The present paper considers a fractional-order N species network, in which, the general functions are used for finding general theories. The existence, uniqueness, and non-negativity of the solutions for the considered model are proved. Moreover, the local and global asymptotic stability of the equilibrium point are studied by using eigenvalue method and Lyapunov direct method. Finally, some simple examples and numerical simulations are provided to demonstrate the theoretical results.
Citation: Yingkang Xie, Junwei Lu, Bo Meng, Zhen Wang. Stability analysis for a new fractional order N species network[J]. Mathematical Biosciences and Engineering, 2020, 17(4): 2805-2819. doi: 10.3934/mbe.2020154
[1] |
Yuhui Chen, Ronghua Pan, Leilei Tong .
The sharp time decay rate of the isentropic Navier-Stokes system in |
[2] |
Guochun Wu, Han Wang, Yinghui Zhang .
Optimal time-decay rates of the compressible Navier–Stokes–Poisson system in |
[3] | Jingjing Zhang, Ting Zhang . Local well-posedness of perturbed Navier-Stokes system around Landau solutions. Electronic Research Archive, 2021, 29(4): 2719-2739. doi: 10.3934/era.2021010 |
[4] | Yue Cao . Blow-up criterion for the 3D viscous polytropic fluids with degenerate viscosities. Electronic Research Archive, 2020, 28(1): 27-46. doi: 10.3934/era.2020003 |
[5] | Jun Zhou . Initial boundary value problem for a inhomogeneous pseudo-parabolic equation. Electronic Research Archive, 2020, 28(1): 67-90. doi: 10.3934/era.2020005 |
[6] |
Jiayi Han, Changchun Liu .
Global existence for a two-species chemotaxis-Navier-Stokes system with |
[7] | Ting Liu, Guo-Bao Zhang . Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, 2021, 29(4): 2599-2618. doi: 10.3934/era.2021003 |
[8] | Xiu Ye, Shangyou Zhang . A stabilizer free WG method for the Stokes equations with order two superconvergence on polytopal mesh. Electronic Research Archive, 2021, 29(6): 3609-3627. doi: 10.3934/era.2021053 |
[9] | Huafei Di, Yadong Shang, Jiali Yu . Existence and uniform decay estimates for the fourth order wave equation with nonlinear boundary damping and interior source. Electronic Research Archive, 2020, 28(1): 221-261. doi: 10.3934/era.2020015 |
[10] | Chungen Liu, Huabo Zhang . Ground state and nodal solutions for fractional Kirchhoff equation with pure critical growth nonlinearity. Electronic Research Archive, 2021, 29(5): 3281-3295. doi: 10.3934/era.2021038 |
The present paper considers a fractional-order N species network, in which, the general functions are used for finding general theories. The existence, uniqueness, and non-negativity of the solutions for the considered model are proved. Moreover, the local and global asymptotic stability of the equilibrium point are studied by using eigenvalue method and Lyapunov direct method. Finally, some simple examples and numerical simulations are provided to demonstrate the theoretical results.
In this paper, we are concerned with the sharp decay rates of solutions to the Cauchy problem for the isentropic Navier-Stokes equations:
{∂tρ+div(ρu)=0,(t,x)∈R+×R3,∂t(ρu)+div(ρu⊗u)+∇p(ρ)=divT,(t,x)∈R+×R3,lim|x|→∞ρ=ˉρ,lim|x|→∞u=0,t∈R+,(ρ,u)|t=0=(ρ0,u0),x∈R3, | (1.1) |
which governs the motion of a isentropic compressible viscous fluid. The unknown functions
Using the classical spectral method, the optimal time decay rate (upper bound) of the linearized equations of the isentropic Navier-Stokes equations are well known. One may then expect that the small solution of the nonlinear equations (1.1) have the same decay rate as the linear one. Our work is devoted to proving the sharp time decay rate (for both upper and lower bound) for the nonlinear system.
In the case of one space dimension, Zeng [24] and Liu-Zeng [15] offered a detailed analysis of the solution to a class of hyperbolic-parabolic system through point-wise estimate, including the isentropic Navier-Stokes system. For multi-dimensional Navier-Stokes equations (and/or Navier-Stokes-Fourier system), the
When additional external force is taken into account, the external force does affect the long time behavior of solutions. The upper bound of time decay rates were studied intensively, see for instance [1] and [2] on unbounded domain, [22], [23] on the convergence of the non-stationary flow to the corresponding steady flow when the initial date are small in
The main goal of current paper is to establish the sharp decay rate, on both upper and lower bounds, to the solutions of (1.1) using relatively simple energy method. We remark that similar results had been pursued by M. Schonbek [20], [21] for incompressible Navier-Stokes equations, and by Li, Matsumura-Zhang [13] for isentropic Navier-Stokes-Poisson system. Although they share the same spirit in obtaining the lower bound decay rates, the feature of the spectrum near zero exhibits quite different behaviors, leading to different analysis. For instance, we explored the elegant structure of the higher order nonlinear terms of Navier-Stokes, when choosing conservative variables: density and momentum. The conservative form of the sharp equations provided a natural derivative structure in these terms, leading to the possibility of a faster decay rate estimate. We will make a more detailed comparison later in this paper.
Define
{∂tn+divm=0,(t,x)∈R+×R3,∂tm+c2∇n−ˉμ△m−(ˉμ+ˉν)∇divm=F,(t,x)∈R+×R3,lim|x|→∞n=0,lim|x|→∞m=0,t∈R+,(n,m)|t=0=(ρ0−ˉρ,ρ0u0),x∈R3, | (1.2) |
where
F=−div{m⊗mn+ˉρ+ˉμ∇(nmn+ˉρ)}−∇{(ˉμ+ˉν)div(nmn+ˉρ)+(p(n+ˉρ)−p(ˉρ)−c2n)}. |
It is this structure of
Our aim is to obtain a clear picture of the large time behavior of
{∂t˜n+div˜m=0,(t,x)∈R+×R3,∂t˜m+c2∇˜n−ˉμ△˜m−(ˉμ+ˉν)∇div˜m=0,(t,x)∈R+×R3,lim|x|→∞˜n=0,lim|x|→∞˜m=0,t∈R+,(˜n,˜m)|t=0=(ρ0−ˉρ,ρ0u0),x∈R3, | (1.3) |
where
Notation. For
We now state our main result.
Theorem 1.1. Assume that
∫R3(n0,m0)dx≠0, | (1.4) |
then there is a unique global classical solution
C−1(1+t)−34−k2≤‖∇k˜n(t)‖L2(R3)≤C(1+t)−34−k2,k=0,1,2,3,C−1(1+t)−34−k2≤‖∇k˜m(t)‖L2(R3)≤C(1+t)−34−k2,k=0,1,2,3, |
and the initial value problem (1.2) has a unique solution
‖∇k(nh,mh)(t)‖L2(R3)≲δ20(1+t)−54−k2,k=0,1,2,‖∇3mh(t)‖L2(R3)≲δ20(1+t)−114,‖∇3nh(t)‖L2(R3)≲δ0(1+t)−74. |
As a consequence, there exists a positive constant
C−11(1+t)−34−k2≤‖∇kn(t)‖L2(R3)≤C1(1+t)−34−k2,k=0,1,2,C−11(1+t)−34−k2≤‖∇km(t)‖L2(R3)≤C1(1+t)−34−k2,k=0,1,2,3. |
Remark 1.1. We remark that this theorem is valid under the condition (1.4) which is important in the lower bound estimate to the linearized problem. When (1.4) fails, the decay rate of the linearized system (1.3) depends on the order of the degeneracy of moments. Assume
Remark 1.2. In [13], Li, Matsumura-Zhang proved the lower bound decay rate of the linearized isentropic Navier-Stokes-Poisson system, they only require
In what follows, we will set
{∂tn+ˉρdivu=−ndivu−u⋅∇n,∂tu+γˉρ∇n−ˉμ△u−(ˉμ+ˉν)∇divu=−u⋅∇u−ˉμf(n)△u−(ˉμ+ˉν)f(n)∇divu−g(n)∇n,lim|x|→∞n=0,lim|x|→∞u=0,(n,u)|t=0=(ρ0−ˉρ,u0), | (2.1) |
where
f(n):=nn+ˉρ,g(n):=p′(n+ˉρ)n+ˉρ−p′(ˉρ)ˉρ. | (2.2) |
We assume that there exist a time of existence
‖n(t)‖H3+‖u(t)‖H3≤δ, | (2.3) |
holds for any
ˉρ2≤n+ˉρ≤2ˉρ. |
Hence, we immediately have
|f(n)|,|g(n)|≤C|n|,|∇kf(n)|,|∇kg(n)|≤C∀k∈N+, | (2.4) |
where
Next, we begin with the energy estimates including
Theorem 2.1. Assume that
‖n0‖H3+‖u0‖H3≤δ0, |
then the problem (2.1) admits a unique global solution
‖n(t)‖2H3+‖u(t)‖2H3+∫t0(‖∇n(τ)‖2H2+‖∇u(τ)‖2H3)dτ≤C(‖n0‖2H3+‖u0‖2H3), |
where
The proof of this theorem is divided into several subsections.
For
12ddt∫R3(γ|n|2+|u|2)dx+∫R3(ˉμ|∇u|2+(ˉμ+ˉν)|divu|2)dx=∫R3γ(−ndivu−u⋅∇n)n−(u⋅∇u+ˉμf(n)△u+(ˉμ+ˉν)f(n)∇divu+g(n)∇n)⋅udx≲‖n‖L3‖∇u‖L2‖n‖L6+(‖u‖L3‖∇u‖L2+‖n‖L3‖∇n‖L2)‖u‖L6+(‖u‖L∞‖∇n‖L2+‖n‖L∞‖∇u‖L2)‖∇u‖L2≲(‖n‖L3+‖u‖L3+‖n‖L∞+‖u‖L∞)(‖∇n‖2L2+‖∇u‖2L2). | (2.5) |
Now for
12ddt∫R3(γ|∇n|2+|∇u|2)dx+∫R3(ˉμ|∇2u|2+(ˉμ+ˉν)|∇divu|2)dx≲(‖n‖L∞+‖u‖L∞+‖∇n‖L∞+‖∇u‖L∞)(‖∇n‖2L2+‖∇u‖2L2+‖∇2u‖2L2). | (2.6) |
For
12ddt∫R3(γ|∇2n|2+|∇2u|2)dx+∫R3(ˉμ|∇3u|2+(ˉμ+ˉν)|∇2divu|2)dx≲(‖n‖L∞+‖u‖L∞+‖∇n‖L∞+‖∇u‖L∞)(‖∇2n‖2L2+‖∇2u‖2L2+‖∇3u‖2L2). | (2.7) |
For
12ddt∫R3(γ|∇3n|2+|∇3u|2)dx+∫R3(ˉμ|∇4u|2+(ˉμ+ˉν)|∇3divu|2)dx≲(‖n‖L∞+‖u‖L∞+‖∇n‖L∞+‖∇u‖L∞)(‖∇3n‖2L2+‖∇3u‖2L2+‖∇4u‖2L2)+‖∇n‖L3‖∇4u‖L2‖∇2n‖L6+‖∇u‖L3‖∇4u‖L2‖∇2u‖L6+‖∇2n‖L3(‖∇3n‖L2+‖∇4u‖L2)‖∇2u‖L6. | (2.8) |
Summing up the above estimates, noting that
ddt∑0≤k≤3(γ‖∇kn‖2L2+‖∇ku‖2L2)+C1∑1≤k≤4‖∇ku‖2L2≤C2δ∑1≤k≤3‖∇kn‖2L2. | (2.9) |
For
ddt∫R3u⋅∇ndx+γˉρ∫R3|∇n|2dx≲‖∇u‖2L2+‖∇n‖L2‖∇2u‖L2+(‖n‖L∞+‖u‖L∞)(‖∇n‖2L2+‖∇u‖2L2), | (2.10) |
for
ddt∫R3∇u⋅∇2ndx+γˉρ∫R3|∇2n|2dx≲‖∇2u‖2L2+‖∇2n‖L2‖∇3u‖L2+(‖(n,u)‖L∞+‖(∇n,∇u)‖L∞)×(‖∇n‖2L2+‖∇2n‖2L2+‖∇2u‖2L2), | (2.11) |
and for
ddt∫R3∇2u⋅∇3ndx+γˉρ∫R3|∇3n|2dx≲‖∇3u‖2L2+‖∇3n‖L2‖∇4u‖L2+(‖(n,u)‖L∞+‖(∇n,∇u)‖L∞)×(‖∇2n‖2L2+‖∇2u‖2L2+‖∇3n‖2L2+‖∇3u‖2L2). | (2.12) |
Plugging the above estimates, using the smallness of
ddt∑0≤k≤2∫R3∇ku⋅∇k+1ndx+C3∑1≤k≤3‖∇kn‖2L2≤C4∑1≤k≤4‖∇ku‖2L2. | (2.13) |
Proof of Theorem 2.1. Multiplying (2.13) by
ddt{∑0≤k≤3(γ‖∇kn‖2L2+‖∇ku‖2L2)+2C2δC3∑0≤k≤2∫R3∇ku⋅∇k+1ndx}+C5{∑1≤k≤3‖∇kn‖2L2+∑1≤k≤4‖∇ku‖2L2}≤0. | (2.14) |
Next, we define
ddtE(t)+‖∇n(t)‖2H2+‖∇u(t)‖2H3≤0. | (2.15) |
Observe that since
C−16(‖n(t)‖2H3+‖u(t)‖2H3)≤E(t)≤C6(‖n(t)‖2H3+‖u(t)‖2H3). |
Then integrating (2.15) directly in time, we get
sup0≤t≤T(‖n(t)‖2H3+‖u(t)‖2H3)+C6∫T0(‖∇n(τ)‖2H2+‖∇u(τ)‖2H3)dτ≤C26(‖n0‖2H3+‖u0‖2H3). |
Using a standard continuity argument along with classical local wellposedness theory, this closes the a priori assumption (2.3) if we assume
In this section, we consider the initial value problem for the linearized Navier-Stokes system
{∂t˜n+div˜m=0,(t,x)∈R+×R3,∂t˜m+c2∇˜n−ˉμ△˜m−(ˉμ+ˉν)∇div˜m=0,(t,x)∈R+×R3,lim|x|→∞˜n=0,lim|x|→∞˜m=0,t∈R+,(˜n,˜m)|t=0=(ρ0−ˉρ,ρ0u0),x∈R3, | (3.1) |
where
In terms of the semigroup theory for evolutionary equations, the solution
˜Ut=B˜U,t≥0,˜U(0)=˜U0, |
which gives rise to
˜U(t)=S(t)˜U0=etB˜U0,t≥0, |
where
B=(0−div−c2∇ˉμ△angle+(ˉμ+ˉν)∇div). |
What left is to analyze the differential operator
∂tˆ˜U(t,ξ)=A(ξ)ˆ˜U(t,ξ),t≥0,ˆ˜U(0,ξ)=ˆ˜U0(ξ), |
where
A(ξ)=(0−iξt−c2iξ−ˉμ|ξ|2I3×3−(ˉμ+ˉν)ξ⊗ξ). |
The eigenvalues of the matrix
det(A(ξ)−λI)=−(λ+ˉμ|ξ|2)2(λ2+(2ˉμ+ˉν)|ξ|2λ+c2|ξ|2)=0, |
which implies
λ0=−ˉμ|ξ|2(double),λ1=λ1(|ξ|),λ2=λ2(|ξ|). |
The semigroup
etA=eλ0tP0+eλ1tP1+eλ2tP2, |
where the project operators
Pi=∏i≠jA(ξ)−λjIλi−λj. |
By a direct computation, we can verify the exact expression for the Fourier transform
ˆG(t,ξ)=etA=(λ1eλ2t−λ2eλ1tλ1−λ2−iξt(eλ1t−eλ2t)λ1−λ2−c2iξ(eλ1t−eλ2t)λ1−λ2e−λ0t(I−ξ⊗ξ|ξ|2)+ξ⊗ξ|ξ|2λ1eλ1t−λ2eλ2tλ1−λ2)=(ˆNˆM). |
Indeed, we can make the following decomposition for
ˆ˜n=ˆN⋅ˆ˜U0=(ˆN+ˆN)⋅ˆ˜U0,ˆ˜m=ˆM⋅ˆ˜U0=(ˆM+ˆM)⋅ˆ˜U0, |
where
ˆN=(λ1eλ2t−λ2eλ1tλ1−λ20),ˆN=(0−iξt(eλ1t−eλ2t)λ1−λ2),ˆM=(−c2iξ(eλ1t−eλ2t)λ1−λ20),ˆM=(0e−λ0t(I−ξ⊗ξ|ξ|2)+ξ⊗ξ|ξ|2λ1eλ1t−λ2eλ2tλ1−λ2). |
We further decompose the Fourier transform
Define
ˆN=ˆN1+ˆN2,ˆN=ˆN1+ˆN2,ˆM=ˆM1+ˆM2,ˆM=ˆM1+ˆM2, |
where
χ(ξ)={1,|ξ|≤R,0,|ξ|≥R+1. |
Then we have the following decomposition for
ˆ˜n=ˆN⋅ˆ˜U0=ˆN1⋅ˆ˜U0+ˆN2⋅ˆ˜U0=(ˆN1+ˆN1)⋅ˆ˜U0+(ˆN2+ˆN2)⋅ˆ˜U0,ˆ˜m=ˆM⋅ˆ˜U0=ˆM1⋅ˆU0+ˆM2⋅ˆ˜U0=(ˆM1+ˆM1)⋅ˆ˜U0+(ˆM2+ˆM2)⋅ˆ˜U0. | (3.2) |
To derive the long time decay rate of solution, we need to use accurate approximation to the Fourier transform
λ1=−2ˉμ+ˉν2|ξ|2+i2√4c2|ξ|2−(2ˉμ+ˉν)2|ξ|4=a+bi,λ2=−2ˉμ+ˉν2|ξ|2−i2√4c2|ξ|2−(2ˉμ+ˉν)2|ξ|4=a−bi, | (3.3) |
and we have
λ1eλ2t−λ2eλ1tλ1−λ2=e−12(2ˉμ+ˉν)|ξ|2t[cos(bt)+12(2ˉμ+ˉν)|ξ|2sin(bt)b]∼O(1)e−12(2ˉμ+ˉν)|ξ|2t,|ξ|≤η, |
λ1eλ1t−λ2eλ2tλ1−λ2=e−12(2ˉμ+ˉν)|ξ|2t[cos(bt)−12(2ˉμ+ˉν)|ξ|2sin(bt)b]∼O(1)e−12(2ˉμ+ˉν)|ξ|2t,|ξ|≤η, |
eλ1t−eλ2tλ1−λ2=e−12(2ˉμ+ˉν)|ξ|2tsin(bt)b∼O(1)1|ξ|e−12(2ˉμ+ˉν)|ξ|2t,|ξ|≤η, |
where
b=12√4c2|ξ|2−(2ˉμ+ˉν)2|ξ|4∼c|ξ|+O(|ξ|3),|ξ|≤η. |
For the high frequency
λ1=−2ˉμ+ˉν2|ξ|2−12√(2ˉμ+ˉν)2|ξ|4−4c2|ξ|2=a−b,λ2=−2ˉμ+ˉν2|ξ|2+12√(2ˉμ+ˉν)2|ξ|4−4c2|ξ|2=a+b, | (3.4) |
and we have
λ1eλ2t−λ2eλ1tλ1−λ2=12e(a+b)t[1+e−2bt]−a2be(a+b)t[1−e−2bt]∼O(1)e−R0t,|ξ|≥η, |
λ1eλ1t−λ2eλ2tλ1−λ2=a+b2be(a+b)t[1−e−2bt]+e(a−b)t∼O(1)e−R0t,|ξ|≥η, |
eλ1t−eλ2tλ1−λ2=12be(a+b)t[1−e−2bt]∼O(1)1|ξ|2e−R0t,|ξ|≥η, |
where
b=12√(2ˉμ+ˉν)2|ξ|4−4c2|ξ|2∼12(2ˉμ+ˉν)|ξ|2−2c22ˉμ+ˉν+O(|ξ|−2),|ξ|≥η. |
Here
In this section, we apply the spectral analysis to the semigroup for the linearized Navier-Stokes system. We will establish the
With the help of the formula for Green's function in Fourier space and the asymptotic analysis on its elements, we are able to establish the
Proposition 4.1. Let
‖∇k(˜n,˜m)(t)‖L2(R3)≤C(1+t)−34−k2(‖U0‖L1(R3)+‖∇kU0‖L2(R3)), |
where
Proof. A straightforward computation together with the formula of the Green's function
ˆ˜n(t,ξ)=λ1eλ2t−λ2eλ1tλ1−λ2ˆn0−iξ⋅ˆm0(eλ1t−eλ2t)λ1−λ2∼{O(1)e−12(2ˉμ+ˉν)|ξ|2t(|ˆn0|+|ˆm0|),|ξ|≤η,O(1)e−R0t(|ˆn0|+|ˆm0|),|ξ|≥η,ˆ˜m(t,ξ)=−c2iξ(eλ1t−eλ2t)λ1−λ2ˆn0+e−λ0tˆm0+(λ1eλ1t−λ2eλ2tλ1−λ2−e−λ0t)ξ(ξ⋅ˆm0)|ξ|2∼{O(1)e−ˉμ|ξ|2t(|ˆn0|+|ˆm0|),|ξ|≤η,O(1)e−R0t(|ˆn0|+|ˆm0|),|ξ|≥η, |
here and below,
‖(ˆ˜n,ˆ˜m)(t)‖2L2(R3)=∫|ξ|≤η|(ˆ˜n,ˆ˜m)(t,ξ)|2dξ+∫|ξ|≥η|(ˆ˜n,ˆ˜m)(t,ξ)|2dξ≲∫|ξ|≤ηe−2ˉμ|ξ|2t(|ˆn0|2+|ˆm0|2)dξ+∫|ξ|≥ηe−2R0t(|ˆn0|2+|ˆm0|2)dξ≲(1+t)−32‖(n0,m0)‖2L1(R3)∩L2(R3). |
And the
‖(^∇k˜n,^∇k˜m)(t)‖2L2(R3)=∫|ξ|≤η|ξ|2k|(ˆ˜n,ˆ˜m)(t,ξ)|2dξ+∫|ξ|≥η|ξ|2k|(ˆ˜n,ˆ˜m)(t,ξ)|2dξ≲∫|ξ|≤ηe−2ˉμ|ξ|2t|ξ|2k(|ˆn0|2+|ˆm0|2)dξ+∫|ξ|≥ηe−2R0t|ξ|2k(|ˆn0|2+|ˆm0|2)dξ≲(1+t)−32−k(‖(n0,m0)‖2L1(R3)+‖(∇kn0,∇km0)‖2L2(R3)). |
The proof of the Proposition 4.1 is completed.
It should be noted that the
Proposition 4.2. Let
C−1(1+t)−34−k2≤‖∇k˜n(t)‖L2(R3)≤C(1+t)−34−k2,C−1(1+t)−34−k2≤‖∇k˜m(t)‖L2(R3)≤C(1+t)−34−k2, |
where
Proof. We only show the case of
ˆ˜n(t,ξ)=λ1eλ2t−λ2eλ1tλ1−λ2ˆn0−iξ⋅ˆm0(eλ1t−eλ2t)λ1−λ2=e−12(2ˉμ+ˉν)|ξ|2t[cos(bt)ˆn0−iξ⋅ˆm0sin(bt)b]+e−12(2ˉμ+ˉν)|ξ|2t[12(2ˉμ+ˉν)|ξ|2sin(bt)bˆn0]=T1+T2,for|ξ|≤η, |
ˆ˜m(t,ξ)=−c2iξ(eλ1t−eλ2t)λ1−λ2ˆn0+e−λ0tˆm0+(λ1eλ1t−λ2eλ2tλ1−λ2−e−λ0t)ξ(ξ⋅ˆm0)|ξ|2=[e−12(2ˉμ+ˉν)|ξ|2t[cos(bt)ξ(ξ⋅ˆm0)|ξ|2−c2iξsin(bt)bˆn0]+e−ˉμ|ξ|2t[ˆm0−ξ(ξ⋅ˆm0)|ξ|2]]−e−12(2ˉμ+ˉν)|ξ|2t[12(2ˉμ+ˉν)|ξ|2sin(bt)bξ(ξ⋅ˆm0)|ξ|2]=S1+S2,for|ξ|≤η, |
here and below,
It is easy to check that
‖ˆ˜n(t,ξ)‖2L2=∫|ξ|≤η|ˆ˜n(t,ξ)|2dξ+∫|ξ|≥η|ˆ˜n(t,ξ)|2dξ≥∫|ξ|≤η|T1+T2|2dξ≥∫|ξ|≤η12|T1|2−|T2|2dξ. | (4.1) |
We then calculate that
∫|ξ|≤η|T2|2dξ≲‖ˆn0‖2L∞∫|ξ|≤ηe−(2ˉμ+ˉν)|ξ|2t|ξ|4(sin(bt)b)2dξ≲‖ˆn0‖2L∞∫|ξ|≤ηe−(2ˉμ+ˉν)|ξ|2t|ξ|2dξ≲(1+t)−52‖n0‖2L1. | (4.2) |
Since
|ˆn0(ξ)|2≥1C|∫R3n0(x)dx|2≥M2nC,for|ξ|≤η. |
For
|ξ⋅ˆm0(ξ)|2|ξ|2≥|ξ⋅Mm|2C|ξ|2,for|ξ|≤η. |
When
∫|ξ|≤η|T1|2dξ≥M2nC∫|ξ|≤ηe−(2ˉμ+ˉν)|ξ|2tcos2(bt)dξ+1C∫|ξ|≤η|ξ⋅Mm|2b2e−(2ˉμ+ˉν)|ξ|2tsin2(bt)dξ |
≥min{M2n,M2m3c2}C∫|ξ|≤ηe−(2ˉμ+ˉν)|ξ|2t(cos2(bt)+sin2(bt))dξ≥C1∫|ξ|≤ηe−(2ˉμ+ˉν)|ξ|2tdξ≥C−1(1+t)−32. | (4.3) |
If
|ˆm0(ξ)|2<ϵ,for|ξ|≤η. |
We thus use the help of spherical coordinates and the change of variables
∫|ξ|≤η|T1|2dξ≥M2nC∫|ξ|≤ηe−(2ˉμ+ˉν)|ξ|2tcos2(bt)dξ−ϵCc2∫|ξ|≤ηe−(2ˉμ+ˉν)|ξ|2tsin2(bt)dξ≥M2nCt−32∫η√t0e−(2ˉμ+ˉν)r2cos2(cr√t)r2dr−ϵCc2t−32∫η√t0e−(2ˉμ+ˉν)r2sin2(cr√t)r2dr≥M2nCt−32[cηtπ]−1∑k=0∫kπ+π4c√tkπc√te−(2ˉμ+ˉν)r2cos2(cr√t)r2dr−ϵCc2(1+t)−32≥M2n2Ct−32[cηtπ]−1∑k=0∫kπ+π4c√tkπc√te−(2ˉμ+ˉν)r2r2dr−ϵCc2(1+t)−32≥C−11(1+t)−32−C−12ϵ(1+t)−32.≥C−1(1+t)−32 | (4.4) |
In the case of
\begin{equation} \begin{split} &\quad\int_{|\xi|\leq \eta}|T_1|^2 d\xi\\ &\geq -\frac\epsilon C\int_{|\xi|\leq \eta}e^{-(2\bar\mu+\bar\nu)|\xi|^2t}\cos^2(b t)d\xi+\frac{M_m^2}{3Cc^2}\int_{|\xi|\leq \eta}e^{-(2\bar\mu+\bar\nu)|\xi|^2t}\sin^2(b t)d\xi\\ &\geq C^{-1}(1+t)^{-\frac32}. \end{split} \end{equation} | (4.5) |
Combining the above estimates (4.1), (4.2), (4.3), (4.4) and (4.5), we obtain the lower bound of the time decay rate for
\begin{eqnarray*} \| {\widetilde n}(t,x)\|^2_{L^2} = \|\widehat {\widetilde n}(t,\xi)\|^2_{L^2}\geq C^{-1}(1+t)^{-\frac32}. \end{eqnarray*} |
The lower bound of the time decay rate for
\begin{equation} \begin{split} \|\widehat {\widetilde m}(t,\xi)\|^2_{L^2}\geq \int_{|\xi|\leq \eta}\frac12|S_1|^2-|S_2|^2 d\xi, \end{split} \end{equation} | (4.6) |
then we find that
\begin{equation} \begin{split} \int_{|\xi|\leq \eta}|S_2|^2 d\xi \lesssim(1+t)^{-\frac52}\|{m}_0\|_{L^1}^2. \end{split} \end{equation} | (4.7) |
We then calculate that
\begin{eqnarray*} \begin{split} &\quad\int_{|\xi|\leq \eta}|S_1|^2 d\xi\\ &\geq \bigg\{\frac{c^4M_n^2}C\int_{|\xi|\leq \eta}\frac{|\xi|^2}{b^2}e^{-(2\bar\mu+\bar\nu)|\xi|^2t}\sin^2(b t)d\xi\\ &\qquad+\frac{1}C\int_{|\xi|\leq \eta}\frac{\left|\xi\cdot M_m\right|^2}{|\xi|^2}e^{-(2\bar\mu+\bar\nu)|\xi|^2t}\cos^2(bt)d\xi\bigg\}\\ &\qquad +\bigg\{\int_{|\xi|\leq \eta}e^{-\frac12(4\bar\mu+\bar\nu)|\xi|^2t}\cos(bt)\frac{\xi(\xi\cdot{\widehat m}_0)}{|\xi|^2}\left({\widehat m}_0-\frac{\xi(\xi\cdot{\widehat m}_0)}{|\xi|^2}\right)d\xi\bigg\}\\ & = J_1+J_2. \end{split} \end{eqnarray*} |
A direct computation gives rise to
\begin{equation} J_1\geq C^{-1}(1+t)^{-\frac32},\qquad J_2 = 0. \end{equation} | (4.8) |
Combining the above estimates (4.6), (4.7) and (4.8), we obtain the lower bound of the time decay rate for
\begin{eqnarray*} \| {\widetilde m}(t,x)\|^2_{L^2} = \|\widehat {\widetilde m}(t,\xi)\|^2_{L^2}\geq C^{-1}(1+t)^{-\frac32}. \end{eqnarray*} |
Then the proof of Proposition 4.2 is completed.
In this subsection, we establish the following
Proposition 4.3. Let
\begin{eqnarray*} \|{\nabla}^{k} (\widetilde n,\widetilde m)(t)\|_{L^p({\mathop{\mathbb R\kern 0pt}\nolimits}^3)} \leq C(1+t)^{-\frac32(1-\frac1p)-\frac{k}2}\big(\|U_0\|_{L^1({\mathop{\mathbb R\kern 0pt}\nolimits}^3)}+\|{\nabla}^k U_0\|_{L^p({\mathop{\mathbb R\kern 0pt}\nolimits}^3)}\big), \end{eqnarray*} |
where
To prove Proposition 4.3, the following two lemmas in [6] are helpful.
Lemma 4.1. Let
\begin{eqnarray*} \begin{split} |{\nabla}^\alpha _\xi \hat f(\xi)| \leq C'{ \left\{\begin{array}{l} |\xi|^{-|\alpha|+\sigma_1},\quad |\xi|\leq R, |\alpha| = n,\\ |\xi|^{-|\alpha|-\sigma_2},\quad |\xi|\geq R, |\alpha| = n-1,n,n+1, \end{array}\right.} \end{split} \end{eqnarray*} |
where
\begin{eqnarray*} f = m_1+m_2\delta, \end{eqnarray*} |
where
\begin{eqnarray*} m_2 = (2\pi)^{-\frac n 2}\lim\limits_{|\xi| \to \infty} \hat f(\xi), \end{eqnarray*} |
and
\begin{eqnarray*} \|f\ast g\|_{L^p} \leq C\| g\|_{L^p},\quad 1\leq p \leq \infty, \end{eqnarray*} |
where
Lemma 4.2. Let
\begin{eqnarray*} |{\nabla}_\xi ^\beta \hat f(\xi)|\leq C'|\xi|^{-|\beta|},\quad |\beta|\leq n+1. \end{eqnarray*} |
Then
\begin{eqnarray*} \|{\nabla}_x ^\alpha g(t,\cdot)\|_{L^p}\leq C(|\alpha|)t^{-\frac n 2(1-\frac 1 p)-\frac{|\alpha|}{2}}. \end{eqnarray*} |
In particular,
Now let us turn to the proof of Proposition 4.3.
Proof of Proposition 4.3. We first analyze above higher frequency terms denoted by
\begin{eqnarray*} \begin{split} \lambda_1 = -(2\bar\mu+\bar\nu) |\xi|^2+\frac{2c^2}{2\bar\mu+\bar\nu}+O(|\xi|^{-2}),\quad \lambda_2 = -\frac{2c^2}{2\bar\mu+\bar\nu}+O(|\xi|^{-2}),\quad |\xi|\geq \eta. \end{split} \end{eqnarray*} |
We shall prove that the higher frequency terms are
\begin{eqnarray*} \frac{\lambda_1e^{\lambda_2 t}-\lambda_2e^{\lambda_1 t}}{\lambda_1-\lambda_2} = e^{\lambda_2 t}+\frac{\lambda_2 e^{\lambda_2 t}}{\lambda_1-\lambda_2}-\frac{\lambda_2 e^{\lambda_1 t}}{\lambda_1-\lambda_2}. \end{eqnarray*} |
By a direct computation, it is easy to verify
\begin{eqnarray*} |{\nabla}_\xi^k \lambda_2|\lesssim|\xi|^{-2-k},\quad |\xi|\geq\eta, \end{eqnarray*} |
which gives rise to
\begin{eqnarray*} \begin{split} \bigg|{\nabla}_\xi^k \Big[(1-\chi(\cdot))e^{\lambda_2 t}\Big]\bigg|, \left|{\nabla}_\xi^k \Big[(1-\chi(\cdot))\frac{\lambda_2 e^{\lambda_2 t}}{\lambda_1-\lambda_2}\Big]\right|\lesssim{ \left\{\begin{array}{l} 0, \quad |\xi|\leq R,\\ e^{-c_1t}|\xi|^{-2-k},\quad |\xi|\geq R, \end{array}\right.} \end{split} \end{eqnarray*} |
here and below,
\begin{eqnarray*} (1-\chi(\cdot))\frac{\lambda_2 e^{\lambda_1 t}}{\lambda_1-\lambda_2} \sim e^{-\frac12(2\bar\mu+\bar\nu) |\xi|^2 t}\Big[(1-\chi(\cdot))\frac{e^{(-\lambda_2-\frac12(2\bar\mu+\bar\nu) |\xi|^2)t}}{\lambda_1-\lambda_2}\Big]. \end{eqnarray*} |
We can regard
\begin{equation} \|({\nabla}_x^k({\mathcal N}_2 \ast f),{\nabla}_x^k({\mathfrak N}_2 \ast f),{\nabla}_x^k( {\mathcal M}_2 \ast f),{\nabla}_x^k( {\mathfrak M}_2 \ast f))(t)\|_{L^p} \leq Ce^{-c_1t}\|{\nabla}_x^k f\|_{L^p}, \end{equation} | (4.9) |
for all integer
We also need to deal with the corresponding lower frequency terms denoted by
\begin{eqnarray*} \begin{split} &\frac{\lambda_1e^{\lambda_2 t}-\lambda_2e^{\lambda_1 t}}{\lambda_1-\lambda_2}, \frac{\lambda_1e^{\lambda_1 t}-\lambda_2e^{\lambda_2 t}}{\lambda_1-\lambda_2},\frac{|\xi|(e^{\lambda_1 t}-e^{\lambda_2 t})}{\lambda_1-\lambda_2}\sim O(1)e^{-\frac12 (2\bar\mu+\bar\nu)|\xi|^2t},\quad |\xi|\leq\eta, \end{split} \end{eqnarray*} |
which imply that for
\begin{eqnarray*} |\widehat{\mathcal N}_1|\sim O(1)e^{-c_2|\xi|^2t},\quad |\widehat{\mathfrak N}_1|\sim O(1)e^{-c_2|\xi|^2t},\\ |\widehat{\mathcal M}_1|\sim O(1)e^{-c_2|\xi|^2t},\quad |\widehat{\mathfrak M}_1|\sim O(1)e^{-c_2|\xi|^2t}, \end{eqnarray*} |
for some constants
\begin{equation} \begin{split} \|({\nabla}^k{\mathcal N}_1,{\nabla}^k{\mathfrak N}_1,{\nabla}^k {\mathcal M}_1,{\nabla}^k {\mathfrak M}_1)(t)\|_{L^p} \leq& C\left(\int_{|\xi|\leq \eta}\big||\xi|^k e^{-c_2|\xi|^2t}\big|^q d\xi\right)^{\frac 1q}\\ \leq& C(1+t)^{-\frac32(1-\frac1p)-\frac k2}. \end{split} \end{equation} | (4.10) |
Combining (4.9) and (4.10), we finally have for
\begin{eqnarray*} \begin{split} \|({\nabla}^k(N \ast f),{\nabla}^k(M \ast f))(t)\|_{L^p}& = \|({\nabla}^k((N_1+N_2) \ast f),{\nabla}^k((M_1+M_2) \ast f))(t)\|_{L^p}\\ &\leq C(1+t)^{-\frac32(1-\frac1p)-\frac k2}\|f\|_{L^1}+Ce^{-c_1t}\|{\nabla}^k f\|_{L^p}\\ &\leq C(1+t)^{-\frac32(1-\frac1p)-\frac k2}(\|f\|_{L^1}+\|{\nabla}^k f\|_{L^p}). \end{split} \end{eqnarray*} |
The proof of Proposition 4.3 is completed.
We are ready to prove Theorem 1.1 on the sharp time decay rate of the global solution to the initial value problem for the nonlinear Navier-Stokes system.
In what follows, we will set
\begin{equation} \left\{\begin{array}{l} \partial_t n_h + {\mathop{{\rm{div}}}\nolimits} m_h = 0,\qquad (t,x)\in{\mathop{\mathbb R\kern 0pt}\nolimits}^+\times{\mathop{\mathbb R\kern 0pt}\nolimits}^3,\\ \partial_t m_h + c^2 {\nabla} n_h- \bar\mu △ m_h- (\bar\mu+\bar\nu){\nabla}{\mathop{{\rm{div}}}\nolimits} m_h = F,\qquad (t,x)\in{\mathop{\mathbb R\kern 0pt}\nolimits}^+\times{\mathop{\mathbb R\kern 0pt}\nolimits}^3,\\ \lim\limits_{|x|\to\infty}n_h = 0, \quad\lim\limits_{|x|\to\infty} m_h = 0,\qquad t\in{\mathop{\mathbb R\kern 0pt}\nolimits}^+,\\ (n_h,m_h)\big|_{t = 0} = (0,0),\qquad x\in{\mathop{\mathbb R\kern 0pt}\nolimits}^3, \end{array}\right. \end{equation} | (5.1) |
where
\begin{eqnarray*} \begin{split} F = &-{\mathop{{\rm{div}}}\nolimits}\Big\{ \frac{(m_h+\widetilde m)\otimes (m_h+\widetilde m)}{n_h+\widetilde n+\bar\rho}+\bar\mu{\nabla}\big(\frac{(n_h+\widetilde n)(m_h+\widetilde m)}{n_h+\widetilde n+\bar\rho}\big)\Big\}\\ & - {\nabla}\Big\{(\bar\mu+\bar\nu){\mathop{{\rm{div}}}\nolimits}(\frac{(n_h+\widetilde n)(m_h+\widetilde m)}{n_h+\widetilde n+\bar\rho})+\big(p(n_h+\widetilde n+\bar\rho)-p(\bar\rho)-c^2(n_h+\widetilde n)\big)\Big\}. \end{split} \end{eqnarray*} |
Denote
\begin{eqnarray*} \partial_t U_h = BU_h+H,\quad t\geq0,\qquad U_h(0) = 0, \end{eqnarray*} |
where the nonlinear term
\begin{eqnarray*} U_h(t) = S(t)\ast U_{h}(0)+\int_0^t S(t-\tau)\ast H(\widetilde U, U_h)(\tau)d\tau, \end{eqnarray*} |
which
\begin{equation} n_h = N\ast U_{h}(0)+\int_0^t \mathfrak N (t-\tau)\ast H(\tau)d\tau, \end{equation} | (5.2) |
\begin{equation} m_h = M\ast U_{h}(0)+\int_0^t \mathfrak M (t-\tau)\ast H(\tau)d\tau. \end{equation} | (5.3) |
Furthermore, in view of the above definition for
\begin{eqnarray*} |\widehat{\mathfrak N}(\xi)|\sim O(1)e^{-c_3|\xi|^2t}, \quad |\widehat{\mathfrak M}(\xi)|\sim O(1)e^{-c_3|\xi|^2t}, \quad|\xi|\leq\eta, \end{eqnarray*} |
\begin{eqnarray*} |\widehat{\mathfrak N}(\xi)|\sim O(1)\frac1{|\xi|}e^{-R_0t}, \quad |\widehat{\mathfrak M}(\xi)|\sim O(1)\frac1{|\xi|^2}e^{-R_0t}+O(1)e^{-c_4|\xi|^2t}, \quad |\xi|\geq\eta. \end{eqnarray*} |
Thus, applying a similar argument as in the proof of Proposition 4.1, we have
\begin{equation} \|({\nabla}^k {\mathfrak N}\ast H, {\nabla}^k {\mathfrak M}\ast H)(t)\|_{L^2} \leq C(1+t)^{-\frac32(\frac1q-\frac12)-\frac12-\frac k 2}\big(\|Q\|_{L^q}+\|{\nabla}^{k+1} Q\|_{L^2}\big),\quad q = 1,2, \end{equation} | (5.4) |
\begin{equation} \|({\nabla}^k {\mathfrak N}\ast H, {\nabla}^k {\mathfrak M}\ast H)(t)\|_{L^2} \leq C(1+t)^{-\frac32(\frac1q-\frac12)-\frac12-\frac k 2}\big(\|Q\|_{L^q}+\|{\nabla}^{k} Q\|_{L^2}\big),\quad q = 1,2, \end{equation} | (5.5) |
\begin{equation} \|{\nabla}^k {\mathfrak M}\ast H(t)\|_{L^2} \leq C(1+t)^{-\frac32(\frac1q-\frac12)-\frac12-\frac k 2}\big(\|Q\|_{L^q}+\|{\nabla}^{k-1} Q\|_{L^2}\big),\quad q = 1,2, \end{equation} | (5.6) |
for any non-negative integer
\begin{equation} \begin{split} Q = &\Big|\frac{(m_h+\widetilde m)\otimes (m_h+\widetilde m)}{n_h+\widetilde n+\bar\rho}+\bar\mu{\nabla}\big(\frac{(n_h+\widetilde n)(m_h+\widetilde m)}{n_h+\widetilde n+\bar\rho}\big)\Big|\\ &+\Big|(\bar\mu+\bar\nu){\mathop{{\rm{div}}}\nolimits}(\frac{(n_h+\widetilde n)(m_h+\widetilde m)}{n_h+\widetilde n+\bar\rho})+\big(p(n_h+\widetilde n+\bar\rho)-p(\bar\rho)-c^2(n_h+\widetilde n)\big)\Big|. \end{split} \end{equation} | (5.7) |
For readers' convenience, we show how to estimate
\begin{eqnarray*} \begin{split} &\quad\|{\nabla}^k {\mathfrak M}\ast H(t)\|_{L^2}^2\\ &\lesssim\int_{|\xi|\leq \eta}e^{-2c_3|\xi|^2t}|\xi|^{2k}|\widehat H|^2d\xi +\int_{|\xi|\geq \eta}e^{-2R_0 t}|\xi|^{2k-4}|\widehat H|^2d\xi\\ &\quad+\int_{|\xi|\geq \eta}e^{-2c_4|\xi|^2 t}|\xi|^{2k}|\widehat H|^2d\xi\\ &\lesssim\int_{|\xi|\leq \eta}e^{-2c_3|\xi|^2t}|\xi|^{2k+2}|\widehat Q|^2d\xi +\int_{|\xi|\geq \eta}e^{-2R_0 t}|\xi|^{2k-2}|\widehat Q|^2d\xi\\ &\quad+\int_{|\xi|\geq \eta}e^{-2c_4|\xi|^2t}|\xi|^{2k+2}|\widehat Q|^2d\xi\\ &\lesssim(1+t)^{-3(\frac1q-\frac12)-1-k}\big(\|Q\|^2_{L^q({\mathop{\mathbb R\kern 0pt}\nolimits}^3)}+\|{\nabla}^{\tilde k} Q\|^2_{L^2({\mathop{\mathbb R\kern 0pt}\nolimits}^3)}\big),\quad q = 1,2,\quad k-1\leq\tilde k\in{\mathop{\mathbb N\kern 0pt}\nolimits}^+. \end{split} \end{eqnarray*} |
In this subsection, we establish the faster decay rate for
We begin with following Lemma.
Lemma 5.1. Let
\begin{eqnarray*} \begin{split} \int_0^{\frac t 2}(1+t-\tau)^{-r_1}(1+\tau)^{-r_2} d\tau = &\int_0^{\frac t 2}(1+\frac t 2+\tau)^{-r_1}(1+\frac t 2-\tau)^{-r_2} d\tau\\ \lesssim&{ \left\{\begin{array}{l} (1+t)^{-r_1}, \quad \mathit{\text{for}} \quad r_2 > 1,\\ (1+t)^{-(r_1-\epsilon)},\quad \mathit{\text{for}} \quad r_2 = 1,\\ (1+t)^{-(r_1+r_2-1)},\quad \mathit{\text{for}} \quad r_2 < 1, \end{array}\right.} \end{split} \end{eqnarray*} |
and
\begin{eqnarray*} \begin{split} \int_{\frac t 2}^t(1+t-\tau)^{-r_1}(1+\tau)^{-r_2} d\tau = &\int_0^{\frac t 2}(1+t-\tau)^{-r_2}(1+\tau)^{-r_1} d\tau\\ \lesssim&{ \left\{\begin{array}{l} (1+t)^{-r_2}, \quad \mathit{\text{for}} \quad r_1 > 1,\\ (1+t)^{-(r_2-\epsilon)},\quad \mathit{\text{for}} \quad r_1 = 1,\\ (1+t)^{-(r_1+r_2-1)},\quad \mathit{\text{for}} \quad r_1 < 1, \end{array}\right.} \end{split} \end{eqnarray*} |
where
Proposition 5.1. Under the assumptions of Theorem 1.1, the solution
\begin{eqnarray*} \begin{split} &\|({\nabla} ^k n_h,{\nabla}^{k} m_h)\|_{L^2}\leq C\delta_0^2(1+t)^{-\frac54-\frac {k} 2},\\ &\|{\nabla} ^3 m_h\|_{L^2}\leq C\delta_0^2(1+t)^{-\frac{11}4},\quad \|{\nabla} ^3 n_h\|_{L^2}\leq C\delta_0(1+t)^{-\frac74}, \end{split} \end{eqnarray*} |
where
From (5.7), we deduce
\begin{eqnarray*} Q(\widetilde U, U_h) = Q_1+Q_2+Q_3+Q_4, \end{eqnarray*} |
which implies for a smooth solution
\begin{eqnarray*} \begin{split} &Q_1 = Q_1(\widetilde U, U_h)\sim O(1)\left(n_h^2+m_h\otimes m_h+\widetilde n^2+\widetilde m\otimes\widetilde m \right),\\ &Q_2 = Q_2(\widetilde U, U_h)\sim O(1)\left(\widetilde n n_h+\widetilde m\otimes m_h\right),\\ &Q_3 = Q_3(\widetilde U, U_h)\sim O(1)\left({\nabla}(n_h\cdot m_h)+{\nabla}(\widetilde n\cdot\widetilde m)\right),\\ &Q_4 = Q_4(\widetilde U, U_h)\sim O(1)\left({\nabla}(\widetilde n\cdot m_h)+{\nabla}( n_h\cdot\widetilde m) \right). \end{split} \end{eqnarray*} |
Define
\begin{equation} \begin{split} \Lambda(t) = :&\sup\limits_{0\leq s \leq t}\bigg\{\sum\limits_{k = 0}^2(1+s)^{\frac54+\frac k 2}{\delta_0}^{-\frac34}\|({\nabla} ^k n_h,{\nabla}^{k}m_h)(s)\|_{L^2}\\ &\quad+(1+s)^{\frac74}\|({\nabla}^3 n_h, {\nabla}^3 m_h)(s)\|_{L^2}\bigg \}. \end{split} \end{equation} | (5.8) |
Proposition 5.2. Under the assumptions of Theorem 1.1, if for some
\begin{eqnarray*} \begin{split} \Lambda(t)\leq C\delta_0^{\frac34},\quad t\in[0,T], \end{split} \end{eqnarray*} |
where
The proof of this Proposition 5.2 consists of following three steps.
Starting with (5.4), (5.5), (5.6) and (5.8), we have after a complicate but straightforward computation that
\begin{equation} \begin{split} \|(n_h, m_h)\|_{L^2}&\lesssim\int_0^t \|(\mathfrak N (t-\tau)\ast H(\tau), \mathfrak M (t-\tau)\ast H(\tau))\|_{L^2}d\tau\\ &\lesssim\int_0^{t} (1+t-\tau)^{-\frac54}\big(\|Q(\tau)\|_{L^1}+\| Q(\tau)\|_{L^2}\big)d\tau\\ &\lesssim\left(\delta_0^2+\delta_0^{\frac32}\Lambda^2(t)\right)\int_0^{t} (1+t-\tau)^{-\frac54}(1+\tau)^{-\frac32}d\tau\\ &\lesssim(1+t)^{-\frac54}\left(\delta_0^2+\delta_0^{\frac32}\Lambda^2(t)\right). \end{split} \end{equation} | (5.9) |
It is easy to verify that
\begin{eqnarray*} \begin{split} \|Q(t)\|_{L^1}\lesssim&\|Q_1\|_{L^1}+\|Q_2\|_{L^1}+\|Q_3\|_{L^1}+\|Q_4\|_{L^1}\\ \lesssim &\|(\widetilde n,\widetilde m)\|_{L^2}^2+\|( n_h, m_h)\|_{L^2}^2+ \|( n_h, m_h)\|_{L^2}\big(\|({\nabla}\widetilde n,{\nabla}\widetilde m)\|_{L^2}\\ &+\|({\nabla} n_h,{\nabla} m_h)\|_{L^2}\big)+\|(\widetilde n,\widetilde m)\|_{L^2}\left(\|({\nabla}\widetilde n,{\nabla}\widetilde m)\|_{L^2} +\| ({\nabla} n_h,{\nabla} m_h)\|_{L^2}\right)\\ \lesssim & (1+t)^{-\frac32}\left(\delta_0^2+\delta_0^{\frac32}\Lambda^2(t)\right). \end{split} \end{eqnarray*} |
Indeed, by virtue of Hölder's inequality and Gagliardo-Nirenberg's inequality, we obtain that
\begin{eqnarray*} \|u\|_{L^\infty}\lesssim \|{\nabla} u\|_{L^2}^{\frac12}\|{\nabla} ^2 u\|_{L^2}^{\frac12}, \end{eqnarray*} |
which implies that
\begin{eqnarray*} \begin{split} &\|Q(t)\|_{L^2}\\ \lesssim &\|(\widetilde n,\widetilde m)\|_{L^\infty}\big(\|(\widetilde n,\widetilde m)\|_{L^2}+\|({\nabla}\widetilde n,{\nabla}\widetilde m)\|_{L^2}+\|(n_h,m_h)\|_{L^2}\\ &+\|({\nabla} n_h,{\nabla} m_h)\|_{L^2}\big)+\|( n_h,m_h)\|_{L^\infty}\left(\|( n_h,m_h)\|_{L^2}+\|( {\nabla} n_h,{\nabla} m_h)\|_{L^2}\right)\\ &+\|({\nabla}\widetilde n,{\nabla}\widetilde m)\|_{L^\infty}\|(n_h,m_h)\|_{L^2}\\ \lesssim &(1+t)^{-\frac94}\left(\delta_0^2+\delta_0^{\frac32}\Lambda^2(t)\right). \end{split} \end{eqnarray*} |
Furthermore, exactly as in the estimate of the high order derivatives, we have
\begin{equation} \begin{split} &\|({\nabla} n_h, {\nabla} m_h)\|_{L^2}\\ \lesssim &\int_0^{\frac t 2} \|({\nabla}\mathfrak N , {\nabla}\mathfrak M)(t-\tau)\ast H(\tau)\|_{L^2}d\tau+\int_{\frac t 2}^t \|(\mathfrak N, \mathfrak M )(t-\tau)\ast {\nabla} H(\tau)\|_{L^2}d\tau\\ \lesssim &\int_0^{\frac t 2} (1+t-\tau)^{-\frac74}\big(\| Q(\tau)\|_{L^1}+\|{\nabla} Q(\tau)\|_{L^2}\big)d\tau +\int_{\frac t 2}^t (1+t-\tau)^{-\frac12}\|{\nabla} Q(\tau)\|_{L^2}d\tau\\ \lesssim&\left(\delta_0^2+\delta_0^{\frac98}\Lambda^2(t)\right)\Bigg(\int_0^{\frac t 2} (1+t-\tau)^{-\frac74}(1+\tau)^{-\frac32}d\tau+\int_{\frac t 2}^t (1+t-\tau)^{-\frac12}(1+\tau)^{-\frac{11}4}d\tau\Big)\\ \lesssim&(1+t)^{-\frac74}\left(\delta_0^2+\delta_0^{\frac98}\Lambda^2(t)\right), \end{split} \end{equation} | (5.10) |
Similarly, it holds that
\begin{eqnarray*} \begin{split} &\|{\nabla} Q(t)\|_{L^2}\nonumber\\ \lesssim &\|(\widetilde n,\widetilde m)\|_{L^\infty}\big(\|({\nabla}\widetilde n,{\nabla}\widetilde m)\|_{L^2}+\|({\nabla}^2\widetilde n,{\nabla}^2\widetilde m)\|_{L^2}+\|( {\nabla} n_h,{\nabla} m_h)\|_{L^2}\nonumber \end{split} \end{eqnarray*} |
\begin{eqnarray*} \begin{split}&\quad+\|( {\nabla}^2 n_h,{\nabla}^2 m_h)\|_{L^2}\big)+\|({\nabla}\widetilde n,{\nabla}\widetilde m)\|_{L^\infty}\big(\|({\nabla}\widetilde n,{\nabla}\widetilde m)\|_{L^2}+\|(n_h,m_h)\|_{L^2}\\ &\quad+\|( {\nabla} n_h,{\nabla} m_h)\|_{L^2}\big)+\|( n_h,m_h)\|_{L^\infty}\big(\|( {\nabla}^2\widetilde n,{\nabla}^2\widetilde m)\|_{L^2}+\|( {\nabla} n_h,{\nabla} m_h)\|_{L^2}\\ &\quad+\|({\nabla}^2 n_h,{\nabla}^2 m_h)\|_{L^2}\big)+\|( {\nabla} n_h,{\nabla} m_h)\|_{L^\infty}\|( {\nabla} n_h,{\nabla} m_h)\|_{L^2}\\ \lesssim & (1+t)^{-\frac{11}4}\left(\delta_0^2+\delta_0^{\frac98}\Lambda^2(t)\right). \end{split} \end{eqnarray*} |
Thus, we also get that
\begin{equation} \begin{split} &\|({\nabla}^2 n_h, {\nabla}^2 m_h)(t)\|_{L^2}\\ \lesssim& \int_0^{\frac t 2} \|({\nabla}^2 \mathfrak N, {\nabla}^2 \mathfrak M) (t-\tau)\ast H(\tau)\|_{L^2}d\tau\\ &\quad+\int_{\frac t 2}^t \|(\mathfrak N, \mathfrak M) (t-\tau)\ast {\nabla}^2 H(\tau)\|_{L^2}d\tau\\ \lesssim &\int_0^{\frac t 2}(1+t-\tau)^{-\frac94}\big(\|Q(\tau)\|_{L^1}+\|{\nabla}^2 Q(\tau)\|_{L^2}\big)d\tau\\ &\quad+\int_{\frac t 2}^t (1+t-\tau)^{-\frac12}\|{\nabla} ^2Q(\tau)\|_{L^2}d\tau\\ \lesssim& \left(\delta_0^2+\delta_0\Lambda(t)+\delta_0^{\frac34}\Lambda^2(t)\right)\bigg(\int_0^{\frac t 2} (1+t-\tau)^{-\frac94}(1+\tau)^{-\frac32}d\tau\\ &\quad+\int_{\frac t 2}^t (1+t-\tau)^{-\frac12}(1+\tau)^{-\frac{13}4}d\tau\bigg)\\ \lesssim&(1+t)^{-\frac94}\left(\delta_0^2+\delta_0\Lambda(t)+\delta_0^{\frac34}\Lambda^2(t)\right). \end{split} \end{equation} | (5.11) |
Finally, we have
\begin{eqnarray*} \begin{split} &\|{\nabla}^2 Q(t)\|_{L^2}\\ \lesssim &(\|(\widetilde n,\widetilde m)\|_{L^\infty}+\|(n_h,m_h)\|_{L^\infty})(\|({\nabla}^3\widetilde n,{\nabla}^3 \widetilde m)\|_{L^2}+\|({\nabla}^3n_h,{\nabla}^3 m_h)\|_{L^2})\\ &\quad+(\|({\nabla} \widetilde n,{\nabla}\widetilde m)\|_{L^\infty}+\|({\nabla} n_h,{\nabla} m_h)\|_{L^\infty}) (\|({\nabla}\widetilde n,{\nabla} \widetilde m)\|_{L^2}+\|({\nabla} n_h,{\nabla} m_h)\|_{L^2})\\ &\quad+(\|(\widetilde n,\widetilde m)\|_{L^\infty}+\|(n_h,m_h)\|_{L^\infty}+\|({\nabla} \widetilde n,{\nabla}\widetilde m)\|_{L^\infty}+\|({\nabla} n_h,{\nabla} m_h)\|_{L^\infty})\\ &\quad\times(\|({\nabla}^2\widetilde n,{\nabla}^2 \widetilde m)\|_{L^2}+\|({\nabla}^2 n_h,{\nabla}^2 m_h)\|_{L^2})\\ \lesssim&(1+t)^{-\frac{13}4}\left(\delta_0^2+\delta_0\Lambda(t)+\delta_0^{\frac34}\Lambda^2(t)\right). \end{split} \end{eqnarray*} |
In this subsection, we will close the a priori estimates and complete the proof of Proposition 5.2. For this purpose, we need to derive the time decay rate of higher order derivatives of
Lemma 5.2. Under the assumption of Theorem 1.1, one has
\begin{eqnarray*} \|{\nabla}^2 n(t)\|_{H^1}+\|{\nabla}^2 u(t)\|_{H^1}\lesssim (1+t)^{-\frac74}\left(\delta_0+\delta_0^{\frac34}\Lambda(t)\right). \end{eqnarray*} |
In particular, it holds that
\begin{eqnarray*} \|{\nabla}^3 (n_h, m_h)(t)\|_{L^2}\lesssim (1+t)^{-\frac74}\left(\delta_0+\delta_0^{\frac34}\Lambda(t)\right). \end{eqnarray*} |
Proof. First of all, in view of (2.12), recovering the dissipation estimate for
\begin{equation} \begin{split} &\frac{d}{dt}\int_{{\mathop{\mathbb R\kern 0pt}\nolimits}^3} {\nabla}^2 u\cdot {\nabla}^3 n dx +C_1\|{\nabla}^3 n\|_{L^2}^2 dx\\ \leq &C_2\left(\|{\nabla}^3 u\|_{L^2}^2+\|{\nabla}^4 u\|_{L^2}^2\right)+C(1+t)^{-\frac{3}2}\left(\delta_0+\delta_0^{\frac38}\Lambda(t)\right)\\ &\quad\times\left(\|{\nabla}^2 n\|_{L^2}^2+\|{\nabla}^2 u\|_{L^2}^2+\|{\nabla}^3 u\|_{L^2}^2\right). \end{split} \end{equation} | (5.12) |
Summing up (2.7) and (2.8) in the energy estimate for
\begin{equation} \begin{split} &\frac{d}{dt}\int_{{\mathop{\mathbb R\kern 0pt}\nolimits}^3} \left(\gamma |{\nabla}^2 n|^2+|{\nabla}^2 u|^2 + \gamma|{\nabla}^3 n|^2 +|{\nabla}^3 u|^2 \right)dx + C_3\left(\|{\nabla}^3 u|^2 _{L^2}+\|{\nabla}^4 u\|^2 _{L^2}\right) \\ \leq &C(1+t)^{-\frac{3}2}\left(\delta_0+\delta_0^{\frac38}\Lambda(t)\right)\left(\|{\nabla}^2 n\|_{L^2}^2+\|{\nabla}^2 u\|_{L^2}^2+\|{\nabla}^3 n\|_{L^2}^2\right). \end{split} \end{equation} | (5.13) |
Multiplying (5.12) by
\begin{eqnarray*} \begin{split} &\frac{d}{dt}\bigg\{\sum\limits_{2\leq k\leq3}\left(\gamma \|{\nabla}^k n\|^2_{L^2}+\|{\nabla}^k u\|^2_{L^2} \right)+\epsilon_1\frac{C_3}{C_2}\int_{{\mathop{\mathbb R\kern 0pt}\nolimits}^3} {\nabla}^2 u\cdot {\nabla}^{3} n dx \bigg\}\\ &\quad+ C_4\Big(\|{\nabla}^{3} n\|_{L^2}^2+\sum\limits_{3\leq k\leq4}\|{\nabla}^{k} u\|^2_{L^2}\Big)\\ \leq &C(1+t)^{-\frac{3}2}\left(\delta_0+\delta_0^{\frac38}\Lambda(t)\right)\left(\|{\nabla}^2 n\|_{L^2}^2+\|{\nabla}^2 u\|_{L^2}^2\right). \end{split} \end{eqnarray*} |
Next, we define
\mathcal E_1(t) = \bigg\{\sum\limits_{2\leq k\leq3}\left(\gamma \|{\nabla}^k n\|^2_{L^2}+\|{\nabla}^k u\|^2_{L^2} \right)+\epsilon_1\frac{C_3}{C_2}\int_{{\mathop{\mathbb R\kern 0pt}\nolimits}^3} {\nabla}^2 u\cdot {\nabla}^{3} n dx \bigg\}. |
Observe that since
\begin{eqnarray*} C_5^{-1}\left(\|{\nabla}^2 n(t)\|^2_{H^1}+\|{\nabla}^2 u(t)\|^2_{H^1}\right) \leq\mathcal E_1(t)\leq C_5\left(\|{\nabla}^2 n(t)\|^2_{H^1}+\|{\nabla}^2 u(t)\|^2_{H^1}\right). \end{eqnarray*} |
Then we arrive at
\begin{eqnarray*} \frac{d}{dt}\mathcal E_1(t)+C_4\Big(\|{\nabla}^{3} n(t)\|_{L^2}^2+\|{\nabla}^3 u(t)\|^2_{H^1}\Big) \leq C(1+t)^{-5}\left(\delta_0+\delta_0^{\frac38}\Lambda(t)\right)\left(\delta_0^2+\delta_0^{\frac32}\Lambda^2(t)\right). \end{eqnarray*} |
Denote
\begin{eqnarray*} \begin{split} &\frac{C_4}{3}\|{\nabla}^{3} (n, u)(x)\|_{L^2}^2 \geq\frac{C_4}{3}\int_{S(t)^c} |\xi|^6|(\widehat{n}, \widehat{u})(\xi)|^2d\xi\\ \geq&(1+\gamma)(1+t)^{-1}\int_{{\mathop{\mathbb R\kern 0pt}\nolimits}^3} |\xi|^4|(\widehat{n}, \widehat{u})(\xi)|^2d\xi-(1+\gamma)(1+t)^{-1}\int_{S(t)} |\xi|^4|(\widehat{n}, \widehat{u})(\xi)|^2d\xi. \end{split} \end{eqnarray*} |
Hence we have
\begin{eqnarray*} \begin{split} &\frac{d}{dt}\mathcal E_1(t)+(1+t)^{-1}\mathcal E_1(t)+\|{\nabla}^{3} n\|_{L^2}^2+\|{\nabla}^3 u\|^2_{H^1}\\ \lesssim&(1+t)^{-5}\left(\delta_0+\delta_0^{\frac38}\Lambda(t)\right)\left(\delta_0^2+\delta_0^{\frac32}\Lambda^2(t)\right)+(1+t)^{-1}\int_{S(t)} |\xi|^4|(\widehat{n}, \widehat{u})(\xi)|^2d\xi\\ &\quad+(1+t)^{-1}\int_{{\mathop{\mathbb R\kern 0pt}\nolimits}^3} {\nabla}^2 u\cdot {\nabla}^{3} n dx. \end{split} \end{eqnarray*} |
Multiplying the above equation by
\begin{eqnarray*} \begin{split} &\frac{d}{dt}\Big\{(1+t)^5\mathcal E_1(t)\Big\}+(1+t)^5\Big(\|{\nabla}^{3} n\|_{L^2}^2+\|{\nabla}^3 u\|^2_{H^1}\Big) \lesssim(1+t)^{\frac12}\left(\delta_0^2+\delta_0^{\frac32}\Lambda^2(t)\right). \end{split} \end{eqnarray*} |
Integrating it with respect to time from
\begin{eqnarray*} \begin{split} &(1+t)^5\mathcal E_1(t)+\int_0^T(1+t)^5\Big(\|{\nabla}^{3} n\|_{L^2}^2+\|{\nabla}^3 u\|^2_{H^1}\Big)dt\\ \lesssim& \mathcal E_1(0)+(1+t)^{\frac32}\left(\delta_0^2+\delta_0^{\frac32}\Lambda^2(t)\right), \end{split} \end{eqnarray*} |
which implies that
\begin{eqnarray*} \|{\nabla}^3 n\|^2_{L^2}+\|{\nabla}^3 u\|^2_{L^2}\lesssim\mathcal E_1(t)\lesssim (1+t)^{-5}\delta_0^2+(1+t)^{-\frac72}\left(\delta_0^2+\delta_0^{\frac32}\Lambda^2(t)\right). \end{eqnarray*} |
Finally, we have
\begin{eqnarray*} \|{\nabla}^3 n_h\|_{L^2}+\|{\nabla}^3 m_h\|_{L^2}\lesssim (1+t)^{-\frac74}\left(\delta_0+\delta_0^{\frac34}\Lambda(t)\right). \end{eqnarray*} |
This completes the proof of this Lemma.
In this subsection, we first combine the above a priori estimates of (5.8), (5.9), (5.10), (5.11) and Lemma 5.2 together to give the proof of the Proposition 5.2. In deed, for any
\begin{equation} \Lambda(t)\leq C\left(\delta_0+\delta_0^{\frac14}\Lambda(t)+\Lambda^2(t)\right) \leq C\delta_0^{\frac34}. \end{equation} | (5.14) |
With the help of standard continuity argument, Proposition 5.2 and the smallness of
\begin{eqnarray*} \begin{split} &\|({\nabla}^k n_h, {\nabla}^k m_h)\|_{L^2}\lesssim \delta_0^2(1+t)^{-\frac54-\frac k2},\quad k = 0,1,\\ &\|{\nabla}^2 (n_h, m_h)\|_{L^2}\lesssim\delta_0^{\frac74}(1+t)^{-\frac94},\quad \|{\nabla}^3 (n_h, m_h)\|_{L^2}\lesssim\delta_0(1+t)^{-\frac74}. \end{split} \end{eqnarray*} |
Consequently, for any
\begin{equation} \Lambda(t)\leq C\delta_0. \end{equation} | (5.15) |
From (5.11) and (5.15), thus we also get that
\begin{eqnarray*} \|{\nabla}^2 (n_h, m_h)\|_{L^2}\lesssim\delta_0^2(1+t)^{-\frac94}. \end{eqnarray*} |
For
\begin{eqnarray*} \begin{split} &\|{\nabla}^3 m_h(t)\|_{L^2} \\\lesssim &\int_0^{\frac t 2}(1+t-\tau)^{-\frac{11}4}\big(\|Q(\tau)\|_{L^1}+\|{\nabla}^2 Q(\tau)\|_{L^2}\big)d\tau\\ &\quad+\int_{\frac t 2}^t (1+t-\tau)^{-\frac12}\|{\nabla} ^2Q(\tau)\|_{L^2}d\tau\\ \lesssim& \delta_0^2\bigg(\int_0^{\frac t 2} (1+t-\tau)^{-\frac{11}4}(1+\tau)^{-\frac32}d\tau+\int_{\frac t 2}^t (1+t-\tau)^{-\frac12}(1+\tau)^{-\frac{13}4}d\tau\bigg)\\ \lesssim&\delta_0^2(1+t)^{-\frac{11}4}. \end{split} \end{eqnarray*} |
Hence, we finish the proof of the Proposition 5.1. Theorem 1.1 follows.
Y. Chen is partially supported by the China Postdoctoral Science Foundation under grant 2019M663198, Guangdong Basic and Applied Basic Research Foundation under grant 2019A1515110733, NNSF of China under grants 11801586, 11971496 and China Scholarship Council. The research of R. Pan is partially supported by National Science Foundation under grants DMS-1516415 and DMS-1813603, and by National Natural Science Foundation of China under grant 11628103. L. Tong's research is partially supported by China Scholarship Council.
[1] | F. Peter, Modelling with differential and difference equations, Cambridge University Press, Cambridge, 1997. |
[2] |
T. Zhang, T. Zhang, X. Meng, Stability analysis of a chemostat model with maintenance energy, Appl. Math. Lett., 68 (2017), 1-7. doi: 10.1016/j.aml.2016.12.007
![]() |
[3] |
X. Wang, Z. Wang, H. Shen, Dynamical analysis of a discrete-time SIS epidemic model on complex networks, Appl. Math. Lett., 94 (2019), 292-299. doi: 10.1016/j.aml.2019.03.011
![]() |
[4] | X. Zhao, Dynamical systems in population biology, Springer, New York, 2000. |
[5] |
T. Zhang, X. Liu, X. Meng, T. Zhang, Spatio-temporal dynamics near the steady state of a planktonic system, Comput. Math. Appl., 75 (2018), 4490-4504. doi: 10.1016/j.camwa.2018.03.044
![]() |
[6] | X. Yu, S. Yuan, T. Zhang, Survival and ergodicity of a stochastic phytoplankton-zooplankton model with toxin producing phytoplankton in an impulsive polluted environment, Appl. Math. Comput., 347 (2019), 249-264. |
[7] |
T. Zhang, Y. Xing, H. Zang, M. Han, Spatio-temporal patterns in a predator-prey model with hyperbolic mortality, Nonlinear Dyn., 78 (2014), 265-277. doi: 10.1007/s11071-014-1438-6
![]() |
[8] |
C. L. Wolin, L. R. Lawlor, Models of facultative mutualism: density effects, Am. Nat., 124 (1984), 843-862. doi: 10.1086/284320
![]() |
[9] |
S. Ahmad, A. C. Lazer, Average growth and total permanence in a competitive Lotka-Volterra System, Ann. Mat. Pura. Appl., 185 (2006), S47-S67. doi: 10.1007/s10231-004-0136-2
![]() |
[10] |
T. K. Kar, H. Matsuda, Global dynamics and controllability of a harvested prey-predator system with Holling type Ⅲ functional response, Nonlinear Anal.-Hybrid Syst., 1 (2007), 59-67. doi: 10.1016/j.nahs.2006.03.002
![]() |
[11] | I. Al-Darabsah, X. Tang, Y. Yuan, A prey-predator model with migrations and delays, Discrete Contin. Dyn. Syst.-Ser. B, 21 (2017), 737-761. |
[12] |
B. I. Camara, M. Haque, H. Mokrani, Patterns formations in a diffusive ratio-dependent predatorprey model of interacting populations, Physica A, 461 (2016), 374-383. doi: 10.1016/j.physa.2016.05.054
![]() |
[13] |
G. M. Abernethy, R. Mullan, D. H. Glass, M. Mccartney, A multiple phenotype predator-prey model with mutation, Physica A, 465 (2017), 762-774. doi: 10.1016/j.physa.2016.08.037
![]() |
[14] |
P. S. Mandal, Noise-induced extinction for a ratio-dependent predator-prey model with strong Allee effect in prey, Physica A, 496 (2018), 40-52. doi: 10.1016/j.physa.2017.12.057
![]() |
[15] |
T. W. Hwang, Global analysis of the predator-prey system with Beddington-DeAngelis functional response, J. Math. Anal. Appl., 281 (2003), 395-401. doi: 10.1016/S0022-247X(02)00395-5
![]() |
[16] |
M. Sen, M. Banerjeea, A. Morozov, Bifurcation analysis of a ratio-dependent prey-predator model with the Allee effect, Ecol. Complex, 11 (2012), 12-27. doi: 10.1016/j.ecocom.2012.01.002
![]() |
[17] |
S. Chakraborty, S. Pal, N. Bairagi, Predator-prey interaction with harvesting: mathematical study with biological ramifications, Appl. Math. Model., 36 (2012), 4044-4059. doi: 10.1016/j.apm.2011.11.029
![]() |
[18] |
X. Huang, Y. Fan, J. Jia, Z. Wang, Y. Li, Quasi-synchronization of fractional-order memristorbased neural networks with parameter mismatches, IET Contr. Theory Appl., 11 (2017), 2317-2327. doi: 10.1049/iet-cta.2017.0196
![]() |
[19] |
J. Jia, X. Huang, Y. Li, J. Cao, A. Alsaedi, Global Stabilization of Fractional-Order MemristorBased Neural Networks with Time Delay, IEEE Trans. Neural Netw. Learn. Syst., 31 (2020), 997-1009. doi: 10.1109/TNNLS.2019.2915353
![]() |
[20] | Y. Fan, X. Huang, Z. Wang, Nonlinear dynamics and chaos in a simplified memristor-based fractional-order neural network with discontinuous memductance function, Nonlinear Dyn., 9 (2018), 1-17. |
[21] |
C. Huang, L. Cai, J. Cao, Linear control for synchronization of a fractional-order time-delayed chaotic financial system, Chaos Soliton. Fract., 113 (2018), 326-332. doi: 10.1016/j.chaos.2018.05.022
![]() |
[22] |
X. Wang, Z. Wang, J. Xia, Stability and bifurcation control of a delayed fractional-order ecoepidemiological model with incommensurate orders, J. Frankl. Inst.-Eng. Appl. Math., 356 (2019), 8278-8295. doi: 10.1016/j.jfranklin.2019.07.028
![]() |
[23] |
A. Alkhazzan, P. Jiang, D. Baleanu, H. Khan, A. Khan, Stability and existence results for a class of nonlinear fractional differential equations with singularity, Math. Meth. Appl. Sci., 41 (2018), 9321-9334. doi: 10.1002/mma.5263
![]() |
[24] |
X. Wang, Z. Wang, X. Huang, Y. Li, Dynamic analysis of a delayed fractional-order SIR model with saturated incidence and treatment functions, Int. J. Bifurcat. Chaos, 28 (2018), 1850180. doi: 10.1142/S0218127418501808
![]() |
[25] | A. Yusuf, A. I. Aliyu, D. Baleanu, Conservation laws, soliton-like and stability analysis for the time fractional dispersive long-wave equation, Adv. Differ. Equ., 1 (2018), 319. |
[26] |
Y. Xie, J. Lu, Z. Wang, Stability analysis of a fractional-order diffused prey-predator model with prey refuges, Physica A, 526 (2019), 120773. doi: 10.1016/j.physa.2019.04.009
![]() |
[27] | Z. Wang, Y. Xie, J. Lu, Y. Li, Stability and bifurcation of a delayed generalized fractional-order prey-predator model with interspecific competition, Appl. Math. Comput., 347 (2019), 360-369. |
[28] |
G. C. Wu, D. Baleanu, L. L. Huang, Novel Mittag-Leffler stability of linear fractional delay difference equations with impulse, Appl. Math. Lett., 82 (2018), 71-78. doi: 10.1016/j.aml.2018.02.004
![]() |
[29] |
C. N. Angstmann, A. M. Erickson, B. I. Henry, A. V. McGann, J. M. Murray, J. A. Nichols, Fractional order compartment models, SIAM J. Appl. Math., 77 (2017), 430-446. doi: 10.1137/16M1069249
![]() |
[30] | E. Ahmed, A. S. Elgazzar, On fractional order differential equations model for nonlocal epidemics, Physica A, 379 (2012), 607-614. |
[31] |
E. Ahmed, A. M. A. El-Sayed, H. A. A. El-Saka, Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models, J. Math. Anal. Appl., 325 (2007), 542-553. doi: 10.1016/j.jmaa.2006.01.087
![]() |
[32] | C. Guo, S. Fang, Stability and approximate analytic solutions of the fractional Lotka-Volterra equations for three competitors, Adv. Differ. Equ., 1 (2016), 219. |
[33] |
A. A. Elsadany, A. E. Matouk, Dynamical behaviors of fractional-order Lotka-Volterra predatorprey model and its discretization, J. Appl. Math. Comput., 49 (2015), 269-283. doi: 10.1007/s12190-014-0838-6
![]() |
[34] | J. Tian, Y. Yu, H. Wang, Stability and bifurcation of two Kinds of three-dimensional fractional Lotka-Volterra systems, Math. Probl. Eng., 2014 (2014). |
[35] | H. L. Li, L. Zhang, C. Hu, Y. L. Jiang, Z. Teng, Dynamical analysis of a fractional-order predatorprey model incorporating a prey refuge, J. Math. Anal. Appl., 54 (2016), 1-15. |
[36] |
D. Hu, H. Cao, Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting, Nonlinear Anal.-Real. World Appl., 33 (2017), 58-82. doi: 10.1016/j.nonrwa.2016.05.010
![]() |
[37] |
C. Huang, Z. Li, D. Ding, J. Cao, Bifurcation analysis in a delayed fractional neural network involving self-connection, Neurocomputing, 314 (2018), 186-197. doi: 10.1016/j.neucom.2018.06.016
![]() |
[38] |
C. Huang, X. Song, B. Fang, M. Xiao, J. Cao, Modeling, analysis and bifurcation control of a delayed fractional-order predator-prey model, Int. J. Bifurcat. Chaos, 28 (2018), 1850117. doi: 10.1142/S0218127418501171
![]() |
[39] |
Y. Li, Y. Q. Chen, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., 59 (2010), 1810-1821. doi: 10.1016/j.camwa.2009.08.019
![]() |
[40] | G. P. Samanta, A. Maiti, M. Das, Stability analysis of a prey-predator fractional order model incorporating prey refuge, Ecol. Genet. Genomics, 7 (2018), 33-46. |
[41] |
R. Chinnathambi, F. A. Rihan, Stability of fractional-order prey-predator system with time-delay and Monod-Haldane functional response, Nonlinear Dyn., 92 (2018), 1-12. doi: 10.1007/s11071-018-4140-2
![]() |
[42] | N. Supajaidee, S. Moonchai, Stability analysis of a fractional-order two-species facultative mutualism model with harvesting, Adv. Differ. Equ., 1 (2017), 372. |
[43] |
J. Alidousti, Stability and bifurcation analysis for a fractional prey-predator scavenger model, Appl. Math. Model., 81 (2020), 342-355. doi: 10.1016/j.apm.2019.11.025
![]() |
[44] |
C. Huang, H. Li, T. Li, S. Chen, Stability and bifurcation control in a fractional predator-prey model via extended delay feedback, Int. J. Bifurcat. Chaos, 29 (2019), 1950150. doi: 10.1142/S0218127419501505
![]() |
[45] | X. Wang, Z. Wang, X. Shen, Stability and Hopf bifurcation of a fractional-order food chain model with disease and two delays, J. Comput. Nonlinear Dyn., 15 (2020). |
[46] | I. Podlubny, Fractional differential equations, Academic press, New York, 1999. |
[47] |
G. Ji, Q. Ge, J. Xu, Dynamic behaviors of a fractional order two-species cooperative systems with harvesting, Chaos Soliton. Fract., 92 (2016), 51-55. doi: 10.1016/j.chaos.2016.09.014
![]() |
[48] |
C. Vargas-De-Len, Volterra-type Lyapunov functions for fractional-order epidemic systems, Commun. Nonlinear Sci. Numer. Simul., 24 (2015), 75-85. doi: 10.1016/j.cnsns.2014.12.013
![]() |
[49] | H. Delavari, D. Baleanu, J. Sadati, Stability analysis of Caputo fractional-order nonlinear systems revisited, Nonlinear Dyn., 67 (2011), 2433-2439. |
[50] | S. Ahmad, A. C. Lazer, On the nonautonomous N-competing species problems, Appl. Anal., 57 (2007), 309-323. |
1. | Yuhui Chen, Minling Li, Qinghe Yao, Zheng-an Yao, The sharp time-decay rates for one-dimensional compressible isentropic Navier-Stokes and magnetohydrodynamic flows, 2022, 1674-7283, 10.1007/s11425-021-1937-9 | |
2. | Jincheng Gao, Minling Li, Zheng-an Yao, Optimal decay of compressible Navier-Stokes equations with or without potential force, 2023, 342, 00220396, 63, 10.1016/j.jde.2022.09.030 | |
3. | Yuhui Chen, Minling Li, Qinghe Yao, Zheng-an Yao, The sharp time decay rates for the incompressible Phan-Thien–Tanner system with magnetic field in R2, 2022, 129, 08939659, 107965, 10.1016/j.aml.2022.107965 | |
4. | Xiuli Xu, Xueke Pu, Xiaoyu Xi, Optimal decay of the magnetohydrodynamic model for quantum plasmas with potential force, 2025, 0, 1531-3492, 0, 10.3934/dcdsb.2025054 |