Special Issues

Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra

  • Received: 01 July 2020 Revised: 01 December 2020 Published: 11 January 2021
  • 17B68, 17B69

  • We first determine the automorphism group of the twisted Heisenberg-Virasoro vertex operator algebra $ V_{\mathcal{L}}(\ell_{123},0) $. Then, for any integer $ t>1 $, we introduce a new Lie algebra $ \mathcal{L}_{t} $, and show that $ \sigma_{t} $-twisted $ V_{\mathcal{L}}(\ell_{123},0) $($ \ell_{2} = 0 $)-modules are in one-to-one correspondence with restricted $ \mathcal{L}_{t} $-modules of level $ \ell_{13} $, where $ \sigma_{t} $ is an order $ t $ automorphism of $ V_{\mathcal{L}}(\ell_{123},0) $. At the end, we give a complete list of irreducible $ \sigma_{t} $-twisted $ V_{\mathcal{L}}(\ell_{123},0) $($ \ell_{2} = 0 $)-modules.

    Citation: Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra[J]. Electronic Research Archive, 2021, 29(4): 2673-2685. doi: 10.3934/era.2021008

    Related Papers:

  • We first determine the automorphism group of the twisted Heisenberg-Virasoro vertex operator algebra $ V_{\mathcal{L}}(\ell_{123},0) $. Then, for any integer $ t>1 $, we introduce a new Lie algebra $ \mathcal{L}_{t} $, and show that $ \sigma_{t} $-twisted $ V_{\mathcal{L}}(\ell_{123},0) $($ \ell_{2} = 0 $)-modules are in one-to-one correspondence with restricted $ \mathcal{L}_{t} $-modules of level $ \ell_{13} $, where $ \sigma_{t} $ is an order $ t $ automorphism of $ V_{\mathcal{L}}(\ell_{123},0) $. At the end, we give a complete list of irreducible $ \sigma_{t} $-twisted $ V_{\mathcal{L}}(\ell_{123},0) $($ \ell_{2} = 0 $)-modules.



    加载中


    [1] D. Adamović and G. Radobolja, Free field realization of the twisted Heisenberg-Virasoro algebra at level zero and its applications, J. Pure Appl. Algebra, 219 (2015), 4322–4342. doi: 10.1016/j.jpaa.2015.02.019
    [2] D. Adamović and G. Radobolja, Self-dual and logarithmic representations of the twisted Heisenberg-Virasoro algebra at level zero, Commun. Contemp. Math., 21 (2019), 1850008, 26 pp. doi: 10.1142/S0219199718500086
    [3] Moduli spaces of curves and representation theory. Comm. Math. Phys. (1988) 117: 1-36.
    [4] Representations of the twisted Heisenberg-Virasoro algebra at level zero. Canad. Math. Bull. (2003) 46: 529-537.
    [5] Y. Billig, A category of modules for the full toroidal Lie algebra, Int. Math. Res. Not., (2006), Art. ID. 68395, 46pp. doi: 10.1155/IMRN/2006/68395
    [6] Classification of irreducible modules for the vertex operator algebra $M(1)^+$. J. Algebra (1999) 216: 384-404.
    [7] I. B. Frenkel, Y.-Z. Huang and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc., 104 (1993), no. 494, ⅷ+64 pp. doi: 10.1090/memo/0494
    [8] Quantum group $GL_{q}(2)$ and quantum Laplace operator via semi-infinite cohomology. J. Noncommut. Geom. (2013) 7: 1007-1026.
    [9] Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. (1992) 66: 123-168.
    [10] $q$-Virasoro algebra and vertex algebras. J. Pure Appl. Algebra (2015) 219: 1258-1277.
    [11] Associating vertex algebras with the unitary Lie algebra. J. Algebra (2015) 424: 126-146.
    [12] Twisted Heisenberg-Virasoro vertex operator algebra. Glas. Mat. Ser. Ⅲ (2019) 54: 369-407.
    [13] J. Lepowsky and H. Li, Introduction to Vertex Operator Algebras and their Representations, Progress in Mathematics, Vol. 227, Birkhäuser, Boston, Inc., Boston, MA, 2004. doi: 10.1007/978-0-8176-8186-9
    [14] H.-S. Li, Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, In: Moonshine, the Monster, and related topics, pp. 203–236, Contemp. Math. 193, Amer. Math. Soc., Providence, RI, 1996. doi: 10.1090/conm/193/02373
    [15] The derivation algebra and automorphism group of the twisted Heisenberg-Virasoro algebra. Comm. Algebra (2006) 34: 2547-2558.
    [16] W. Wang, Rationality of virasoro vertex operator algebras, Internat. Math. Res. Notices, (1993), 197–211. doi: 10.1155/S1073792893000212
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1081) PDF downloads(174) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog