For the incompressible Navier-Stokes system, when initial data are uniformly locally square integral, the local existence of solutions has been obtained. In this paper, we consider perturbed system and show that perturbed solutions of Landau solutions to the Navier-Stokes system exist locally under Lquloc-perturbations, q≥2. Furthermore, when q≥3, the solution is well-posed. Precisely, we give the explicit formula of the pressure term.
Citation: Jingjing Zhang, Ting Zhang. Local well-posedness of perturbed Navier-Stokes system around Landau solutions[J]. Electronic Research Archive, 2021, 29(4): 2719-2739. doi: 10.3934/era.2021010
[1] | Jingjing Zhang, Ting Zhang . Local well-posedness of perturbed Navier-Stokes system around Landau solutions. Electronic Research Archive, 2021, 29(4): 2719-2739. doi: 10.3934/era.2021010 |
[2] | Keqin Su, Rong Yang . Pullback dynamics and robustness for the 3D Navier-Stokes-Voigt equations with memory. Electronic Research Archive, 2023, 31(2): 928-946. doi: 10.3934/era.2023046 |
[3] | Linlin Tan, Bianru Cheng . Global well-posedness of 2D incompressible Navier–Stokes–Darcy flow in a type of generalized time-dependent porosity media. Electronic Research Archive, 2024, 32(10): 5649-5681. doi: 10.3934/era.2024262 |
[4] | Jie Zhang, Gaoli Huang, Fan Wu . Energy equality in the isentropic compressible Navier-Stokes-Maxwell equations. Electronic Research Archive, 2023, 31(10): 6412-6424. doi: 10.3934/era.2023324 |
[5] | Jianxia He, Qingyan Li . On the global well-posedness and exponential stability of 3D heat conducting incompressible Navier-Stokes equations with temperature-dependent coefficients and vacuum. Electronic Research Archive, 2024, 32(9): 5451-5477. doi: 10.3934/era.2024253 |
[6] |
Guochun Wu, Han Wang, Yinghui Zhang .
Optimal time-decay rates of the compressible Navier–Stokes–Poisson system in |
[7] | Guoliang Ju, Can Chen, Rongliang Chen, Jingzhi Li, Kaitai Li, Shaohui Zhang . Numerical simulation for 3D flow in flow channel of aeroengine turbine fan based on dimension splitting method. Electronic Research Archive, 2020, 28(2): 837-851. doi: 10.3934/era.2020043 |
[8] | Jie Qi, Weike Wang . Global solutions to the Cauchy problem of BNSP equations in some classes of large data. Electronic Research Archive, 2024, 32(9): 5496-5541. doi: 10.3934/era.2024255 |
[9] | Nisachon Kumankat, Kanognudge Wuttanachamsri . Well-posedness of generalized Stokes-Brinkman equations modeling moving solid phases. Electronic Research Archive, 2023, 31(3): 1641-1661. doi: 10.3934/era.2023085 |
[10] | Wei Shi, Xinguang Yang, Xingjie Yan . Determination of the 3D Navier-Stokes equations with damping. Electronic Research Archive, 2022, 30(10): 3872-3886. doi: 10.3934/era.2022197 |
For the incompressible Navier-Stokes system, when initial data are uniformly locally square integral, the local existence of solutions has been obtained. In this paper, we consider perturbed system and show that perturbed solutions of Landau solutions to the Navier-Stokes system exist locally under Lquloc-perturbations, q≥2. Furthermore, when q≥3, the solution is well-posed. Precisely, we give the explicit formula of the pressure term.
The initial value problem of the Navier-Stokes system is described as follows
{ut−Δu+(u⋅∇)u+∇p=f, x∈R3,t≥0,∇⋅u=0,u(x,0)=u0(x), | (1.1) |
where
It is well known that Leray [16] proved the global existence of weak solutions for divergence free initial data
For the Navier-Stokes system with
For the uniformly local-
The stationary Navier-Stokes system in
{−Δv+(v⋅∇)v+∇p=f,∇⋅v=0. | (1.2) |
When
v1c(x)=2c|x|2−2x1|x|+cx21|x|(c|x|−x1)2, v2c(x)=2x2(cx1−|x|)|x|(c|x|−x1)2,v3c(x)=2x3(cx1−|x|)|x|(c|x|−x1)2, pc(x)=4cx1−|x||x|(c|x|−x1)2, | (1.3) |
with
We denote
{wt−Δw+(w⋅∇)w+(w⋅∇)vc+(vc⋅∇)w+∇π=0,∇⋅w=0,w(x,0)=w0(x). | (1.4) |
The explicit formula of
π=−13|w|2+p.v.∫R3∂i∂jΓ(x−y)wiwj(y)dy−23vc⋅w+2p.v.∫R3∂i∂jΓ(x−y)wivcj(y)dy, | (1.5) |
for which detailed calculation can be seen in Appendix.
Karch and Pilarczyk [7] show that perturbed solutions of Landau solutions to the Navier-Stokes system exist globally under
First, we give some notations used in this paper. Ball
B(x,r)=Br(x)={y∈R3:|y−x|<r}. |
The spaces
Lquloc={u∈L1loc(R3):‖u‖Lquloc=supx0∈R3‖u‖Lq(B1(x0))<+∞} | (1.6) |
and
Us,p(t0,t)={u∈L1loc(R3×(t0,t)):‖u‖Us,p(t0,t)=supx0∈R3‖u‖Ls(t0,t;Lp(B1(x0)))<+∞} |
When
Set
ET={u∈L2loc([0,T]×R3;R3):divu=0,‖u‖ET<+∞}, | (1.7) |
where
‖u‖ET:=‖u‖U∞,2T+‖∇u‖U2,2T. | (1.8) |
The definition of
Definition 1.1. (
‖w(⋅,t)−w0‖Lq(K)→0, as t→0+; | (1.9) |
∫R3|w|2ξ(x,t)dx+2∫t0∫R3|∇w|2ξdxds≤∫t0∫R3(2vc⊗w:∇wξ+(∂sξ+Δξ)|w|2+(|w|2+2π+2vc⋅w)(w⋅∇)ξ+|w|2vc⋅∇ξdxds, | (1.10) |
for any
π(x,t)=ˆπx0(x,t)+cx0(t), in Lqloc([0,T);L2qq+1(B(x0,32)), | (1.11) |
where
ˆπx0(x,t)=−13|w(x,t)|2+p.v.∫B(x0,2)∂i∂jΓ(x−y)wiwj(y)dy+p.v.∫B(x0,2)c∂i∂j(Γ(x−y)−Γ(x0−y))wiwj(y)dy−23vc⋅w(x,t)+2p.v.∫B(x0,2)∂i∂jΓ(x−y)wivcj(y)dy+2p.v.∫B(x0,2)c∂i∂j(Γ(x−y)−Γ(x0−y))wivcj(y)dy | (1.12) |
for
Our main result is as follows
Theorem 1.2. There exist positive universal constants
(i) For every
T≤ε11+‖w0‖2qLquloc, | (1.13) |
there exists a
‖w‖U∞,qT+‖∇(|w|q2)‖2qU2,2T≤C‖w0‖Lquloc. | (1.14) |
(ii) Furthermore, when
Remark 1.1. From (2.38) and (3.54), we could see a more detailed dependence of
Scheme of the proof and organization of the paper. In Section
Let us complete this section by the notations that we shall use in this article.
Notations.
We consider approximate solutions
{wϵt−Δwϵ+(Jϵ(wϵ)⋅∇)(wϵΦϵ)+(Jϵ(wϵ)⋅∇)(vcΦϵ)+(Φϵvc⋅∇)Jϵ(wϵ)+∇πϵ=0,∇⋅wϵ=0,wϵ(x,0)=w0(x), | (2.1) |
where
Φ={1 in B(0,1),0 in B(0,32)c. | (2.2) |
We will construct approximate solution
Lemma 2.1. The explicit formula of
‖|x|vc‖L∞≤2√2|c|−1:=Kc. | (2.3) |
Then, we give a fundamental inequality with the singular weight in Sobolev spaces: the so-called Hardy inequality which go back to the pioneering work by G.H. Hardy [4,5].
Lemma 2.2. For any
(∫R3|f(x)|2|x|2dx)12≤2‖∇f‖L2. | (2.4) |
By the Duhamel principle, we can write the solution to system (2.1) into the following integral formulation
wϵ(t)=etΔw0−∫t0e(t−s)ΔP∇⋅(Jϵ(wϵ)⊗wϵΦϵ+Jϵ(wϵ)⊗vcΦϵ+Φϵvc⊗Jϵ(wϵ))(s)ds. | (2.5) |
The following lemma give the construction of mild solution (see Chap. 5 in [25]) to system (2.1) in the space
Lemma 2.3. For each
w(t)=etΔw0−∫t0e(t−s)ΔP∇⋅(Jϵ(w)⊗wΦϵ+Jϵ(w)⊗vcΦϵ+Φϵvc⊗Jϵ(w))(s)ds | (2.6) |
satisfying
‖w‖ET≤2C0B | (2.7) |
where
Proof. Set the map
Ψ(w)=etΔw0−∫t0e(t−s)ΔP∇⋅(Jϵ(w)⊗wΦϵ+Jϵ(w)⊗vcΦϵ+Φϵvc⊗Jϵ(w))(s)ds. | (2.8) |
We will do contraction mapping in the local energy space
‖etΔf‖ET≲(1+T12)‖f‖L2uloc , | (2.9) |
for
‖∫t0e(t−s)ΔP∇⋅F(s)ds‖ET≲(1+T)‖F‖U2,2T, | (2.10) |
for
‖Ψ(w)‖ET≲‖w0‖L2uloc +‖Jϵ(w)⊗wΦϵ‖U2,2T+2‖Jϵ(w)⊗vcΦϵ‖U2,2T. | (2.11) |
Note that
‖Jϵ(w)⊗wΦϵ‖U2,2T≲‖w∗ηϵ‖L2(0,T;L∞(R3))‖w‖U∞,2T≲‖w‖U2,2T‖ηϵ‖L2‖w‖U∞,2T≲ϵ−32‖w‖U2,2T‖w‖U∞,2T≲ϵ−32√T‖w‖2U∞,2T, | (2.12) |
and
‖Jϵ(w)⊗vcΦϵ‖U2,2T≲‖w∗ηϵ‖L2(0,T;L∞(R3))‖vc‖L2uloc≲ϵ−32√T‖w‖U∞,2T‖vc‖L2uloc. | (2.13) |
We have
‖Ψ(w)‖ET≲‖w0‖L2uloc +ϵ−32√T‖w‖2U∞,2T+ϵ−32√T‖w‖U∞,2T‖vc‖L2uloc≲‖w0‖L2uloc +ϵ−32√T(‖w‖U∞,2T+2‖vc‖L2uloc)‖w‖U∞,2T≤C0‖w0‖L2uloc +C1ϵ−32√T(‖w‖ET+2‖vc‖L2uloc)‖w‖ET, | (2.14) |
for some constants
‖Ψ(w)−Ψ(z)‖ET≤C1ϵ−32√T(‖w‖ET+‖z‖ET+2‖vc‖L2uloc)‖w−z‖ET. | (2.15) |
By Picard contraction theorem and
T<ϵ3256(C0C1B)2=Cϵ3B−2, | (2.16) |
there exists a fixed point
‖w‖ET≤2C0B. | (2.17) |
We will give a uniform bound of
Lemma 2.4. For each
‖wϵ‖ETϵ≤C‖w0‖L2uloc, | (2.18) |
where the constant
Proof. Note that we can derive an integral formula of pressure
πϵ(x,t)=−13Jϵ(wϵ)⋅wϵΦϵ(x,t)+p.v.∫∂i∂jΓ(x−y)Jϵ(wϵi)wϵj(y,t)Φϵ(y)dy−23vc⋅Jϵ(wϵ)Φϵ(x,t)+2p.v.∫∂i∂jΓ(x−y)Jϵ(wϵi)vcj(y,t)Φϵ(y)dy, | (2.19) |
for
ˆπϵx0(x,t)=−13Jϵ(wϵ)⋅wϵΦϵ(x,t)+p.v.∫B(x0,2)∂i∂jΓ(x−y)Jϵ(wϵi)wϵj(y,t)Φϵ(y)dy+p.v.∫B(x0,2)c∂i∂j(Γ(x−y)−Γ(x0−y))Jϵ(wϵi)wϵj(y,t)Φϵ(y)dy−23vc⋅Jϵ(wϵ)Φϵ(x,t)+2p.v.∫B(x0,2)∂i∂jΓ(x−y)Jϵ(wϵi)vcj(y,t)Φϵ(y)dy+2p.v.∫B(x0,2)c∂i∂j(Γ(x−y)−Γ(x0−y))Jϵ(wϵi)vcj(y,t)Φϵ(y)dy:=π1+...+π6. | (2.20) |
Therefore,
Take
∫|wϵ|2ψ(x,t)dx+2∫t0∫|∇wϵ|2ψdxds=∫|w0|2ψ(⋅,0)dx+∫t0∫|wϵ|2(∂sψ+Δψ)dxds+∫t0∫|wϵ|2Φϵ(Jϵ(wϵ)⋅∇)ψdxds+∫t0∫|wϵ|2ψ(Jϵ(wϵ)⋅∇)Φϵdxds+2∫t0∫ˆπϵx0wϵ⋅∇ψdxds+2∫t0∫ψvc⋅wϵ(Jϵ(wϵ)⋅∇)Φϵdxds+2∫t0∫(Jϵ(wϵ)⋅∇)wϵ⋅vcΦϵψdxds+2∫t0∫Φϵvc⋅wϵ(Jϵ(wϵ)⋅∇)ψdxds+2∫t0∫(Jϵ(wϵ)⋅wϵ)ψ(vc⋅∇)Φϵdxds+2∫t0∫(Φϵvc⋅∇)wϵ⋅Jϵ(wϵ)ψdxds+2∫t0∫(Φϵvc⋅∇)ψJϵ(wϵ)⋅wϵdxds, | (2.21) |
for any
‖wϵ(⋅,t)ϕ(⋅)‖2L2+2‖|∇wϵ|(⋅,t)ϕ(⋅)‖2L2([0,t]×R3)≲‖w0‖L2uloc +|∫t0∫|wϵ|2|Δϕ2|dxds|+|∫t0∫|wϵ|2Φϵ(Jϵ(wϵ)⋅∇)ϕ2dxds|+|∫t0∫|wϵ|2ϕ2(Jϵ(wϵ)⋅∇)Φϵdxds|+|∫t0∫2ˆπϵx0(wϵ⋅∇)ϕ2dxds|+|2∫t0∫ϕ2vc⋅wϵ((Jϵ(wϵ)⋅∇)Φϵdxds|+|2∫t0∫Jϵ(wϵ)⋅∇)wϵ⋅vcΦϵϕ2dxds|+|2∫t0∫Φϵvc⋅wϵ(Jϵ(wϵ⋅∇))ϕ2dxds|+|2∫t0∫(Jϵ(wϵ)⋅wϵ)ϕ2(vc⋅∇)Φϵdxds|+|2∫t0∫(Φϵvc⋅∇)wϵ⋅Jϵ(wϵ)ϕ2dxds|+|2∫t0∫(Φϵvc⋅∇)ϕ2Jϵ(wϵ)⋅wϵdxds|,:=‖w0‖L2uloc +J1+...+J10. | (2.22) |
By Hölder's inequality and
J1≤C‖wϵ‖2U2,2t | (2.23) |
and
J2,J3≤C‖wϵ‖3U3,3t. | (2.24) |
By Hölder's inequality, we have
J4≤C‖ˆπϵx0wϵ‖U1,1t. | (2.25) |
According to (2.20), we have
‖π1‖L32([0,t]×B(x0,32))≤C‖wϵ‖2U3,3t. | (2.26) |
Moreover, by Calderon-Zygmund theorem, there holds
‖π2‖L32([0,t]×B(x0,32))≤C‖Jϵ(wϵi)wϵjΦϵ‖L32([0,t]×B(x0,2))≤C‖wϵ‖2U3,3t. | (2.27) |
Since
|∂i∂jΓ(x−y)−∂i∂jΓ(x0−y)|≤|x−x0||x0−y|4≤231|x0−y|4. | (2.28) |
Hence,
‖π3‖L32([0,t]×B(x0,32))≤C‖∫B(x0,2)c1|x0−y|4Jϵ(wϵi)wϵj(y,s)Φϵ(y)dy‖L32(0,t)≤C‖∞∑k=1124k∫B(x0,2k+1)|Jϵ(wϵi)wϵj|(y,s)dy‖L32(0,t)≤C∞∑k=1124k‖ak∑j=1∫B(xkj,1)|Jϵ(wϵi)wϵj|(y,s)dy‖L32(0,t)≤C∞∑k=1ak24k‖Jϵ(wϵi)wϵj‖U32,32t≤C‖wϵ‖2U3,3t, | (2.29) |
where we take
‖πiwϵ‖U1,1t≤C‖πi‖L32([0,t]×B(x0,32))‖wϵ‖U3,3t≤C‖wϵ‖3U3,3t, | (2.30) |
for
‖π4wϵ‖U1,1t≤C‖π4‖U2,43t‖wϵ‖U2,4t≤C‖vc‖L2uloc‖wϵ‖2U2,4t≤C‖vc‖L2uloc(‖wϵ‖2U2,2t+‖∇wϵ‖2U2,2t). | (2.31) |
By Calderon-Zygmund theorem, there holds
‖π5wϵ‖U1,1t≤C‖π5‖U2,43t‖wϵ‖U2,4t≤C‖vc‖L2uloc‖wϵ‖2U2,4t≤C‖vc‖L2uloc(‖wϵ‖2U2,2t+‖∇wϵ‖2U2,2t). | (2.32) |
Similar to (2.29), we have
‖π6wϵ‖U1,1t≤C‖π6‖U2,43t‖wϵ‖U2,4t≤C∞∑k=1ak24k‖vc‖L2uloc‖wϵ‖2U2,4t≤C‖vc‖L2uloc‖wϵ‖2U2,4t |
≤C‖vc‖L2uloc(‖wϵ‖2U2,2t+‖∇wϵ‖2U2,2t). | (2.33) |
Combining with (2.25) and (2.30)-(2.33), we obtain
J4≤C‖wϵ‖3U3,3t+C‖vc‖L2uloc(‖wϵ‖2U2,2t+‖∇wϵ‖2U2,2t). | (2.34) |
Similar to (2.31), we have
J5,J7,J8,J9,J10≤C‖vc‖L2uloc(‖wϵ‖2U2,2t+‖∇wϵ‖2U2,2t). | (2.35) |
For
J6=2∫t0∫ϕwϵ|x|⋅∇wϵϕ⋅|x|vc⋅Φϵdxds≤2∫t0‖∇(ϕwϵ)‖L2‖∇wϵϕ‖L2‖|x|vc‖L∞ds≤CKc(‖wϵ‖2U2,2t+‖∇wϵ‖2U2,2t), | (2.36) |
where the first inequality holds because of Hardy inequality and Hölder's inequality.
Therefore, we obtain
‖wϵ(⋅,t)‖2L2uloc+2‖∇wϵ‖2U2,2t≤C‖w0‖2L2uloc+C‖wϵ‖3U3.3t+C2(‖vc‖L2uloc+Kc)(‖wϵ‖2U2,2t+‖∇wϵ‖2U2,2t)≤C‖w0‖2L2uloc+C‖wϵ‖3U3.3t+14‖wϵ‖2U2,2t+14‖∇wϵ‖2U2,2t, | (2.37) |
where the last inequality holds because of the assumption that
C2(‖vc‖L2uloc+Kc)≤14. | (2.38) |
Using the interpolation inequality and Young's inequality,
C‖wϵ‖3U3,3t≤C‖wϵ‖3/2U6,2t‖wϵ‖3/2U2,6t≤C‖wϵ‖6L6([0,t];L2uloc)+14‖wϵ‖2U2,2t+14‖∇wϵ‖2U2,2t. | (2.39) |
Combining with (2.37), we have
‖wϵ‖2L2uloc+32‖∇wϵ‖2U2,2t≤C‖w0‖2L2uloc+C∫t0(‖wϵ(⋅,s)‖2L2uloc+‖wϵ(⋅,s)‖6L2uloc)ds. | (2.40) |
Hence, there exists a small constant
sup0<t<T‖wϵ(⋅,t)‖L2uloc≤C‖w0‖L2uloc . | (2.41) |
Combining with (2.40), we have (2.18).
Then, we can obtain the following lemma easily. We omit the details.
Lemma 2.5. The distribution solutions
First, when
Proposition 3.1. Let
T≤ε11+‖w0‖4L2uloc, | (3.1) |
for some small positive constant
‖w‖ET≤C‖v0‖L2uloc. | (3.2) |
Proof of Proposition 3.1. Our method is inspired by Theorem 3.2 in [12]. We will prove our result in the following four steps.
Step 1. Construct
Let
πϵ(x,t)=−13Jϵ(wϵ)⋅wϵΦϵ(x,t)+p.v.∫B2∂i∂jΓ(x−y)Jϵ(wϵi)wϵj(y,t)Φϵ(y)dy+p.v.∫Bc2∂i∂j(Γ(x−y)−Γ(−y))Jϵ(wϵi)wϵj(y,t)Φϵ(y)dy−23vc⋅Jϵ(wϵ)Φϵ(x,t)+2p.v.∫B2∂i∂jΓ(x−y)Jϵ(wϵi)vcj(y,t)Φϵ(y)dy+2p.v.∫Bc2∂i∂j(Γ(x−y)−Γ(−y))Jϵ(wϵi)vcj(y,t)Φϵ(y)dy, | (3.3) |
for
Step 2. Prove that
According to Lemma 2.4, we have
‖wϵ‖ET≤C‖w0‖L2uloc, | (3.4) |
where the constant
πϵ(x,t)=−13Jϵ(wϵ)⋅wϵΦϵ(x,t)+p.v.∫B2∂i∂jΓ(x−y)Jϵ(wϵi)wϵj(y,t)Φϵ(y)dy+( p.v.∫B2n+1∖B2+ p.v. ∫Bc2n+1)∂i∂j(Γ(x−y)−Γ(−y))Jϵ(wϵi)wϵj(y,t)Φϵ(y)dy−23vc⋅Jϵ(wϵ)Φϵ(x,t)+2p.v.∫B2∂i∂jΓ(x−y)Jϵ(wϵi)vcj(y,t)Φϵ(y)dy+2( p.v.∫B2n+1∖B2+ p.v. ∫Bc2n+1)∂i∂j(Γ(x−y)−Γ(−y))Jϵ(wϵi)vcj(y,t)Φϵ(y)dy=πϵ1+...+πϵ8. | (3.5) |
For
‖πϵ1‖L2(0,T;L43(B2n))≤‖Jϵ(wϵ)⋅wϵΦϵ‖L2(0,T;L43(B2n))≤‖Jϵ(wϵ)‖L∞(0,T;L2(B2n))‖wϵ‖L2(0,T;L4(B2n))≤C(n)‖wϵ‖ET≤C(n,‖w0‖L2uloc). | (3.6) |
For
‖πϵ2‖L2(0,T;L43(B2n))≤‖Jϵ(wϵ)⋅wϵΦϵ‖L2(0,T;L43(B2))≤C(‖w0‖L2uloc). | (3.7) |
For the third term, we have
πϵ3= p.v.∫B2n+1∖B2∂i∂jΓ(x−y)Jϵ(wϵi)wϵj(y,t)Φϵ(y)dy− p.v. ∫B2n+1∖B2∂i∂jΓ(−y)Jϵ(wϵi)wϵj(y,t)Φϵ(y)dy:=πϵ31+πϵ32. | (3.8) |
Using Calderon-Zygmund theorem, we have
‖πϵ31‖L2(0,T;L43(B2n))≤‖Jϵ(wϵ)⋅wϵΦϵ‖L2(0,T;L43(B2n+1))≤C(n,‖w0‖L2uloc). | (3.9) |
On the other hand
‖πϵ32‖L2(0,T;L43(B2n))≲22n‖Jϵ(wϵ)⋅wϵΦϵ‖L2(0,T;L43(B2n+1))‖1|y|3‖L4(B2n+1∖B2)≲C(n,‖w0‖L2uloc). | (3.10) |
For
(3.11) |
Similar to (2.29)-(2.30), we obtain
(3.12) |
Similar to (2.31), we have
(3.13) |
Similar to (3.10), there holds
(3.14) |
For the last term
(3.15) |
Therefore, we deduce
(3.16) |
Combining with above estimates, we conclude
(3.17) |
Step 3. Find subsequence of
(3.18) |
for any
Then, we extend
(3.19) |
for any
Continuing this process, we can construct sequence
(3.20) |
satisfying
(3.21) |
for any
(3.22) |
Next, we will prove
(3.23) |
for each
And pressure
(3.24) |
Hence, for any
Set
(3.25) |
and
(3.26) |
Note that for fixed
(3.27) |
By (3.21) and Lebesgue dominated convergence theorem, we have
(3.28) |
as
(3.29) |
and
(3.30) |
Combined with (3.28), these four terms become very small for sufficiently large
Note that
(3.31) |
as
(3.32) |
and
(3.33) |
Combing with (3.31), we have
For
(3.34) |
Also
(3.35) |
Take
Step 4. Check
For
For simplicity, we only give crucial
Similar to (2.30), we have
(3.36) |
for
(3.37) |
By Calderon-Zygmund theorem, there holds
(3.38) |
Similar to (2.33), we have
(3.39) |
Combining with (2.25) and (3.36)-(3.39), we obtain
(3.40) |
Similar to (3.37), we have
(3.41) |
For
(3.42) |
where the first inequality holds because of Hardy inequality and Hölder's inequality.
By interpolation inequality and Young's inequality, we have
(3.43) |
Therefore, we have
(3.44) |
Hence, there exists a small constant
(3.45) |
Following the procedure in the proof of Lemma 3.1, we have the existence results when
Then, we will prove the uniqueness when
From (1.14), using interpolation theory, we have
(3.46) |
with
(3.47) |
where
(3.48) |
Using
Crucial part is to estimate
(3.49) |
Denote
(3.50) |
we have
(3.51) |
By Hölder inequality, Hardy inequality and Lemma 2.1, we have
(3.52) |
For term
(3.53) |
There holds
(3.54) |
Combining with (3.47) and
(3.55) |
we have
Integral formula of the pressure
(4.1) |
Fix
(4.2) |
Therefore, we have
(4.3) |
we obtain
(4.4) |
Therefore,
(4.5) |
Note that
(4.6) |
(4.7) |
(4.8) |
(4.9) |
(4.10) |
(4.11) |
where
(4.12) |
For term
(4.13) |
For term
(4.14) |
where
and
for
(4.15) |
By the mean value inequality, we have
(4.16) |
Hence, we obtain
(4.17) |
When
(4.18) |
Combining with (4.15)-(4.18), we have
(4.19) |
Therefore, (4.14) holds. Combining with (4.6)-(4.13), we have
(4.20) |
Take
(4.21) |
Setting
The author is grateful to Prof. Yanyan Li for bringing to our attention the question studied in this paper and much useful advice. This work is partially supported by the National Natural Science Foundation of China 11771389, 11931010 and 11621101. We sincerely thank the anonymous reviewers for their constructive revision suggestions.
[1] | A. Basson, Solutions Spatialement Homognes Adaptes des quations de Navier-Stokes, Thesis. University of Evry., 2006. |
[2] | Self-similar solutions to the Navier-Stokes equations: A survey of recent results. Nonlinear Analysis in Geometry and Applied Mathematics (2018) 2: 159-181. |
[3] |
Navier-Stokes flow in with measures as initial vorticity and Morrey spaces. Comm. Partial Differential Equations (1989) 14: 577-618. ![]() |
[4] |
Note on a theorem of Hilbert. Math. Z. (1920) 6: 314-317. ![]() |
[5] | An inequality between integrals. Messenger of Mathematics (1925) 54: 150-156. |
[6] |
Well-posedness of nematic liquid crystal flow in ![]() |
[7] |
Asymptotic stability of Landau solutions to Navier-Stokes system. Arch. Ration. Mech. Anal. (2011) 202: 115-131. ![]() |
[8] |
-asymptotic stability of singular solutions to the Navier-Stokes system of equations in . J. Math. Pures Appl. (2017) 108: 14-40. ![]() |
[9] |
Strong -solutions of the Navier-Stokes equation in R, with applications to weak solutions. Math. Z. (1984) 187: 471-480. ![]() |
[10] |
N. Kikuchi and G. Seregin, Weak solutions to the Cauchy problem for the Navier-Stokes equations satisfying the local energy inequality, Nonlinear Equations and Spectral Theory, Amer. Math. Soc. Transl. Ser. 2,220, Amer. Math. Soc., Providence, RI, 220 (2007), 141–164. doi: 10.1090/trans2/220/07
![]() |
[11] |
Well posednesss for the Navier-Stokes equations. Adv. Math. (2001) 157: 22-35. ![]() |
[12] |
Global Navier-Stokes flows for non-decaying initial data with slowly decaying oscillation. Comm. Math. Phys. (2020) 375: 1665-1715. ![]() |
[13] | A new exact solution of Navier-Stokes equations. C. R. (Doklady) Acad. Sci. URSS (N.S.) (1944) 43: 286-288. |
[14] |
P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, vol. 431, 2002. doi: 10.1201/9781420035674
![]() |
[15] |
(2016) The Navier-Stokes Problem in the 21st Century. Boca Raton, FL: CRC Press. ![]() |
[16] |
Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. (1934) 63: 193-248. ![]() |
[17] |
Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. Ⅰ. One singularity. Arch. Ration. Mech. Anal. (2018) 227: 1091-1163. ![]() |
[18] |
Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. Ⅱ. Classification of axisymmetric no-swirl solutions. J. Differential Equations (2018) 264: 6082-6108. ![]() |
[19] |
Vanishing viscosity limit for homogeneous axisymmetric no-swirl solutions of stationary Navier-Stokes equations. J. Funct. Anal. (2019) 277: 3599-3652. ![]() |
[20] |
Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. Ⅲ. Two singularities. Discrete Contin. Dyn. Syst. (2019) 39: 7163-7211. ![]() |
[21] |
On Landau's solutions of the Navier-Stokes equations, Problems in mathematical analysis, No. 61. J. Math. Sci. (N.Y.) (2011) 179: 208-228. ![]() |
[22] |
Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations. Comm. Partial Differential Equations (1992) 17: 1407-1456. ![]() |
[23] |
One-point singular solutions to the Navier-Stokes equations. Topol. Methods Nonlinear Anal. (1998) 11: 135-145. ![]() |
[24] |
Forward discretely self-similar solutions of the Navier-Stokes equations. Comm. Math. Phys. (2014) 328: 29-44. ![]() |
[25] |
T.-P. Tsai, Lectures on Navier-Stokes Equations, American Mathematical Society, Providence, RI, vol. 192, 2018. doi: 10.1090/gsm/192
![]() |
[26] |
J. Zhang and T. Zhang, Global existence of discretely self-similar solutions to the generalized MHD system in Besov space, J. Math. Phys., 60 (2019), 081515, 18 pp. doi: 10.1063/1.5092787
![]() |
[27] |
A Liouville theorem for axially symmetric -solutions to steady Navier-Stokes equations. Nonlinear Anal. (2019) 187: 247-258. ![]() |
1. | Yanyan Li, Jingjing Zhang, Ting Zhang, Asymptotic Stability of Landau Solutions to Navier–Stokes System Under $$L^p$$-Perturbations, 2023, 25, 1422-6928, 10.1007/s00021-022-00751-x | |
2. | YanYan Li, Xukai Yan, Anisotropic Caffarelli-Kohn-Nirenberg type inequalities, 2023, 419, 00018708, 108958, 10.1016/j.aim.2023.108958 | |
3. | Fangyu Han, Zhong Tan, Asymptotic stability of explicit infinite energy blowup solutions of the 3D incompressible Navier-Stokes equations, 2023, 66, 1674-7283, 2523, 10.1007/s11425-022-2059-1 |