>t]=tS(x;ψ_)S(t;ψ_)dx=1S(t;ψ_)0S(x+t;ψ_)dx=1S(t;ψ_)0eα(2eγ(x+t)e(x+t)λ)dxr=eαS(t;ψ_)i,j=0(1)iαi(iγ)ji!j!0(x+t)jeα(1e(x+t)λ)dx=eαS(t;ψ_)i,j,k=0kl=0(kl)(1)i+klαi+k(iγ)ji!j!k!0(x+t)je(lk)(x+t)λdx=eαλS(t;ψ_)i,j,k=0kl=0(kl)(1)i+klαi+k(iγ)ji!j!k!(lk)j+1λΓ(j+1λ).

    Proof of Theorem 3.5. The Rényi entropy of X for the MCD(ψ_) is defined as follows:

    IR(ρ)=11ρlog0(f(x;ψ))ρdx,ρ>0,ρ1. (A.1)

    By substituting Eq (2.2) into Eq (A.1), we get

    IR(ρ)=11ρlog0αρ(γeγx+λxλ1exλ)ρeρα(2eγxexλ)dx.

    Applying the binomial expansion to the function (γeγx+λxλ1exλ)ρ yields:

    IR(ρ)=11ρlogρi=0(ρi)αργρiλi0x(λ1)ie(ρi)γx+ixλeρα(2eγxexλ)dx.

    Utilizing the Taylor series expansion, we obtain the following result:

    IR(ρ)=11ρlogρi=0j,k=0(ρi)(1)i+kαρ+j+kγρiρj+kλie2ραj!k!0x(λ1)ie(ijρ)γxe(i+k)xλdx.=11ρlogρi=0j,k,l=0(ρi)(1)i+kαρ+j+kγρiρj+kλi(i+k)le2ραj!k!l!0x(i+l)λie(ijρ)γxdx.

    Solving the integrals above leads to the result presented in Theorem 3.5.

    Proof of Theorem 3.6. Consider an ordered sample {Xi}ni=1,n1 from the MCD, with its PDF given by (2.2) and its CDF by (2.1). The PDF of the lth order statistic, denoted as fl:n(x), is defined as:

    fl:n(x)=1B(l,nl+1)[F(x)]l1f(x)[1F(x)]nl,

    which can be expressed as

    fl:n(x)=l1j=0(1)jn!j!(nl)!(lj1)!f(x)[1F(x)]n+jl. (A.2)

    Substituting Eqs (2.1) and (2.2) into (A.2) leads to

    fl:n(x)=l1j=0(1)jn!j!(nl)!(lj1)!α(γeγx+λxλ1exλ)eα(n+j+1l)(2eγxexλ).

    Consequently,

    fl:n(x)=l1j=0(1)jn!j!(nl)!(lj1)!(n+j+1l)f(x;α,γ,λ). (A.3)

    Here, f(x;α,γ,λ) denotes the PDF of the MCD with parameters α=(n+j+1l)α,γ,λ. By applying Eqs (3.3) and (A.3), the rth moment of the lth order statistics is derived as shown in (3.6).

    The second partial derivatives of the log-likelihood function for the MCD are as follows:

    Lαα=nα2.
    Lαγ=ni=1xieγxi.
    Lαλ=ni=1xλiexλilog(xi)
    Lγγ=αni=1x2ieγxi+ni=1(2+γxi)xieγxiγeγxi+λxλ1iexλini=1(1+γxi)2e2γxi(γeγxi+λxλ1iexλi)2.
    Lγλ=ni=1(1+λ(1+xλi)log(xi))(1+γxi)xλ1ieγxi+xλi(γeγxi+λxλ1iexλi)2.
    Lλλ=αni=1xλi(1+xλi)log2(xi)exλini=1x2λi(1+λlog(xi)+λxλilog(xi))2e2xλi(γxieγxi+λexλixλi)2+ni=1xλi(2+λlog(xi)+(2+3λlog(xi)+λxλilog(xi))xλi)log(xi)exλiγxieγxi+λexλixλi.

    The author declare that he has not used artificial intelligence tools in the creation of this article.

    The author thanks the editor and the referees for their valuable comments and suggestions which improved greatly the quality of this paper.

    There is no conflict of interest declared by the author.



    [1] R. E. Barlow, F. Proschan, Statistical theory of reliability and life testing, Holt, Rinehart and Winston, New York, 1975.
    [2] C. D. Lai, M. Xie, Stochastic ageing and dependence for reliability, Springer-Verlag, New York, 2006.
    [3] K. S. Wang, F. S. Hsu, P. P. Liu, Modeling the bathtub shape hazard rate function in terms of reliability, Reliab. Eng. Syst. Safe., 75 (2002), 397–406. https://doi.org/10.1016/S0951-8320(01)00124-7 doi: 10.1016/S0951-8320(01)00124-7
    [4] A. Gaonkar, R. B. Patil, S. Kyeong, D. Das, M. G. Pecht, An assessment of validity of the bathtub model hazard rate trends in electronics, IEEE Access, 9 (2021), 10282–10290. https://doi.org/10.1109/ACCESS.2021.3050474 doi: 10.1109/ACCESS.2021.3050474
    [5] Z. Chen, A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function, Statist. Probab. Lett., 49 (2000), 155–161. https://doi.org/10.1016/S0167-7152(00)00044-4 doi: 10.1016/S0167-7152(00)00044-4
    [6] M. Xie, Y. Tang, T. N. Goh, A modified Weibull extension with bathtub-shaped failure rate function, Reliab. Eng. Syst. Safe., 76 (2002), 279–285. https://doi.org/10.1016/S0951-8320(02)00022-4 doi: 10.1016/S0951-8320(02)00022-4
    [7] V. Pappas, K. Adamidis, S. Loukas, A family of lifetime distributions, Int. J. Qual. Stat. Reliab., 2012 (2012), 1–6. https://doi.org/10.1155/2012/760687 doi: 10.1155/2012/760687
    [8] A. M. Sarhan, J. Apaloo, Exponentiated modified Weibull extension distribution, Reliab. Eng. Syst. Saf., 112 (2013), 137–144. https://doi.org/10.1016/j.ress.2012.10.013 doi: 10.1016/j.ress.2012.10.013
    [9] Y. P. Chaubey, R. Zhang, An extension of Chen's family of survival distributions with bathtub shape or increasing hazard rate function, Commun. Stat.-Theor. M., 44 (2015), 4049–4064. https://doi.org/10.1080/03610926.2014.997357 doi: 10.1080/03610926.2014.997357
    [10] L. D. R. Reis, G. M. Cordeiro, M. C. S. Lima, The Gamma-Chen distribution: A new family of distributions with applications, Span. J. Stat., 2 (2020), 23–40. https://doi.org/10.37830/SJS.2020.1.03 doi: 10.37830/SJS.2020.1.03
    [11] F. A. Bhatti, G. G. Hamedani, S. M. Najibi, M. Ahmad, On the extended Chen distribution: Development, properties, characterizations, and applications, Ann. Data Sci., 8 (2021), 159–180. https://doi.org/10.1007/s40745-019-00202-x doi: 10.1007/s40745-019-00202-x
    [12] Y. A. Anafo, I. Brew, S. Nasiru, Modified extended Chen distribution: Properties and applications, Appl. Math. Inf. Sci., 16 (2022), 711–728. https://doi.org/10.18576/amis/160506 doi: 10.18576/amis/160506
    [13] J. Acquah, B. Odoi, A. Y. Anafo, B. A. Senye, An extension of the Chen distribution: Properties, simulation study, and applications to data, Asian J. Probab. Stat., 23 (2023), 26–42. https://doi.org/10.9734/AJPAS/2023/v23i4510 doi: 10.9734/AJPAS/2023/v23i4510
    [14] T. T. Thach, R. Bris, An additive Chen-Weibull distribution and its applications in reliability modeling, Qual. Reliab. Eng. Int., 37 (2020), 352–373. https://doi.org/10.1002/qre.2740 doi: 10.1002/qre.2740
    [15] B. Tarvirdizade, M. Ahmadpour, A new extension of Chen distribution with applications to lifetime data, Commun. Math. Stat., 9 (2021), 23–38. https://doi.org/10.1007/s40304-019-00185-4 doi: 10.1007/s40304-019-00185-4
    [16] B. Abba, H. Wang, H. S. Bakouch, A reliability and survival model for one and two failure modes system with applications to complete and censored datasets, Reliab. Eng. Syst. Saf., 223 (2022), 108460. https://doi.org/10.1016/j.ress.2022.108460 doi: 10.1016/j.ress.2022.108460
    [17] L. C. Méndez-González, L. A. Rodríguez-Picón, I. J. C. Pérez-Olguín, L. R. V. Portilla, An additive Chen distribution with applications to lifetime data, Axioms, 12 (2023), 118. https://doi.org/10.3390/axioms12020118 doi: 10.3390/axioms12020118
    [18] L. C. Méndez-González, L. A. Rodríguez-Picón, M. I. Rodríguez Borbón, H. Sohn, The Chen-Perks distribution: Properties and reliability applications, Mathematics, 11 (2023), 3001. https://doi.org/10.3390/math11133001 doi: 10.3390/math11133001
    [19] W. H. Greene, Econometric analysis, Prentice-Hall, New York, 2018.
    [20] B. Efron, The jackknife, the bootstrap and other resampling plans, SIAM, Philadelphia, PA, USA, 1982. https://doi.org/10.1137/1.9781611970319
    [21] P. Hall, Theoretical comparison of bootstrap confidence intervals, Ann. Stat., 16 (1988), 927–953. https://doi.org/10.1214/aos/1176350933 doi: 10.1214/aos/1176350933
    [22] A. Zellner, Bayesian estimation and prediction using asymmetric loss functions, J. Am. Stat. Assoc., 81 (1986), 446–451. https://doi.org/10.2307/2289234 doi: 10.2307/2289234
    [23] A. Zellner, Bayesian and non-Bayesian estimation using balanced loss functions, Statist. Decis. Theory Methods V, Springer-Verlag, New York, 1994,337–390. https://doi.org/10.1007/978-1-4612-2618-5-28
    [24] J. Ahmadi, M. J. Jozani, E. Marchand, A. Parsian, Bayes estimation based on k-record data from a general class of distributions under balanced type loss functions, J. Stat. Plan. Infer., 139 (2009), 1180–1189. https://doi.org/10.1016/j.jspi.2008.07.008 doi: 10.1016/j.jspi.2008.07.008
    [25] M. J. Jozani, E. Marchand, A. Parsian, Bayes and robust Bayesian estimation under a general class of balanced loss functions, Statist. Pap., 53 (2012), 51–60. https://doi.org/10.1007/s00362-010-0307-8 doi: 10.1007/s00362-010-0307-8
    [26] M. G. M. Ghazal, Q. Shihab, Exponentiated Pareto distribution: A Bayes study utilizing MCMC technique under unified hybrid censoring scheme, J. Egypt. Math. Soc., 26 (2018), 376–394. https://doi.org/10.21608/JOEMS.2018.2719.1026 doi: 10.21608/JOEMS.2018.2719.1026
    [27] D. Kundu, H. Howlader, Bayesian inference and prediction of the inverse Weibull distribution for type-Ⅱ censored data, Comput. Statist. Data Anal., 54 (2010), 1547–1558. https://doi.org/10.1016/j.csda.2010.01.003 doi: 10.1016/j.csda.2010.01.003
    [28] A. Gupta, B. Mukherjee, S. K. Upadhyay, Weibull extension model: A Bayes study using Markov chain Monte Carlo simulation, Reliab. Eng. Syst. Safe., 93 (2008), 1434–1443. https://doi.org/10.1016/j.ress.2007.10.008 doi: 10.1016/j.ress.2007.10.008
    [29] G. S. Mudholkar, D. K. Srivastava, Exponentiated Weibull family for analyzing bathtub failure-rate data, IEEE Trans. Reliab., 42 (1993), 299–302. https://doi.org/10.1109/24.229504 doi: 10.1109/24.229504
    [30] C. D. Lai, M. Xie, D. N. P. Murthy, A modified Weibull distribution, IEEE Trans. Reliab., 52 (2003), 33–37. https://doi.org/10.1109/TR.2002.805788 doi: 10.1109/TR.2002.805788
    [31] A. M. Sarhan, M. Zaindin, Modified Weibull distribution, Appl. Sci., 11 (2009), 123–136.
    [32] A. Lemonte, A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub, and bathtub-shaped failure rate function, Comput. Statist. Data Anal., 62 (2013), 149–170. https://doi.org/10.1016/j.csda.2013.01.011 doi: 10.1016/j.csda.2013.01.011
    [33] X. Peng, Z. Yan, Estimation and application for a new extended Weibull distribution, Reliab. Eng. Syst. Safe., 121 (2014), 34–42. https://doi.org/10.1016/j.ress.2013.07.007 doi: 10.1016/j.ress.2013.07.007
    [34] M. Nassar, A. Z. Afify, S. Dey, D. Kumar, A new extension of Weibull distribution: Properties and different methods of estimation, J. Comput. Appl. Math., 336 (2018), 439–457. https://doi.org/10.1016/j.cam.2017.12.001 doi: 10.1016/j.cam.2017.12.001
    [35] F. A. Peña-Ramírez, R. R. Guerra, D. R. Canterle, G. M. Cordeiro, The logistic Nadarajah-Haghighi distribution and its associated regression model for reliability applications, Reliab. Eng. Syst. Safe., 204 (2020), 107196. https://doi.org/10.1016/j.ress.2020.107196 doi: 10.1016/j.ress.2020.107196
    [36] M. V. Aarset, How to identify a bathtub hazard rate, IEEE Trans. Reliab., 36 (1987), 106–108. https://doi.org/10.1109/TR.1987.5222310 doi: 10.1109/TR.1987.5222310
    [37] W. Q. Meeker, L. A. Escobar, Statistical methods for reliability data, Wiley, New York, 1998.
    [38] M. G. M. Ghazal, H. M. M. Radwan, A reduced distribution of the modified Weibull distribution and its applications to medical and engineering data, Math. Biosci. Eng., 19 (2022), 13193–13213. https://doi.org/10.3934/mbe.2022617 doi: 10.3934/mbe.2022617
    [39] D. Jiang, Y. Han, W. Cui, F. Wan, T. Yu, B. Song, An improved modified Weibull distribution applied to predict the reliability evolution of an aircraft lock mechanism, Probab. Eng. Mech., 72 (2023), 103449. https://doi.org/10.1016/j.probengmech.2023.103449 doi: 10.1016/j.probengmech.2023.103449
    [40] M. G. M. Ghazal, Y. A. Tashkandy, O. S. Balogun, M. E. Bakr, Exponentiated extended extreme value distribution: Properties, estimation, and applications in applied fields, AIMS Math., 9 (2024), 17634–17656. https://doi.org/10.3934/math.2024857 doi: 10.3934/math.2024857
    [41] A. A. Ahmad, M. G. M. Ghazal, Exponentiated additive Weibull distribution, Reliab. Eng. Syst. Safe., 193 (2020), 106663. https://doi.org/10.1016/j.ress.2019.106663 doi: 10.1016/j.ress.2019.106663
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1206) PDF downloads(77) Cited by(0)

Figures and Tables

Figures(12)  /  Tables(19)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog