Research article Special Issues

A discrete stochastic model of the COVID-19 outbreak: Forecast and control

  • Received: 22 February 2020 Accepted: 12 March 2020 Published: 16 March 2020
  • The novel Coronavirus (COVID-19) is spreading and has caused a large-scale infection in China since December 2019. This has led to a significant impact on the lives and economy in China and other countries. Here we develop a discrete-time stochastic epidemic model with binomial distributions to study the transmission of the disease. Model parameters are estimated on the basis of fitting to newly reported data from January 11 to February 13, 2020 in China. The estimates of the contact rate and the effective reproductive number support the efficiency of the control measures that have been implemented so far. Simulations show the newly confirmed cases will continue to decline and the total confirmed cases will reach the peak around the end of February of 2020 under the current control measures. The impact of the timing of returning to work is also evaluated on the disease transmission given different strength of protection and control measures.

    Citation: Sha He, Sanyi Tang, Libin Rong. A discrete stochastic model of the COVID-19 outbreak: Forecast and control[J]. Mathematical Biosciences and Engineering, 2020, 17(4): 2792-2804. doi: 10.3934/mbe.2020153

    Related Papers:

    [1] Mengshi Shu, Rui Fu, Wendi Wang . A bacteriophage model based on CRISPR/Cas immune system in a chemostat. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1361-1377. doi: 10.3934/mbe.2017070
    [2] Miller Cerón Gómez, Eduardo Ibarguen Mondragon, Eddy Lopez Molano, Arsenio Hidalgo-Troya, Maria A. Mármol-Martínez, Deisy Lorena Guerrero-Ceballos, Mario A. Pantoja, Camilo Paz-García, Jenny Gómez-Arrieta, Mariela Burbano-Rosero . Mathematical model of interaction Escherichia coli and Coliphages. Mathematical Biosciences and Engineering, 2023, 20(6): 9712-9727. doi: 10.3934/mbe.2023426
    [3] Frédéric Mazenc, Gonzalo Robledo, Daniel Sepúlveda . A stability analysis of a time-varying chemostat with pointwise delay. Mathematical Biosciences and Engineering, 2024, 21(2): 2691-2728. doi: 10.3934/mbe.2024119
    [4] Gonzalo Robledo . Feedback stabilization for a chemostat with delayed output. Mathematical Biosciences and Engineering, 2009, 6(3): 629-647. doi: 10.3934/mbe.2009.6.629
    [5] Harry J. Dudley, Zhiyong Jason Ren, David M. Bortz . Competitive exclusion in a DAE model for microbial electrolysis cells. Mathematical Biosciences and Engineering, 2020, 17(5): 6217-6239. doi: 10.3934/mbe.2020329
    [6] Xiaomeng Ma, Zhanbing Bai, Sujing Sun . Stability and bifurcation control for a fractional-order chemostat model with time delays and incommensurate orders. Mathematical Biosciences and Engineering, 2023, 20(1): 437-455. doi: 10.3934/mbe.2023020
    [7] Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer . On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences and Engineering, 2007, 4(2): 319-338. doi: 10.3934/mbe.2007.4.319
    [8] Manel Dali Youcef, Alain Rapaport, Tewfik Sari . Study of performance criteria of serial configuration of two chemostats. Mathematical Biosciences and Engineering, 2020, 17(6): 6278-6309. doi: 10.3934/mbe.2020332
    [9] Alain Rapaport, Jérôme Harmand . Biological control of the chemostat with nonmonotonic response and different removal rates. Mathematical Biosciences and Engineering, 2008, 5(3): 539-547. doi: 10.3934/mbe.2008.5.539
    [10] Alexis Erich S. Almocera, Sze-Bi Hsu, Polly W. Sy . Extinction and uniform persistence in a microbial food web with mycoloop: limiting behavior of a population model with parasitic fungi. Mathematical Biosciences and Engineering, 2019, 16(1): 516-537. doi: 10.3934/mbe.2019024
  • The novel Coronavirus (COVID-19) is spreading and has caused a large-scale infection in China since December 2019. This has led to a significant impact on the lives and economy in China and other countries. Here we develop a discrete-time stochastic epidemic model with binomial distributions to study the transmission of the disease. Model parameters are estimated on the basis of fitting to newly reported data from January 11 to February 13, 2020 in China. The estimates of the contact rate and the effective reproductive number support the efficiency of the control measures that have been implemented so far. Simulations show the newly confirmed cases will continue to decline and the total confirmed cases will reach the peak around the end of February of 2020 under the current control measures. The impact of the timing of returning to work is also evaluated on the disease transmission given different strength of protection and control measures.





    [1] World Health Organization (WHO). Coronavirus. Available from: https://www.who.int/health-topics/coronavirus (accessed on January 23, 2020).
    [2] Wuhan Municipal Health Commission. Available from: http://wjw.wuhan.gov.cn/front/web/showDetail/2019123108989 (accessed on December 31, 2019).
    [3] World Health Organization (WHO). Disease Outbreak News. Available from: https://www.who.int/csr/don/archive/disease/novelcoronavirus/en/ (accessed on January 14, 2020).
    [4] World Health Organization (WHO). Situation reports. Available from: http://who.maps.arcgis.com/apps/opsdashboard/index.html#/c88e37cfc43b4ed3baf977d77e4a0667 (accessed on January 23, 2020).
    [5] National Health Commission of the People's Republic of China. Available from: http://www.nhc.gov.cn/xcs/xxgzbd/gzbdindex.shtml (accessed on February 14, 2020).
    [6] Y. Zhou, Z. Ma, F. Brauer, A Discrete Epidemic Model for SARS Transmission and Control in China, Math. Comput. Model., 40 (2004), 1491-1506. doi: 10.1016/j.mcm.2005.01.007
    [7] G. Chowell, C. Castillo-Chavez, P. Fenimore, M. Christopher, C. Kribs-Zaleta, L. Arriola, et al., Model Parameters and Outbreak Control for SARS, Emerg. Infect. Dis., 10 (2004), 1258-1263. doi: 10.3201/eid1007.030647
    [8] P. Lekone, B. Finkenstädt, Statistical Inference in a Stochastic Epidemic SEIR Model with Control Intervention: Ebola as a Case Study, Biometrics, 62 (2006), 1170-1177. doi: 10.1111/j.1541-0420.2006.00609.x
    [9] J. Wu, K. Leung, G. Leung, Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study, Lancet (2020).
    [10] S. Zhao, S. Musa, Q. Lin, J. Ran, G. Yang, W. Wang, et al., Estimating the unreported number of novel coronavirus (2019-nCoV) vases in China in the first half of January 2020: a data-driven modelling analysis of the early outbreak, J. Clin. Med., 9 (2020), 388. doi: 10.3390/jcm9020388
    [11] B. Prasse, M. Achterberg, L. Ma, P. Mieghem, Network-Based Prediction of the 2019-nCoV Epidemic Outbreak in the Chinese Province Hubei, arXiv preprint arXiv (2002), 2002.04482.
    [12] C. Anastassopoulou, L. Russo, A. Tsakris, C. Siettos, Data-Based Analysis, Modelling and Forecasting of the novel Coronavirus (2019-nCoV) outbreak, medRxiv (2020).
    [13] Y. Yang, Q. Lu, M. Liu, Y. Wang, A. Zhang, N. Jalali, et al., Epidemiological and clinical features of the 2019 novel coronavirus outbreak in China, medRxiv (2020).
    [14] C. You, Y. Deng, W. Hu, J. Sun, Q. Lin, F. Zhou, et al., Estimation of the Time-Varying Reproduction Number of COVID-19 Outbreak in China, medRxiv (2020).
    [15] S. Hermanowicz, Forecasting the Wuhan coronavirus (2019-nCoV) epidemics using a simple (simplistic) model, medRxiv (2020).
    [16] K. Mizumoto, K. Kagaga, G. Chowell, Early epidemiological assessment of the transmission potential and virulence of 2019 Novel Coronavirus in Wuhan City: China, 20192020. medRxiv (2020).
    [17] B. Tang, X. Wang, Q. Li, N. L. Bragazzi, S. Tang, Y. Xiao, et al., Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions, J. Clin. Med., 9 (2020), 462. doi: 10.3390/jcm9020462
    [18] B. Tang, N. Bragazzi, Q. Li, S. Tang, Y. Xiao, J. Wu, An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov), Infect. Disease Model., 5 (2020), 248-255. doi: 10.1016/j.idm.2020.02.001
    [19] Health Commission of Hubei Province. Available from: http://wjw.hubei.gov.cn/bmdt/ztzl/fkxxgzbdgr f yyq/ (accessed on February 15, 2020).
    [20] L. Bettencourt, R. Ribeiro, Real Time Bayesian Estimation of the Epidemic Potential of Emerging Infectious Diseases, PLoS One, 3 (2008), e2185. doi: 10.1371/journal.pone.0002185
    [21] A. Morton, B. Finkenstädt, Discrete time modelling of disease incidence time series by using Markov chain Monte Carlo methods, J. R. Stat. Soc., 54 (2005), 575-594. doi: 10.1111/j.1467-9876.2005.05366.x
    [22] S. Tang, Y. Xiao, Y. Yang, Y. zhou, J. Wu, Z. Ma, Community-based measures for mitigating the 2009 H1N1 pandemic in China, PLoS One, 5 (2010), e10911. doi: 10.1371/journal.pone.0010911
    [23] World Health Organization (WHO). Available from: https://www.who.int/news-room/detail/23-01-2020-statement-on-the-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov) (accessed on January 23, 2020).
    [24] G. Chowell, N. Hengartner, C. Castillo-Chavez, P. Fenimore, J. Hyman, The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda, J. Theor. Biol., 229 (2004), 119-126. doi: 10.1016/j.jtbi.2004.03.006
    [25] C. Favier, N. Degallier, M. Rosa-Freitas, J. Boulanger, J. R. Costa Lima, J. Luitgards-Moura, et al., Early determination of the reproductive number for vector-borne diseases: the case of dengue in Brazil, Trop. Med. Int. Health., 11 (2006), 332-340. doi: 10.1111/j.1365-3156.2006.01560.x
    [26] C. Althaus, Estimating the Reproduction Number of Ebola Virus (EBOV) During the 2014 Outbreak in West Africa, PLoS Curr., 6 (2014).
    [27] G. Chowell, H. Nishiura, L. Bettencourt, Comparative estimation of the reproduction number for pandemic influenza from daily case notification data, J. R. Soc. Interface., 4 (2007), 155-166. doi: 10.1098/rsif.2006.0161
    [28] S. Paine, G. Mercer, P. Kelly, D. Bandaranayake, M. Baker, W. Huang, et al., Transmissibility of 2009 pandemic influenza A(H1N1) in New Zealand: effective reproduction number and influence of age, ethnicity and importations, Euro. Surveill., 15 (2010), pii = 19591.
    [29] S. Park, B. Bolker, D. Champredon, D. Earn, M. Li, J. Weitz, et al., Reconciling early-outbreak estimates of the basic reproductive number and its uncertainty: framework and applications to the novel coronavirus (2019-nCoV) outbreak, medRxiv (2020).
    [30] A. Kucharski, T. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, et al., Early dynamics of transmission and control of COVID-19: a mathematical modelling study, medRxiv (2020).
    [31] Y. Liu, A. Gayle, A. Wilder-Smith, J. Rocklöv, The reproductive number of COVID-19 is higher compared to SARS coronavirus, J. Travel. Med., (2020), 1-4.
  • This article has been cited by:

    1. Xinzhi Ren, Xianning Liu, A competition un-stirred chemostat model with virus in an aquatic system, 2019, 98, 0003-6811, 2329, 10.1080/00036811.2018.1460811
    2. Wendi Wang, Rui Fu, Mengshi Shu, A bacteriophage model based on CRISPR/Cas immune system in a chemostat, 2017, 14, 1551-0018, 1361, 10.3934/mbe.2017070
    3. Saptarshi Sinha, Rajdeep K. Grewal, Soumen Roy, 2018, 103, 9780128151839, 103, 10.1016/bs.aambs.2018.01.005
    4. Saptarshi Sinha, Rajdeep Kaur Grewal, Soumen Roy, 2020, Chapter 18, 978-1-0716-0388-8, 309, 10.1007/978-1-0716-0389-5_18
    5. Sukhitha W. Vidurupola, Analysis of deterministic and stochastic mathematical models with resistant bacteria and bacteria debris for bacteriophage dynamics, 2018, 316, 00963003, 215, 10.1016/j.amc.2017.08.022
    6. Daniel A. Korytowski, Hal L. Smith, How nested and monogamous infection networks in host-phage communities come to be, 2015, 8, 1874-1738, 111, 10.1007/s12080-014-0236-6
    7. Saroj Kumar Sahani, Sunita Gakkhar, A Mathematical Model for Phage Therapy with Impulsive Phage Dose, 2020, 28, 0971-3514, 75, 10.1007/s12591-016-0303-0
    8. Sukhitha W. Vidurupola, Linda J. S. Allen, Impact of Variability in Stochastic Models of Bacteria-Phage Dynamics Applicable to Phage Therapy, 2014, 32, 0736-2994, 427, 10.1080/07362994.2014.889922
    9. WENDI WANG, DYNAMICS OF BACTERIA-PHAGE INTERACTIONS WITH IMMUNE RESPONSE IN A CHEMOSTAT, 2017, 25, 0218-3390, 697, 10.1142/S0218339017400010
    10. Hayriye Gulbudak, Paul L. Salceanu, Gail S. K. Wolkowicz, A delay model for persistent viral infections in replicating cells, 2021, 82, 0303-6812, 10.1007/s00285-021-01612-3
    11. Ei Ei Kyaw, Hongchan Zheng, Jingjing Wang, Htoo Kyaw Hlaing, Stability analysis and persistence of a phage therapy model, 2021, 18, 1551-0018, 5552, 10.3934/mbe.2021280
    12. Ei Ei Kyaw, Hongchan Zheng, Jingjing Wang, Stability and Hopf Bifurcation Analysis for a Phage Therapy Model with and without Time Delay, 2023, 12, 2075-1680, 772, 10.3390/axioms12080772
    13. Ei Ei Kyaw, Hongchan Zheng, Jingjing Wang, Hopf bifurcation analysis of a phage therapy model, 2023, 18, 2157-5452, 87, 10.2140/camcos.2023.18.87
    14. Zainab Dere, N.G. Cogan, Bhargav R. Karamched, Optimal control strategies for mitigating antibiotic resistance: Integrating virus dynamics for enhanced intervention design, 2025, 00255564, 109464, 10.1016/j.mbs.2025.109464
    15. Carli Peterson, Darsh Gandhi, Austin Carlson, Aaron Lubkemann, Emma Richardson, John Serralta, Michael S. Allen, Souvik Roy, Christopher M. Kribs, Hristo V. Kojouharov, A SIMPL Model of Phage-Bacteria Interactions Accounting for Mutation and Competition, 2025, 87, 0092-8240, 10.1007/s11538-025-01478-2
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(14186) PDF downloads(3670) Cited by(166)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog