Special Issues

On $ n $-slice algebras and related algebras

  • Received: 01 April 2020 Revised: 01 December 2020 Published: 01 September 2021
  • Primary: 16G20, 16G60, 16S35; Secondary: 20C05

  • The $ n $-slice algebra is introduced as a generalization of path algebra in higher dimensional representation theory. In this paper, we give a classification of $ n $-slice algebras via their $ (n+1) $-preprojective algebras and the trivial extensions of their quadratic duals. One can always relate tame $ n $-slice algebras to the McKay quiver of a finite subgroup of $ \mathrm{GL}(n+1, \mathbb C) $. In the case of $ n = 2 $, we describe the relations for the $ 2 $-slice algebras related to the McKay quiver of finite Abelian subgroups of $ \mathrm{SL}(3, \mathbb C) $ and of the finite subgroups obtained from embedding $ \mathrm{SL}(2, \mathbb C) $ into $ \mathrm{SL}(3,\mathbb C) $.

    Citation: Jin-Yun Guo, Cong Xiao, Xiaojian Lu. On $ n $-slice algebras and related algebras[J]. Electronic Research Archive, 2021, 29(4): 2687-2718. doi: 10.3934/era.2021009

    Related Papers:

  • The $ n $-slice algebra is introduced as a generalization of path algebra in higher dimensional representation theory. In this paper, we give a classification of $ n $-slice algebras via their $ (n+1) $-preprojective algebras and the trivial extensions of their quadratic duals. One can always relate tame $ n $-slice algebras to the McKay quiver of a finite subgroup of $ \mathrm{GL}(n+1, \mathbb C) $. In the case of $ n = 2 $, we describe the relations for the $ 2 $-slice algebras related to the McKay quiver of finite Abelian subgroups of $ \mathrm{SL}(3, \mathbb C) $ and of the finite subgroups obtained from embedding $ \mathrm{SL}(2, \mathbb C) $ into $ \mathrm{SL}(3,\mathbb C) $.



    加载中


    [1] Artin M., Zhang J. J. (1994) Noncommutative projective schemes. Adv. Math. 109: 228-287.
    [2] Baer D., Geigle W., Lenzing H. (1987) The preprojective algebra of a tame hereditary Artin algebra. Comm. Algebra 15: 425-457.
    [3] Beilinson A., Ginzburg V., Soergel W. (1996) Koszul duality patterns in Representation theory. J. Amer. Math. Soc. 9: 473-527.
    [4] Bernšte$\mathop {\rm{i}}\limits^ \vee $n I. N., Gel'fand I. M., Gel'fand S. I. (1978) Algebraic vector bundles on P$^{n}$ and problems of linear algebras. Funktsional. Anal. i Prilozhen. 12: 66-67.
    [5] Be$\mathop {\rm{i}}\limits^ \vee $linson A. A. (1978) Coherent sheaves on P$^{n}$ and problems of linear algebra. Funktsional. Anal. i Prilozhen. 12: 68-69.
    [6] Brenner S., Butler M. C. R., King A. D. (2002) Periodic algebras which are almost Koszul. Algebr. Represent. Theory 5: 331-367.
    [7] Chen X.-W. (2009) Graded self-injective algebras "are" trivial extensions. J. Algebra 322: 2601-2606.
    [8] Crawley-Boevey W., Holland M. P. (1998) Noncommutative deformations of Kleinian singularities. Duke Math. J. 92: 605-635.
    [9] Dlab V., Ringel C. M. (1981) Eigenvalues of Coxeter transformations and the Gelfand-Kirilov dimension of preprojective algebras. Proc. Amer. Math. Soc. 83: 228-232.
    [10] Guo J. Y. (2009) On the McKay quivers and $m$-Cartan matrices. Sci. China Ser. A 52: 511-516.
    [11] J. Y. Guo, On McKay quivers and covering spaces (in Chinese), Sci. Sin. Math., 41 (2011), 393–402, (English version: arXiv: 1002.1768).
    [12] Guo J. Y. (2012) Coverings and truncations of graded self-injective algebras. J. Algebra 355: 9-34.
    [13] Guo J. Y. (2016) On $n$-translation algebras. J. Algebra 453: 400-428.
    [14] Guo J. Y. (2020) On trivial extensions and higher preprojective algebras. J. Algebra 547: 379-397.
    [15] J. Y. Guo, $ {\mathbb Z} Q$ type constructions in higher representation theory, arXiv: 1908.06546.
    [16] J. Y. Guo and R. Martínez-Villa, Algebra pairs associated to McKay quivers, Comm. Algebra, 30 (2002), 1017–1032.

    10.1081/AGB-120013196

    MR1883038

    [17] J. Y. Guo and C. Xiao, $n$-APR tilting and $\tau$-mutations, J. Algebr. Comb., (2021).

    10.1007/s10801-021-01015-z

    [18] Guo J. Y., Wu Q. (2000) Loewy matrix, Koszul cone and applications. Comm. Algebra 28: 925-940.
    [19] D. Happel, Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Math. Soc. Lecture Note Ser., vol. 119. Cambridge University Press, Cambridge, 1988.

    10.1017/CBO9780511629228

    MR935124

    [20] Herschend M., Iyama O., Oppermann S. (2014) $n$-Representation infinite algebras. Adv. Math. 252: 292-342.
    [21] Iyama O. (2011) Cluster tilting for higher Auslander algebras. Adv. Math. 226: 1-61.
    [22] Iyama O., Oppermann S. (2011) $n$-representation-finite algebras and $n$-APR tilting. Trans. Amer. Math. Soc. 363: 6575-6614.
    [23] Iyama O., Oppermann S. (2013) Stable categories of higher preprojective algebras. Adv. Math. 244: 23-68.
    [24] K. Lee, L. Li, M. Mills, R. Schiffler and A. Seceleanu, Frieze varieties: A characterization of the finite-tame-wild trichotomy for acyclic quivers, Adv. Math., 367 (2020), 107130, 33 pp.

    10.1016/j.aim.2020.107130

    MR4080582

    [25] Martńez-Villa R. (1999) Graded, selfinjective, and Koszul algebras. J. Algebra 215: 34-72.
    [26] Martńez-Villa R. (2001) Skew Group Algebras and their Yoneda algebras. Math. J. Okayama Univ. 43: 1-16.
    [27] McKay J. (1980) Graph, singularities and finite groups. Proc. Sympos. Pure Math. 37: 183-186.
    [28] H. Minamoto and I. Mori, Structures of AS-regular algebras, Adv. Math., 226 (2011), 4061-4095.

    10.1016/j.aim.2010.11.004

    MR2770441

    [29] I. Reiten and M. Van den Bergh, Two-dimensional tame and maximal orders of finite repre-sentation type, Mem. Amer. Math. Soc., 80 (1989), no. 408.

    10.1090/memo/0408

    MR978602

    [30] Vandergraft J. S. (1968) Spectral properties of matrices which have invariant cones. SIAM J. Appl. Math. 16: 1208-1222.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1051) PDF downloads(176) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog