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Abstract: The novel Coronavirus (COVID-19) is spreading and has caused a large-scale infection
in China since December 2019. This has led to a significant impact on the lives and economy in
China and other countries. Here we develop a discrete-time stochastic epidemic model with binomial
distributions to study the transmission of the disease. Model parameters are estimated on the basis of
fitting to newly reported data from January 11 to February 13, 2020 in China. The estimates of the
contact rate and the effective reproductive number support the efficiency of the control measures that
have been implemented so far. Simulations show the newly confirmed cases will continue to decline
and the total confirmed cases will reach the peak around the end of February of 2020 under the current
control measures. The impact of the timing of returning to work is also evaluated on the disease
transmission given different strength of protection and control measures.
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1. Introduction

COVID-19 is the novel coronavirus that has spread among humans, mainly in China, since De-
cember 2019 [1]. It was first discovered in Wuhan, the capital city of the Hubei province [2]. The
virus subsequently spread to other provinces in China. Cases of infection have also appeared in other
countries [3,4]. COVID-19 is a respiratory virus that is transferred via contact with an infected person
through droplets when a person coughs or sneezes, or through saliva droplets. The main clinical mani-
festations of the infection are fever, fatigue, respiratory symptoms (mainly dry cough), and emergence
of dyspnea. Most patients have mild to moderate symptoms with good prognosis, but some patients
can be in critical condition or die [1]. As of February 15, 2020, it has been reported that 68,500 people
have confirmed with the COVID-19 infection and 1596 people have died in the mainland of China [5].

To avoid the risk of a large-scale movement of population that can accelerate the spread of the
disease, the Chinese government has implemented various measures. The government keeps track of
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people who had direct contact with the COVID-19 patients, known as contact tracing. From the last
day of contact with a confirmed patient, contacts are monitored for signs of illness within 14 days. If
contacts develop fever or other symptoms, they are isolated, tested, and hospitalized immediately to
prevent further spread of the virus to others. Since Jan 23, 2020, metropolitan-wide quarantine and
traffic restriction have been taken in Wuhan and several nearby cities. As the outbreak grows rapidly,
China is imposing a more massive quarantine. All schools have postponed the start of the spring
semester. Most companies have also postponed the starting date of work after the holiday of Spring
Festival. A number of countries or regions have issued restrictions on the entry of Chinese citizens.
A large number of domestic and international flights have been canceled. There is no doubt that the
outbreak of this virus infection has severely affected people’s life, economy and health. How long this
situation will last and when the disease will be controlled is a great concern to everyone.

In the last few decades, there were several major outbreaks of infectious diseases, such as atypical
pneumonia (SARS) in 2003, H1N1 influenza in 2009, and H7N9 influenza in 2013. It is imperative to
improve early predictive and warning capabilities for the disease endemic or pandemic. Mathematical
models, combined with the prevalence data, have been used to study the dynamics, analyze the causes
and key factors of the outbreaks, forecast the trend of disease spread, and provide optimal control
strategies and measures. For example, Zhou and Ma [6] formulated a discrete mathematical model to
investigate the transmission of SARS. Their simulation results agree with the data and indicate that
early quarantine and a high quarantine rate are crucial to the control of SARS. Chowell et al. [7] and
Lekone et al. [8] developed ordinary differential equations and stochastic SEIR models to study the
dynamics of infectious disease and the effect of control interventions, respectively. Their models used
the outbreak of Ebola in the Democratic Republic of Congo in 1995 as a case study. Very recently,
some researchers have studied the spread of COVID-19 [9–11]. Most of them estimated the basic
reproductive number R0, a key parameter to evaluate the potential of viral transmission [12–16]. Tang et
al. [17,18] constructed a deterministic compartmental model and also estimated the basic reproductive
number. They provided the predicted results under different degrees of control measures.

In this study, we will use a discrete-time stochastic compartment model to study the dynamics
of COVID-19 epidemics. The model includes the transmission of COVID-19 and the government’s
measures to control the disease spread. The model captures the epidemiological status of individuals
in the clinical progression of the disease and the changes in each time interval. We make full use of the
existing reported data and perform parameter estimation based on the data. Furthermore, we forecast
the spread of the disease in the next period of time based on the parameter estimates and numerical
simulation. We also use simulations to evaluate the risk of returning to work at different timing and
provide suggestions on when people can start their routine work and life.

2. Model

Based on the development and epidemiological characteristics of COVID-19 infection, the SEIR
model is appropriate to study the dynamic of this disease. The population is partitioned into subpop-
ulations as susceptible (S (t)), exposed (E(t)), infected (I(t)), hospitalized (H(t)), and recovered (R(t)).
Let N denote the total population size. The government takes measures to track and quarantine peo-
ple who have close contact with confirmed cases. Thus, a fraction of the susceptible population is
quarantined and identified as S q(t) and a fraction of the exposed population is isolated and identified

Mathematical Biosciences and Engineering Volume 17, Issue 4, 2792–2804.



2794

as Eq(t). We consider the discrete time point series T = 0, 1, 2, · · · ,Tn as the time progression of
the disease. Here the time step is chosen to be one day, i.e., h = 1. At this timescale, the number
of each compartment is dependent on the number in the previous day and the inflows and removals
from other compartments during the day. Let Bi j(t) be the number of individual transportation between
compartments. We provide their detailed descriptions as follows:

• B11(t) is the number of susceptible individuals who become newly infected;
• B12(t) is the number of quarantined susceptible individuals who have contact with infected indi-

viduals but are not infected;
• B21(t) is the number of new cases with symptom onset;
• B31(t) is the number of new confirmed and admitted patients;
• B32(t) is the number of new death from infected individuals;
• B33(t) is the number of newly recovered from infected individuals;
• B41(t) is the number of people released from quarantine;
• B51(t) is the number of people admitted to hospital (also isolated);
• B61(t) is the number of newly recovered from hospitalized cases;
• B62(t) is the number of new death from hospitalized cases.

The transition of an individual from one state to the next state can be considered as a stochastic process.
The time length that an individual has been in a certain compartment obeys exponential distribution. If
we assume that the parameter of the exponential distribution is λ(t), then the probability that individ-
uals leave the current state in the time interval h is 1 − exp(−λ(t)h). Further, the numbers of inflows
and removals from other compartments during one day can be generated by a binomial distribution.
The number of experiments in the binomial distribution is the number of individuals in the current
compartment. The transmission of the disease is presumed to occur in the context of close contact
between susceptible and infected persons. Assuming the transmission probability is β and the contact
rate is c(t), then βc(t) I(t)

N is the exponential rate that leads to the probability of individuals leaving the
susceptible compartment. In view of contact tracing, we denote the quarantined proportion of individ-
uals exposed to the virus is q. Based on the above assumptions and the stochastic SEIR model in [8],
the discrete-time stochastic compartment model for COVID-19 infection is constructed as

S (t + h) = S (t) − B11(t) − B12(t) + B41(t),
E(t + h) = E(t) + (1 − q)B11(t) − B21(t),
I(t + h) = I(t) + B21(t) − B31(t) − B32(t) − B33(t),
S q(t + h) = S q(t) + B12(t) − B41(t),
Eq(t + h) = Eq(t) + qB11(t) − B51(t),
H(t + h) = H(t) + B31(t) + B51(t) − B61(t) − B62(t),
R(t + h) = R(t) + B33(t) + B61(t),

(2.1)

where
B11(t) ∼ Poi(S (t) ∗ P11(t)), B12(t) ∼ Poi(S (t) ∗ P12(t)),
B21(t) ∼ Bin(E(t), P21), B31(t) ∼ Bin(I(t), P31),
B32(t) ∼ Bin(I(t), P32), B33(t) ∼ Bin(I(t), P33),
B41(t) ∼ Bin(S q(t), P41), B51(t) ∼ Bin(Eq(t), P51),
B61(t) ∼ Bin(H(t), P61), B62(t) ∼ Bin(H(t), P32).
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The above random variables involve binomial distributions Bin(n, p) with the following probabili-
ties:

P11(t)) = 1 − exp[−βc(t) I(t)
N h], P12(t) = 1 − exp[−c(t)q(1 − β) I(t)

N h],
P21 = 1 − exp(−σh), P31 = 1 − exp(−δIh),
P32 = 1 − exp(−αh), P33 = 1 − exp(−γIh),
P41 = 1 − exp(−λh), P51 = 1 − exp(−δqh), P61 = 1 − exp(−γHh).

Note that the number of S (t) is approximately the total population N in China, which is a large
number. The limit distribution of the binomial distribution is the poisson distribution. This is used
instead for B11(t) and B12(t). The variation of these seven compartments and their relationship are
illustrated in the diagram 1. The other parameters are summarized in Table 1.

Death

Death

Quarantine

Figure 1. Flow diagram of the COVID-19 infection.

Reducing exposure is one of the effective measures to control the spread of disease. The public
raises awareness of precaution and takes fewer trips or wears a mask in the presence of a disease
outbreak. The government has taken more control measures, e.g., blocking the entrances and exits of
the city to stop the movement of population. In this model, the contact rate c(t) (i.e. the average number
of contacts of a person per unit time) is assumed to be a piecewise function. It is a constant before the
time point t∗ at which control measures are taken. It is assumed to decrease gradually from c0 to cu.
We assume that c(t) takes the following form:

c(t) =

{
c0, t ≤ t∗,
(c0 − cu)e−k(t−t∗) + cu, t > t∗.

(2.2)

The city of Wuhan was blockaded on January 23, 2020. The actual data we used for data fitting start
from January 11, 2020. Thus, we let t∗ = 12.
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Table 1. Estimates of the parameters and initial values of the model.
Parameters Definition Baseline values Range Mean value (estimated)Std Source
c0 Initial contact rate 31 (0,50] 34.037 0.389 MCMC
cu Finial contact rate 1 (0,50] 0.933 0.0037 MCMC

under control measures
k Exponential decreasing rate 0.1 [0,1] 0.144 0.0035 MCMC

of the contact rate
β Probability of transmission 0.095 [0,1] 0.111 0.0015 MCMC
q Quarantine rate of exposed individuals 0.4 [0,1] 0.415 0.016 MCMC
σ Transition rate of exposed individuals 1/7 [0,1] 1/7 - [17]

to the infected class
λ Rate at which the quarantined uninfected 1/14 1/14 1/14 - [17]

contacts were released
δI Transition rate of symptomatic infected 0.1 [0.1] 0.304 0.001 MCMC

individuals to the quarantined infected class
δq Transition rate of quarantined exposed 0.42 [0,1] 0.413 0.0116 MCMC

individuals to the quarantined infected class
γI Recovery rate of symptomatic infected 0.008 [0,1] 0.0085 0.0001 MCMC

individuals
γH Recovery rate of quarantined infected 0.017 [0,1] 0.018 0.0003 MCMC

individuals
α Disease-induced death rate 0.0027 [0,1] 0.0027 0.0001 MCMC
N The total population number - - 1.4 × 1010 - Data
E(0) Initial exposed population 105 [1,200] 52 0.64 MCMC
I(0) Initial symptomatic infected population 54 [1,100] 31 0.346 MCMC
S q(0) Initial quarantined susceptible population - - 734 - Data
Eq(0) Initial quarantined exposed population 2 [1,100] 5 0.24 MCMC
H(0) Initial quarantined infected population - - 41 - Data
R(0) Initial recovered population - - 6 - Data

3. Data

We obtained the data from the National Health Commission of the People’s Republic of China [5]
and the Health Commission of the Hubei Province [19]. The data that will be used for parameter es-
timation include the cases in the mainland of China, such as the newly reported confirmed cases, the
newly recovered cases, the new death cases, and the number of people released from medical observa-
tion. The total population N in this study is the population of China, approximately 1.4 billion. The
cumulative number of reported confirmed cases can be used to compare with the model simulations.
The total number of confirmed cases is the cumulative number of cases minus the cumulative number
of recovered and death cases. As a complete reporting coverage of the cases has been available since
January 11, 2020, the data used in our analysis are from January 11 to February 13, 2020. Since Febru-
ary 13, the Hubei province has carried out screening of the previous suspected cases and revised the
diagnosis results, adding ”clinical diagnosis” to the diagnosis classification. Although the number of
clinical cases has been public as confirmed cases in Hubei, the clinical diagnosis is not included in the
number of confirmed cases in this study.
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4. Parameter estimation

In general, Bayesian estimation or the maximum likelihood estimation method can be used to esti-
mate unknown parameters in this type of stochastic models [8,20]. Because Bi j(t), where (i, j) ∈ {(1,1),
(1,2), (2,1), (3,1), (3,2), (3,3), (4,1), (5,1), (6,1), (6,2)}, are conditionally independent, the likelihood
function can be the accumulation of probability densities of all variables, given by

L(B11(t), B12(t), B21(t), B31(t), B32(t), B33(t), B41(t), B51(t), B61(t), B62(t)|Θ) =

T n∏
t=0

gi, j(Bi j(t)|·) (4.1)

where gi, j is the binomial densities of Bi j(t). The best scenario is that the value of transportation be-
tween compartments can be obtained. However, the exposed and some infected people are impossible
to be identified. In the reported cases about COVID-19 infection, the data we obtained is the time
series for B41, B61, B62, and the number of new cases, which is equal to the sum of B51 and B31. The
remaining time series including B11, B12, B21, B32, B33 are hard to be determined. It is difficult to ac-
complish parameter estimates using Bayesian estimation or the maximum likelihood estimation due
to such a data structure. Therefore, the Metropolis-Hastings (MH) algorithm will be used to estimate
parameters in our model by carrying out the Markov Chain Monte Carlo (MCMC) procedure [21, 22].

In the model, we assume σ = 1/7 and λ = 1/14 because the quarantined individuals were isolated
for 14 days and the incubation period of COVID-19 is about 7 days [17, 23]. The initial conditions
are the data on January 11, that is, H0 = 41, R0 = 6, and the sum of S q and Eq is 739. We estimated
the parameters from the mean values of 10,000 samples after a burn-in period of 5000 iterations. The
estimated results of all parameters relevant to COVID-19 infection are displayed in Table 1. The model
parameters fitted to the data of COVID-19 infection, including the newly reported confirmed cases and
the total confirmed cases, are shown in Figure 2. In addition, stochastic simulations in Figure 3 show
that the model can provide a good fit to the data of newly recovered cases and new death cases of the
COVID-19 infection.

5. Prediction and control

5.1. The reproductive number

Comparing with the basic reproductive number, the effective reproductive number can be used to
measure the number of secondary cases generated by one primary case in a population in which there
is partial immunity or some intervention measures have been implemented [24–28]. It changes during
the progress of the disease outbreak. As the population size is much larger than the resulting size of
the outbreak, i.e., S (t)/N ≈ 1, the effective or control reproductive number of our model is given by
the following formula

Rc(t) =
βc(t)(1 − q)
δI + α + γI

.

In contrast with the basic reproductive number that usually involves a constant contact rate, we use a
time-varying contact rate c(t) in the effective reproductive number [17]. Using the parameter values
estimated from the data fitting, the effective reproductive number Rc(t) can be computed numerically.
The result shown in Figure 4 indicates that Rc(t) is large at the beginning of the disease outbreak.
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However, as control measures are implemented, the effective reproductive number decreases eventually
to less than 1.
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Figure 2. The data of newly reported confirmed cases and total number of confirmed cases of
COVID-19 disease from January 11, 2020 to February 13, 2020. Stochastic fit was performed
100 times. The newly reported confirmed case data are shown in (a) and the total number
of confirmed case data are shown in (b). The data and the fitted are represented by the deep
blue and light blue curves, respectively.
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Figure 3. The data of newly recovered cases and new death cases of COVID-19 disease
from January 11 to February 13, 2020. Stochastic fit was performed 100 times. The newly
recovered cases are shown in (a), death cases are shown in (b). The data and the fitted are
represented by the deep blue and light blue curves, respectively.
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Figure 4. The effective reproductive number Rc(t) from January 11 to February 13, 2020.
The gray line is the range due to disturbance in the stochastic model.

5.2. Prediction

An assumption of our model is that the contact rate is exponentially decreasing to cu due to various
prevention measures. The estimates show that the maximum value of the contact rate is 34.03 at the
beginning of disease spread. As control measures are implemented, the contact rate declines to 0.93.
This indicates that susceptible people are well protected by these measures and there is a small chance
of transmission by infected people. Using this assumption and estimated parameters, we can make
predictions about the future trend of the disease spread. In Figure 5(a) and (b), the simulations show
the dynamics of the number of newly confirmed cases and the total confirmed cases in the 350 days
after January 11, 2020. The number of newly cases has begun to decrease slightly compared with
before. Figure 5(a) also indicates that the number of newly confirmed cases will continue to decline
in the future. The number of newly confirmed cases will decrease to 0 in about 102–119 days after
January 11, i.e., April 22, 2020 to May 9, 2020. Figure 5(b) shows that the number of total confirmed
cases is still increasing. It will reach the peak in about 46–48 days after January 11, that is, February 26,
2020 to February 28, 2020.

5.3. Control measure

Up to now, the Chinese government has adopted very strict measures to control the spread of the
disease. Most people are quarantined at home. Most companies have stopped working and all schools
have postponed the opening date. How long will such measures last? If people start to work and
students go to school as usual, the population flow will increase the risk of contact. Will this lead to a
second outbreak of the disease? When does people’s life can go back to normal? These are issues of
great concern to everybody in the country. We consider the following four scenarios:
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Figure 5. Predicted results of newly confirmed cases shown in (a) and total number of
confirmed cases shown in (b) under control measures in the 350 days since January 11, 2020.
The red dotted line in (a) is the time when the newly confirmed cases reach zero. The red
dotted line in (b) is the time when the total confirmed cases reach the peak level.

(i). Suppose the time to return to work is March 1 but the protective measures are inadequate. The
parameters in the model are assumed to be c(t) = 3 when T > 50;

(ii). Suppose the time to return to work is March 1 and the protective measures are good. The param-
eters are chosen to be c(t) = 1.5 when T > 50;

(iii). Suppose the time to return to work is March 20 but the protective measures are inadequate. The
parameters are c(t) = 3 when T > 70;

(iv). Suppose the time to return to work is March 20 and the protective measures are good. The
parameters are c(t) = 1.5 when T > 70;

Using the above assumptions and fixing other parameters according to data fitting, we numerically
investigate the dynamics of the number of newly confirmed cases and total confirmed cases, which are
shown in Figure 6. The simulations suggest that when people return to work early without sufficient
protection it is likely to observe the increase of newly confirmed cases. The total number of confirmed
cases will also increase by more than 2000. If people return to work on March 20, it will result in a
small increase in the number of newly confirmed cases. However, it’s going to decrease quickly. Thus,
postponing the return to work would be of great help to control the disease transmission.

6. Discussion

In view of the randomness in the transmission of the COVID-19 infection, we construct a discrete-
time stochastic compartment system to study the dynamic behavior of the disease outbreak, in which
the population in each compartment is assumed to obey a binomial distribution. In the model, we fur-
ther assume that the contact rate between susceptible and infected individuals decreases exponentially
since the government has implemented strict control measures. This discrete system can make a good
use of the newly reported data, including the number of newly reported confirmed cases, newly recov-
ered cases, new death cases, and those quarantined that are released per day, to calibrate the model
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Figure 6. Predicted results of newly confirmed cases shown in (a) and total number of con-
firmed cases shown in (b) with four assumptions (see text) in the 350 days since January 11,
2020. The results are the mean of 50 stochastic simulations.

parameters. Because the diagnostic criterion for confirmed cases was revised on February 13, we use
the data reported from January 11 to February 13, 2020 in this study. Although there are no data for the
populations in the other groups, we estimated the parameters in the model using the MCMC procedure
based on the exiting reported data.

The maximum value of contact rate we estimated is 34.02 and then dropped to 0.93. It indicates that
the control measures implemented are very effective. Figure 3 shows that the effective reproductive
number of the infection declines from 6.96 to 0.47 over the time period of simulation. Some other
groups have also estimated R0 of the COVID-19 infection [29, 30]. See a summary of the estimates
in the reference [31]. Some estimates of R0 are comparable to ours (before various control measures
are taken) and some are smaller. This may be due to different estimation methods under different
model assumptions. In any case, the results indicate that this novel coronavirus is highly contagious in
the early stage (e.g., higher than the SARS coronavirus outbreak in 2003 [31]). However, the control
measures implemented so far are shown to be efficient in lowering the effective reproductive number
to below 1.

The stochastic fits show that the reported data are less than those simulated in the initial phase, but
the subsequent simulation agrees well with the reported data. Most of the data are in the region of the
stochastic simulation. By the time of the submission of this manuscript, the number of newly reported
confirmed cases has begun to decrease. Assuming that the current control measures adopted by the
government and individuals are maintained, the predicted results shown in Figure 4 indicate that the
peak of total confirmed cases will reach around late February of 2020, followed by a decrease. The
newly confirmed cases will decline to zero in late April or early May of 2020. To study the timing of
returning to work on the disease dynamics, we consider four different scenarios on the time to return
to work and the strength of protective measures. We assume the contact rate is 3 if the resumption of
work causes wide migration of people and the protective measures are not sufficient. In this case, the
simulation shows that the infection will have a second outbreak if people return to work on March 1.
The situation will be better if people can return to work after March 20, 2020.
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In conclusion, our simulation shows that the contact rate is a key factor on the control of the COVID-
19 outbreak. When there is a sign of epidemic, we should raise awareness of self-protection and take all
possible protective measures, such as wearing a mask and staying indoor to reduce the risk of getting
infected. Although the number of new cases of infection is decreasing, there is still a possibility of
future outbreaks if there are no adequate protective measures or people return to work early. The
public should not relax their vigilance against the transmission of this highly contagious disease.
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