We present a new Python package called "motives", a symbolic manipulation package based on SymPy capable of handling and simplifying motivic expressions in the Grothendieck ring of Chow motives and other types of λ-rings. The package is able to manipulate and compare arbitrary expressions in λ-rings and, in particular, it contains explicit tools for manipulating motives of several types of commonly used moduli schemes and moduli stacks of decorated bundles on curves. We have applied this new tool to advance in the verification of Mozgovoy's conjectural formula for the motive of the moduli space of twisted Higgs bundles, proving that it holds in rank 2 and 3 for any curve of genus up to 18 and any twisting bundle of small degree.
Citation: Daniel Sanchez, David Alfaya, Jaime Pizarroso. Motives meet SymPy: studying λ-ring expressions in Python[J]. Electronic Research Archive, 2025, 33(4): 2118-2147. doi: 10.3934/era.2025093
[1] | McKenna S. Vininski, Sunanda Rajput, Nicholas J. Hobbs, Joseph J. Dolence . Understanding sex differences in the allergic immune response to food. AIMS Allergy and Immunology, 2022, 6(3): 90-105. doi: 10.3934/Allergy.2022009 |
[2] | Shkar Rzgar K. Rostam, Khattab Ahmed Mustafa Shekhany, Harem Othman Smail . Prevalence of common food allergies in Erbil Province, Kurdistan Region of Iraq. AIMS Allergy and Immunology, 2020, 4(4): 117-127. doi: 10.3934/Allergy.2020010 |
[3] | Joseph J. Dolence, Hirohito Kita . Allergic sensitization to peanuts is enhanced in mice fed a high-fat diet. AIMS Allergy and Immunology, 2020, 4(4): 88-99. doi: 10.3934/Allergy.2020008 |
[4] | Moufag Mohammed Saeed Tayeb . Role of IgG food test in patients with allergic diseases. AIMS Allergy and Immunology, 2023, 7(2): 154-163. doi: 10.3934/Allergy.2023010 |
[5] | Chunyan Li, Wojciech Dawicki, Xiaobei Zhang, Chris Rudulier, John R. Gordon . IL-10- and retinoic acid-induced regulatory dendritic cells are therapeutically equivalent in mouse models of asthma and food allergy. AIMS Allergy and Immunology, 2021, 5(2): 73-91. doi: 10.3934/Allergy.2021007 |
[6] | Katarzyna Nazimek . The complex functions of microRNA-150 in allergy, autoimmunity and immune tolerance. AIMS Allergy and Immunology, 2021, 5(4): 195-221. doi: 10.3934/Allergy.2021016 |
[7] | Xiujuan Li, Jianmin Lin, Yan Li, Min Zhu, Minchuan Lin, Chenxi Li . Inhalation allergen sensitization patterns in children with allergic rhinitis and asthma. AIMS Allergy and Immunology, 2024, 8(4): 254-264. doi: 10.3934/Allergy.2024015 |
[8] | Omer Qibi, Severine Audusseau, Andrea Mogas, Zoulfia Allakhverdi, Abdelilah Soussi Gounni, Saba Al Heialy, Qutayba Hamid . No evidence for IgE receptor FcεRI expression on bronchial epithelial cells of asthmatic patients. AIMS Allergy and Immunology, 2018, 2(4): 165-179. doi: 10.3934/Allergy.2018.4.165 |
[9] | Anna Fusco, Logan Pucci, Kevin Pierre, Adam Wolberg, Coulter Small, John Cerillo, Mohammad Reza Hosseini Siyanaki, Brandon Lucke-Wold . Contrast allergies for neurological imaging: When to proceed. AIMS Allergy and Immunology, 2022, 6(4): 216-227. doi: 10.3934/Allergy.2022016 |
[10] | Howard J Mason, Laura Willerton . Airborne exposure to laboratory animal allergens. AIMS Allergy and Immunology, 2017, 1(2): 78-88. doi: 10.3934/Allergy.2017.2.78 |
We present a new Python package called "motives", a symbolic manipulation package based on SymPy capable of handling and simplifying motivic expressions in the Grothendieck ring of Chow motives and other types of λ-rings. The package is able to manipulate and compare arbitrary expressions in λ-rings and, in particular, it contains explicit tools for manipulating motives of several types of commonly used moduli schemes and moduli stacks of decorated bundles on curves. We have applied this new tool to advance in the verification of Mozgovoy's conjectural formula for the motive of the moduli space of twisted Higgs bundles, proving that it holds in rank 2 and 3 for any curve of genus up to 18 and any twisting bundle of small degree.
[1] |
S. del Baño, On the motive of moduli spaces of rank two vector bundles over a curve, Compos. Math., 131 (2002), 1–30. https://doi.org/10.1023/A:1014756205008 doi: 10.1023/A:1014756205008
![]() |
[2] |
K. Behrend, A. Dhillon, On the motivic class of the stack of bundles, Adv. Math., 212 (2007), 617–644. https://doi.org/10.1016/j.aim.2006.11.003 doi: 10.1016/j.aim.2006.11.003
![]() |
[3] | K. S. Lee, Remarks on motives of moduli spaces of rank 2 vector bundles on curves, preprint, arXiv: 1806.11101. https://doi.org/10.48550/arXiv.1806.11101 |
[4] | T. L. Gómez, K. S. Lee, Motivic decompositions of moduli spaces of vector bundles on curves, preprint, arXiv: 2007.06067. https://doi.org/10.48550/arXiv.2007.06067 |
[5] | J. Sánchez, Motives of Moduli Spaces of Pairs and Applications, PhD thesis, Universidad Complutense, Madrid, 2014. |
[6] |
O. García-Prada, J. Heinloth, A. Schmitt, On the motives of moduli of chains and Higgs bundles, J. Eur. Math. Soc., 16 (2014), 2617–2668. https://doi.org/10.4171/jems/494 doi: 10.4171/jems/494
![]() |
[7] |
S. Mozgovoy, Solutions of the motivic ADHM recursion formula, Int. Math. Res. Not., 2012 (2012), 4218–4244. https://doi.org/10.1093/imrn/rnr187 doi: 10.1093/imrn/rnr187
![]() |
[8] |
D. Alfaya, A. Oliveira, Lie algebroid connections, twisted Higgs bundles and motives of moduli spaces, J. Geom. Phys., 201 (2024), 105195. https://doi.org/10.1016/j.geomphys.2024.105195 doi: 10.1016/j.geomphys.2024.105195
![]() |
[9] | Á. González-Prieto, Motivic theory of representation varieties via topological quantum field theories, preprint, arXiv: 1810.09714. https://doi.org/10.48550/arXiv.1810.09714 |
[10] |
Á. González-Prieto, Virtual classes of parabolic SL2(C)-character varieties, Adv. Math., 368 (2020), 107148. https://doi.org/10.1016/j.aim.2020.107148 doi: 10.1016/j.aim.2020.107148
![]() |
[11] |
C. Florentino, A. Nozad, A. Zamora, Serre polynomials of SLn- and PGLn-character varieties of free groups, J. Geom. Phys., 161 (2021), 104008. https://doi.org/10.1016/j.geomphys.2020.104008 doi: 10.1016/j.geomphys.2020.104008
![]() |
[12] |
D. Alfaya, Simplification of λ-ring expressions in the Grothendieck ring of Chow motives, Appl. Algebra Eng. Commun. Comput., 33 (2022), 599–628. https://doi.org/10.1007/s00200-022-00558-3 doi: 10.1007/s00200-022-00558-3
![]() |
[13] |
A. Meurer, C. P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, M. Rocklin, et al., Sympy: symbolic computing in python, PeerJ Comput. Sci., 3 (2017), e103, https://doi.org/10.7717/peerj-cs.103. doi: 10.7717/peerj-cs.103
![]() |
[14] | D. Knutson, λ-Rings and the Representation Theory of the Symmetric Group, Springer Berlin Heidelberg, Berlin, Heidelberg, 1973, https://doi.org/10.1007/BFb0069217. |
[15] | D. Grinberg, λ-rings: Definitions and basic properties, 2019. Available from: https://www.cip.ifi.lmu.de/grinberg/algebra/lambda.pdf. |
[16] |
J. Manin, Correspondences, motifs and monoidal transformations, Mat. Sb., 77 (1968), 475–507, https://doi.org/10.1070/SM1968v006n04ABEH001070 doi: 10.1070/SM1968v006n04ABEH001070
![]() |
[17] |
S. del Baño, On the Chow motive of some moduli spaces, J. Reine Angew. Math., 532 (2001), 105–132, https://doi.org/10.1515/crll.2001.019 doi: 10.1515/crll.2001.019
![]() |
[18] |
M. Larsen, V. A. Lunts, Rationality criteria for motivic zeta functions, Compos. Math., 140 (2004), 1537–1560. https://doi.org/10.1112/S0010437X04000764 doi: 10.1112/S0010437X04000764
![]() |
[19] |
F. Heinloth, A note on functional equations for zeta functions with values in Chow motives, Ann. Inst. Fourier, 57 (2007), 1927–1945. https://doi.org/10.5802/aif.2318 doi: 10.5802/aif.2318
![]() |
[20] |
M. Larsen, V. A. Lunts, Motivic measures and stable birational geometry, Moscow Math. J., 3 (2003), 85–95. https://doi.org/10.17323/1609-4514-2003-3-1-85-95 doi: 10.17323/1609-4514-2003-3-1-85-95
![]() |
[21] | M. Kapranov, The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups, preprint, arXiv: math/0001005. https://doi.org/10.48550/arXiv.math/0001005 |
[22] | J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1990, https://doi.org/10.1017/CBO9780511623646 |
[23] |
W. Y. Chuang, D. E. Diaconescu, G. Pan, Wallcrossing and cohomology of the moduli space of Hitchin pairs, Commun. Number Theory Phys., 5 (2011), 1–56, https://doi.org/10.4310/CNTP.2011.v5.n1.a1 doi: 10.4310/CNTP.2011.v5.n1.a1
![]() |
[24] |
D. Bergh, Motivic classes of some classifying stacks, J. London Math. Soc., 93 (2016), 219–243. https://doi.org/10.1112/jlms/jdv059 doi: 10.1112/jlms/jdv059
![]() |
[25] |
A. Dhillon, M. B. Young, The motive of the classifying stack of the orthogonal group, Mich. Math. J., 65 (2016), 189–197, https://doi.org/10.1307/mmj/1457101817 doi: 10.1307/mmj/1457101817
![]() |
[26] |
M. Talpo, A. Vistoli, The motivic class of the classifying stack of the special orthogonal group, Bull. London Math. Soc., 49 (2017), 818–823. https://doi.org/10.1112/blms.12072 doi: 10.1112/blms.12072
![]() |
[27] |
S. Mozgovoy, R. O'Gorman, Counting twisted Higgs bundles, Math. Res. Lett., 29 (2022), 1551–1570. https://doi.org/10.4310/MRL.2022.v29.n5.a11 doi: 10.4310/MRL.2022.v29.n5.a11
![]() |
[28] | M. Graffeo, S. Monavari, R. Moschetti, A. T. Ricolfi, The motive of the Hilbert scheme of points in all dimensions, preprint, arXiv: 2406.14321. https://doi.org/10.48550/arXiv.2406.14321 |
[29] | P. Aluffi, M. Marcolli, E. Nascimento, Explicit formulas for the Grothendieck class of ¯M0,n, preprint, arXiv: 2406.13095. https://doi.org/10.48550/arXiv.2406.13095 |