Citation: Hao Zhu, Nan Wang, Jonathan Z. Sun, Ras B. Pandey, Zheng Wang. Inferring the three-dimensional structures of the X-chromosome during X-inactivation[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 7384-7404. doi: 10.3934/mbe.2019369
[1] | Prince Peprah Osei, Ajay Jasra . Estimating option prices using multilevel particle filters. Big Data and Information Analytics, 2018, 3(2): 24-40. doi: 10.3934/bdia.2018005 |
[2] | Marco Tosato, Jianhong Wu . An application of PART to the Football Manager data for players clusters analyses to inform club team formation. Big Data and Information Analytics, 2018, 3(1): 43-54. doi: 10.3934/bdia.2018002 |
[3] | Bill Huajian Yang . Modeling path-dependent state transitions by a recurrent neural network. Big Data and Information Analytics, 2022, 7(0): 1-12. doi: 10.3934/bdia.2022001 |
[4] | John A. Doucette, Robin Cohen . A testbed to enable comparisons between competing approaches for computational social choice. Big Data and Information Analytics, 2016, 1(4): 309-340. doi: 10.3934/bdia.2016013 |
[5] |
Hamzeh Khazaei, Marios Fokaefs, Saeed Zareian, Nasim Beigi-Mohammadi, Brian Ramprasad, Mark Shtern, Purwa Gaikwad, Marin Litoiu .
How do I choose the right NoSQL solution? A comprehensive theoretical and experimental survey . Big Data and Information Analytics, 2016, 1(2): 185-216.
doi: 10.3934/bdia.2016004
|
[6] | Yanshuo Wang . Pattern analysis of continuous analytic wavelet transforms of the COVID19 spreading and death. Big Data and Information Analytics, 2020, 5(1): 29-46. doi: 10.3934/bdia.2020003 |
[7] | Wenxue Huang, Qitian Qiu . Forward Supervised Discretization for Multivariate with Categorical Responses. Big Data and Information Analytics, 2016, 1(2): 217-225. doi: 10.3934/bdia.2016005 |
[8] | Ricky Fok, Agnieszka Lasek, Jiye Li, Aijun An . Modeling daily guest count prediction. Big Data and Information Analytics, 2016, 1(4): 299-308. doi: 10.3934/bdia.2016012 |
[9] | Nick Cercone . What's the Big Deal About Big Data?. Big Data and Information Analytics, 2016, 1(1): 31-79. doi: 10.3934/bdia.2016.1.31 |
[10] | Pankaj Sharma, David Baglee, Jaime Campos, Erkki Jantunen . Big data collection and analysis for manufacturing organisations. Big Data and Information Analytics, 2017, 2(2): 127-139. doi: 10.3934/bdia.2017002 |
Discrete choice models (DCMs) have applications in many areas such as social sciences, health economics, transportation research and health systems (see [18,11,7]). DCMs focus on predicting consumer's choices in products or services. In many cases, they are time dependent but such research has not been implemented in practice. In this manuscript, we apply the models over a time sequence to quantify and measure consumer behavior and derive the utilities using Markov decision processes (MDPs). The change in utilities from the consumer is described. The utility is composed of a systematic component dependent on the key attributes of the product and a random component. [24] presents multiple models based on different assumptions about the distribution of the random component. In some of his suggested models, the error terms are assumed to be homogeneous and uncorrelated [24]. By assuming the covariates are generated under a normal distribution and the error terms under a generalized extreme value distribution, the output data is then modeled as binary and conditional logit. We will focus on the conditional logit assumption, but add a dependence structure through time and transition probabilities under MDPs
DCMs as described by the associated attribute-levels, are modeled at different cases. [12] and [14] provide three cases of the best worst scaling experiments: 1) best-worst object scaling, 2) best-worst attribute-level scaling or profile case and 3) best-worst discrete choice experiments (BWDCEs) or multi-profile case. We are interested in the profile case, also referred to as Case 2 best-worst scaling (BWS).
By scaling the attributes and the attribute-levels, it is possible to determine the utility impact on consumer behavior. We simulate data from [5] experimental design and compute the associated parameter estimates. The results of this simulation are used to project the expected discounted utility over time using MDPs.
The manuscript is organized as follows. In Section 2, we present the model design and properties for attribute-level best-worst experiments. Extensions of MDPs for Case 2 BWS with time dependent factor are provided in Section 3. Simulated data example of Case 2 BWS models over time and results are described in Section 4. A conclusion is provided in Section 5.
Assume we have a sample of
Uij=Vij+ϵij, | (2.1) |
where
The common distribution for the error terms comes from [17], where he proposed the type Ⅰ extreme value distribution or Gumbel distribution for the error terms, that leads to the conditional logit for modelling the data. [24] presented various models and associated assumptions in modelling the choice made by the consumers. To allow for dependence in choices, the error terms may be distributed as normal and that assumption allow the outcomes to be modeled under the probit or the generalized extreme value distribution.
Let
Yij={1, if ith individual chooses the jth alternative,0, otherwise. |
Using the results from the conditional logit, the utility associated with the various choices may be estimated. The error term of the utility would come from the type Ⅰ extreme value distribution. The systematic component in the utility of the choice is given as
Vij=x′ijβj, |
with
The utility is then given as in Equation (2.1). Hence, the probability of the
P(Yij=1)=exp(x′ijβj)Σxij′∈Cexp(x′ij′βj)=exp(Vij)Σxij′∈Cexp(Vij′), |
for
The above can be seen as a special approach at the intersection of information theory (entropy function) and the multinomial logit [1]. Following the setup as described by [23], there are
The choice task considered here is to look at the pairs of attribute-levels. For every profile the choice set (pairs of attribute levels) is then given as:
Cx={(x1,x2),...,(x1,xK),(x2,x3),...,(xK−1,xK),(x2,x1),...,(xK,xK−1)}, |
where the first attribute-level is considered to be the best and the second is the worst. From the profile
In our setup, we extend the state of choices as follows. Consider
x1=(x11,x12,...,x1K)x2=(x21,x22,...,x2K)⋮xG=(xG1,xG2,...,xGK). |
The corresponding choice pairs for the
[15] and [23] gave the best-worst choice probability for profile
BWxi(xij,xij′)=b(xij)b(xij′)∑∀(xij,xij′)∈Cxi,j≠j′b(xij)b(xij′), | (2.2) |
where
BWxi(xij,xij′)≥0,∀i,j,and∑∀(xi,xj)∈Cxi,j≠j′BWxi(xij,xij′)=1. |
With such assumptions, the consumer is expected to select choices with higher
Under random utility theory, the probability an alternative is based on the utility as defined in Equation (2.1). [12] provided the utility for Case 2 BWS models and the definition of the probability as given in Equation (2.2) under the conditional logit model. [13] and [16] described other measure of utility of parameters as a function of log of odds. Here we consider the choice set
Uijj′=Vijj′+ϵijj′, | (2.3) |
where
The systematic component can be expressed as,
Vijj′=Vij−Vij′=(xij−xij′)′β, |
for
Vij=βAi+βAixij. |
Under the conditional logit, the probability that
Pijj′=exp(Vijj′)∑∀(xi,xj)∈Cxi,j≠j′exp(Vijj′). | (2.4) |
Equation (2.2) with the choice of the scale function
b(xij)b(xij′)=exp(Vij−Vij′)=exp(Vijj′). |
We assume the error terms come from a Type Ⅰ extreme value distribution and use the conditional logit to estimate the parameter vector:
β′=(βA1,βA2,…,βAK,βA10,βA11,…,βA1l1−1,…,βAK0,…,βAKlK−1). |
[10] suggested connecting models, their parameters in estimating analysis and producing measures that are related to policy and practice. We include the time feature in Case 2 BWS model structure.
Markov decision processes (MDPs) are sequential decisions making processes. MDPs seek to determine the policy or set of decision rules, under which maximum reward over time is obtained. MDPs are defined by the set
Let
For DCMs, the reward is defined by the utility function,
The value function for DCMs comes from Bellman's equation and is given as:
Vt(xt,ϵt)=maxdt∈DE(T∑t′=tγt′−tU(xt′,dt′)+ϵ(d′t)|xt,ϵt), |
where the discount utility rate is given by
The decision rule used by a consumer is the one under which the utility is maximized, but assuming that a person's perceived utility is impacted by time. [6] reviewed the work done on the discount utility including consumers' discount time factor step. The discount utility rate weights the utility a person gains from an option at some ulterior time based on their current state at time
MDPs model the sequence of decisions based on expected rewards and transition probabilities. We defined state transition as
P(st+1|st)=P(st+1=s′|st=s)=Pss′, |
and the corresponding transition probability of the decision can be written as
maxdt∈DE(Ut(xt,ϵt)), |
for
Since no closed form expression for this dynamic optimization problem is available, the value functions are computed recursively via dynamic programming, under backwards recursion algorithm. First we compute,
VT(xT)=∑dT∈DU(xT,dT)P(dT), |
with
Next we move one time step back and compute,
VT−1(xT−1,dT−1)=U(xT−1,dT−1)+∑dT∈DγVT(xT)P(dT|dT−1), |
and another,
VT−2(xT−2,dT−2)=U(xT−2,dT−2)+∑dT∈DγVT−1(xT−1,dT−1)P(dT−1|dT−2). |
Following this pattern, we get:
Vt(xt,dt)=U(xt,dt)+∑dT∈DγVt+1(xt+1,dt+1)P(dt+1|dt), |
for
●
●
● The decision set depends on the choice set evaluated
● Transition probabilities depend on a set of parameters
● Transition probability matrices are dependent on time and on the choice set being evaluated.
There are
Let the choice pair
πqr=exp((xj−xj′)′θq|r), |
for
In Case 2 BWS models, a set of
Let
Ptiss′=Pt(s′i|si,θtsi), |
where
θtsi=(θtsiA1,…,θtsiAK,θtsiA11,…,θtsiAKlk) |
is the set of parameters guiding the transition from
The parameter estimates determined by fitting the conditional logit model, as described in Section 2, produced
ˆθtsi=(asiA1(t)ˆβA1,…,asiAK(t)ˆβAK,asiA11(t)ˆβA11,…,asiAKlk(t)ˆβAKlK), |
where
asi(t)=(asiA1(t),…,asiAK(t),asiA11(t),…,asiAKlk(t)), |
depends on the state
These
Given
Pt(s′ijj′|si,θtsi)=Pt(Utijj′>Utikk′,∀k≠k′∈Ci|si,θtsi)=Pt(Vtijj′+ϵtijj′>Vtikk′+ϵtikk′,∀k≠k′∈Ci|si,θtsi)=Pt(ϵtikk′<ϵtijj′+Vtijj′−Vtikk′,∀k≠k′∈Ci|si,θtsi), |
where
Pt(s′ijj′|si,θtsi)=Pt(Utijj′>Utikk′,∀k≠k′∈Ci|si,θtsi)=exp(Vtijj′)∑k,k′∈Ciexp(Vtikk′), |
where
The transition matrix is then a
Pti=(Pti11Pti12...Pti1τPti21Pti22...Pti2τ..................Ptiτ1Ptiτ2...Ptiττ)=(Ptiss′)τ×τ |
where
The transition matrix may be either stationary or dynamic in nature. In our definition of
The decision at time
We look at the effect of varying hyper-parameters over time to compute the transition probabilities, that is we use the previous parameter estimates as inputs into determining
For simplicity, we will first consider stationary transition matrices. That is,
In practical applications, decisions on how to act or proceed would be dictated under some expected utility. To that end, a backward recursive method is then used and a dynamic planning system that the process from its starting values/stages to its goal stage is provided.
We adapt our simulations of experiments to [5]. The latter conducted a Case 2 BWS type of study to examine the quality of life of seniors. They considered a balanced design with five attributes (attachment, security, role, enjoyment, and control) with four attribute levels (none, little, lot, and all) for attachment, security, and enjoyment and (none, few, many, all) for role and control. The attribute-levels are about the hypothetical quality of life states of 30 people of age 65 or more studied at one time. In their paper, they provide a partial look at their data and include the parameter estimates. Using that information, data was generated under such rationale and MDP simulations performed.
As mentioned in [23], a full factorial design, with a total of 1024 profile in this case, is costly and places an overwhelming choice task on the shoulders of the consumers. Therefore, an optimal fractional factorial design was considered. In doing the computations in R, we utilized a package DoE.design. A subset of 32 profiles, with
[5] | Simulated data | |||
Parameters | Estimates | SE | Estimates | SE |
Constant | -0.3067 | 0.0750 | 0.0500 | * |
Attachment | 0.8105 | 0.0803 | 0.8142 | * |
Security | * | * | * | * |
Enjoyment | 0.2632 | 0.1010 | 0.2842 | 0.0394 |
Role | 0.1908 | 0.0974 | 0.1611 | 0.0400 |
Control | 0.1076 | 0.0971 | 0.1148 | 0.0402 |
Attachment None | -1.9678 | 0.1129 | -1.8535 | 0.0548 |
Attachment Little | 0.1694 | 0.1012 | 0.1389 | 0.0532 |
Attachment Lot | 0.9053 | 0.0905 | 0.9210 | 0.0561 |
Attachment All | 0.8932 | * | 0.7936 | * |
Security None | -0.6123 | 0.1180 | -0.6262 | 0.0541 |
Security Little | -0.3761 | 0.1302 | -0.4077 | 0.0547 |
Security Lot | 0.0373 | 0.1153 | 0.1027 | 0.0543 |
Security All | 0.9511 | * | 0.9312 | * |
Enjoyment None | -0.8888 | 0.1286 | -0.8166 | 0.0542 |
Enjoyment Little | -0.3367 | 0.1632 | -0.3814 | 0.0544 |
Enjoyment Lot | 0.6561 | 0.1493 | 0.6844 | 0.0548 |
Enjoyment All | 0.5695 | * | 0.5136 | * |
Role None | -0.8956 | 0.1239 | -0.8903 | 0.0546 |
Role Few | -0.0277 | 0.1532 | -0.0079 | 0.0546 |
Role Many | 0.4435 | 0.1363 | 0.4007 | 0.0546 |
Role All | 0.4798 | * | 0.4975 | * |
Control None | -0.8085 | 0.1122 | -0.7254 | 0.0546 |
Control Few | 0.0835 | 0.1596 | 0.0755 | 0.0552 |
Control Many | 0.2780 | 0.1376 | 0.2592 | 0.0543 |
Control All | 0.4471 | * | 0.3907 | * |
Attribute and attribute-level data in the experiments are series of
lk∑i=1βi=0orβlk=−li−1∑j=1βj, |
for all
The probabilities to simulate choice behavior were computed using Equation (2.4). Using the estimates provided in Table 1, the values of
The value of
ˆVijj′=exp(ˆVij−ˆVij′)=exp((ˆβAj+ˆβAjxj)−(ˆβAj′+ˆβAj′xj′))=exp((0.8142−1.8535)−(0.2842+0.6884)). |
Obtaining these values for all choice pairs, the probabilities of choice selection were determined per profile and consumer choices were simulated. The value function, or expected utility, under our set up for the best-worst pairs from profile 1 are computed with the discount rate
The data was exported from R into the SAS® environment. Using the SAS® multinomial discrete choice procedure (MDC), the multinomial logit model was fitted to the data.
From the parameter estimates, we determine the choice pairs with the highest and lowest utilities for the experiment as in Equation (2.3). The choice pairs with the highest utilities are given in Table 2, and the pairs with the lowest utilities are given in Table 3. Capturing the attribute-level information in the choice pair, we consider the notation
Best Attribute | Level | Worst Attribute | Level | Utility |
1 | 3 | 5 | 1 | 8.9107 |
1 | 3 | 4 | 1 | 7.7977 |
1 | 4 | 5 | 1 | 7.2599 |
1 | 3 | 3 | 1 | 6.9108 |
1 | 4 | 4 | 1 | 6.6562 |
1 | 3 | 2 | 1 | 6.4402 |
Best Attribute | Level | Worst Attribute | Level | Utility |
5 | 1 | 1 | 3 | -4.3159 |
4 | 1 | 1 | 3 | -4.1167 |
5 | 1 | 1 | 4 | -3.9912 |
3 | 1 | 1 | 3 | -3.9082 |
4 | 1 | 1 | 4 | -3.8493 |
2 | 1 | 1 | 3 | -3.7974 |
We next conduct the Case 2 BWS experiment of choosing the pairs and describing the optimal variation over
For the simulated data of [5], we consider MDPs where the consumers are more likely to choose the same alternative at each time point. The transition parameters
θtsiAk={3|βAk|,if xij∈Ak,−3|βAk|,if xij′∈Ak,βAk, otherwise, |
and for the attribute-levels,
θtsiAkxik={3|βAkxik|,if xij=xik where xik∈Akxik,−3|βAkxik|,if xij′=xik where xik∈Akxik,βAkxik, otherwise, |
where
In this option, consumers acquire time dependent decisions with a different impact, making the transition probabilities dynamic. For the simulated data as in [5], we consider MDPs where in the consumers are more likely to choose the same alternative at each time point. The transition parameters
θtsiAk={3t|βAk|,if xij∈Ak,−3t|βAk|,if xij′∈Ak,βAk, otherwise, |
and for the attribute-levels,
θtsiAkxik={3t|βAkxik|,if xij=xik where xik∈Akxik,−3t|βAkxik|,if xij′=xik where xik∈Akxik,βAkxik, otherwise, |
where
The responses for choice sets are discussed here. Table 2 reveals that "Attachment" is one of the most important attributes for the models, matching the results obtained in [5]. Since only one level of "Attachment" is represented in each profile, we do not compare the attribute-levels with those found in [5].
Furthermore, the expected utilities are then obtained for each of the 32 profiles and each of the 20 choices. For summary purpose, the difference of the expected utility values,
The transition matrices are built for each of the options of previous subsections. For Option 1 the transition matrix is the same at all the time points since it is stationary, and it is given in Table 4. For Option 2, the transition matrix at time
0.518 | 0.000 | 0.038 | 0.001 | 0.081 | 0.000 | 0.192 | 0.000 | 0.000 | 0.069 | 0.001 | 0.032 | 0.002 | 0.014 | 0.011 | 0.002 | 0.026 | 0.001 | 0.012 | 0.002 | |
| 0.000 | 0.487 | 0.000 | 0.226 | 0.000 | 0.105 | 0.001 | 0.044 | 0.010 | 0.002 | 0.022 | 0.001 | 0.052 | 0.000 | 0.010 | 0.002 | 0.024 | 0.001 | 0.011 | 0.002 |
| 0.025 | 0.000 | 0.703 | 0.000 | 0.037 | 0.000 | 0.088 | 0.000 | 0.065 | 0.000 | 0.003 | 0.002 | 0.008 | 0.001 | 0.000 | 0.043 | 0.000 | 0.018 | 0.005 | 0.001 |
| 0.000 | 0.076 | 0.000 | 0.703 | 0.000 | 0.051 | 0.000 | 0.021 | 0.000 | 0.021 | 0.003 | 0.002 | 0.008 | 0.001 | 0.032 | 0.000 | 0.075 | 0.000 | 0.005 | 0.001 |
| 0.091 | 0.001 | 0.063 | 0.001 | 0.331 | 0.000 | 0.032 | 0.000 | 0.006 | 0.012 | 0.031 | 0.002 | 0.030 | 0.002 | 0.044 | 0.002 | 0.043 | 0.002 | 0.008 | 0.009 |
| 0.000 | 0.223 | 0.000 | 0.320 | 0.000 | 0.262 | 0.001 | 0.063 | 0.005 | 0.010 | 0.006 | 0.008 | 0.024 | 0.002 | 0.008 | 0.005 | 0.034 | 0.001 | 0.028 | 0.002 |
| 0.025 | 0.000 | 0.018 | 0.000 | 0.038 | 0.000 | 0.701 | 0.000 | 0.002 | 0.003 | 0.004 | 0.002 | 0.065 | 0.000 | 0.005 | 0.001 | 0.093 | 0.000 | 0.043 | 0.000 |
| 0.000 | 0.076 | 0.000 | 0.110 | 0.000 | 0.051 | 0.000 | 0.681 | 0.002 | 0.003 | 0.003 | 0.002 | 0.000 | 0.020 | 0.005 | 0.001 | 0.000 | 0.014 | 0.000 | 0.031 |
| 0.003 | 0.011 | 0.229 | 0.000 | 0.012 | 0.002 | 0.029 | 0.001 | 0.469 | 0.000 | 0.025 | 0.001 | 0.058 | 0.001 | 0.000 | 0.101 | 0.001 | 0.043 | 0.013 | 0.002 |
| 0.082 | 0.000 | 0.001 | 0.034 | 0.013 | 0.003 | 0.031 | 0.001 | 0.000 | 0.501 | 0.001 | 0.036 | 0.002 | 0.015 | 0.078 | 0.000 | 0.185 | 0.000 | 0.013 | 0.002 |
| 0.009 | 0.038 | 0.020 | 0.018 | 0.103 | 0.003 | 0.100 | 0.003 | 0.040 | 0.009 | 0.211 | 0.002 | 0.206 | 0.002 | 0.098 | 0.004 | 0.095 | 0.004 | 0.018 | 0.019 |
| 0.226 | 0.001 | 0.016 | 0.015 | 0.020 | 0.012 | 0.084 | 0.003 | 0.001 | 0.215 | 0.001 | 0.176 | 0.006 | 0.042 | 0.019 | 0.013 | 0.079 | 0.003 | 0.065 | 0.004 |
| 0.002 | 0.010 | 0.005 | 0.005 | 0.011 | 0.002 | 0.206 | 0.000 | 0.011 | 0.002 | 0.023 | 0.001 | 0.422 | 0.000 | 0.011 | 0.002 | 0.196 | 0.000 | 0.091 | 0.000 |
| 0.095 | 0.000 | 0.007 | 0.006 | 0.015 | 0.003 | 0.001 | 0.038 | 0.001 | 0.090 | 0.001 | 0.042 | 0.000 | 0.557 | 0.014 | 0.003 | 0.001 | 0.040 | 0.001 | 0.087 |
| 0.014 | 0.006 | 0.002 | 0.058 | 0.053 | 0.002 | 0.051 | 0.002 | 0.001 | 0.088 | 0.035 | 0.003 | 0.034 | 0.003 | 0.319 | 0.000 | 0.312 | 0.000 | 0.009 | 0.010 |
| 0.011 | 0.005 | 0.324 | 0.000 | 0.010 | 0.006 | 0.040 | 0.001 | 0.214 | 0.000 | 0.006 | 0.009 | 0.027 | 0.002 | 0.000 | 0.251 | 0.001 | 0.060 | 0.031 | 0.002 |
| 0.004 | 0.002 | 0.000 | 0.016 | 0.006 | 0.001 | 0.110 | 0.000 | 0.000 | 0.024 | 0.004 | 0.002 | 0.073 | 0.000 | 0.036 | 0.000 | 0.672 | 0.000 | 0.049 | 0.000 |
| 0.004 | 0.002 | 0.113 | 0.000 | 0.006 | 0.001 | 0.000 | 0.015 | 0.075 | 0.000 | 0.004 | 0.002 | 0.000 | 0.023 | 0.000 | 0.050 | 0.000 | 0.668 | 0.000 | 0.035 |
| 0.010 | 0.004 | 0.007 | 0.006 | 0.008 | 0.005 | 0.272 | 0.000 | 0.00 | 0.009 | 0.00 | 0.008 | 0.179 | 0.000 | 0.008 | 0.005 | 0.258 | 0.000 | 0.211 | 0.000 |
| 0.020 | 0.009 | 0.014 | 0.013 | 0.073 | 0.002 | 0.002 | 0.078 | 0.009 | 0.019 | 0.048 | 0.004 | 0.002 | 0.118 | 0.070 | 0.003 | 0.002 | 0.082 | 0.000 | 0.432 |
0.980 | 0.000 | 0.002 | 0.000 | 0.005 | 0.000 | 0.012 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| 0.000 | 0.974 | 0.000 | 0.015 | 0.000 | 0.007 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.999 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.999 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.048 | 0.000 | 0.033 | 0.000 | 0.748 | 0.000 | 0.170 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.129 | 0.000 | 0.185 | 0.000 | 0.650 | 0.000 | 0.036 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.999 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.998 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.973 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.007 | 0.000 | 0.003 | 0.000 | 0.000 |
| 0.001 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.980 | 0.000 | 0.000 | 0.000 | 0.000 | 0.005 | 0.000 | 0.012 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.031 | 0.001 | 0.001 | 0.012 | 0.000 | 0.003 | 0.000 | 0.033 | 0.000 | 0.737 | 0.000 | 0.167 | 0.000 | 0.011 | 0.000 | 0.003 | 0.000 | 0.000 | 0.002 |
| 0.180 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.002 | 0.000 | 0.000 | 0.171 | 0.000 | 0.600 | 0.000 | 0.033 | 0.000 | 0.002 | 0.002 | 0.000 | 0.008 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.962 | 0.000 | 0.000 | 0.000 | 0.015 | 0.000 | 0.007 | 0.000 |
| 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.989 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.005 |
| 0.000 | 0.000 | 0.000 | 0.032 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.048 | 0.000 | 0.000 | 0.000 | 0.000 | 0.749 | 0.000 | 0.170 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.193 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.127 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.643 | 0.000 | 0.036 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.998 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.998 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.168 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.111 | 0.000 | 0.000 | 0.000 | 0.160 | 0.000 | 0.561 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.037 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.055 | 0.000 | 0.000 | 0.000 | 0.039 | 0.000 | 0.868 |
1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.001 | 0.000 | 0.000 | 0.000 | 0.996 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.002 | 0.000 | 0.004 | 0.000 | 0.993 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.996 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.004 | 0.000 | 0.992 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.996 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.993 | 0.000 | 0.001 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.004 | 0.000 | 0.990 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.998 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
DCMs have applications in many areas. However, challenging issues are faced because of the large number of covariates, reliability of model, and the condition that consumer behavior is time dependent. By extending the idea of choices into time dependent and with transition probabilities process, we presented a time dependent Case 2 BWS model with evaluation under random utility analysis. Our study showed that clustering can be captured and the design can predict time stages needful to reach some target. With the simulated examples, dynamic programming algorithms reveal the highest and lowest utility trends.
The authors are very thankful to the support provided by the editor. The feedbacks and comments from the anonymous reviewers helped considerably improve the quality of the manuscript.
[1] | J. Dekker, K. Rippe, M. Dekker, et al., Capturing chromosome conformation, Science, 295 (2002), 1306–1311. |
[2] | M. Simonis, P. Klous, E. Splinter, et al., Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C), Nat. Genet., 38 (2006), 1348–1354. |
[3] | J. Dostie, T. A. Richmond, R. A. Arnaout, et al., Chromosome Conformation Capture Carbon Copy (5C): A massively parallel solution for mapping interactions between genomic elements, Genome Res., 16 (2006), 1299–1309. |
[4] | E. Lieberman-Aiden, N. L. van Berkum, L. Williams, et al., Comprehensive mapping of long-range interactions reveals folding principles of the human genome, Science, 326 (2009), 289–293. |
[5] | L. Harewood, K. Kishore, M. D. Eldridge, et al., Hi-C as a tool for precise detection and characterisation of chromosomal rearrangements and copy number variation in human tumours, Genome Biol., 18 (2017), 125. |
[6] | H. Won, L. de la Torre-Ubieta, J. L. Stein, et al., Chromosome conformation elucidates regulatory relationships in developing human brain, Nature, 538 (2016), 523–527. |
[7] | F. Jin, Y. Li, J. R. Dixon, et al., A high-resolution map of the three-dimensional chromatin interactome in human cells, Nature, 503 (2013), 290–294. |
[8] | J. R. Dixon, S. Selvaraj, F. Yue, et al., Topological domains in mammalian genomes identified by analysis of chromatin interactions, Nature, 485 (2012), 376–380. |
[9] | T. Nagano, Y. Lubling, T. J. Stevens, et al., Single-cell Hi-C reveals cell-to-cell variability in chromosome structure, Nature, 502 (2013), 59–64. |
[10] | H. Zhu and Z. Wang, SCL: A lattice-based approach to infer three-dimensional chromosome structures from single-cell Hi-C data, Bioinformatics, (2019). |
[11] | Z. Duan, M. Andronescu, K. Schutz, et al., A three-dimensional model of the yeast genome, Nature, 465 (2010), 363–367. |
[12] | D. Bau, A. Sanyal, B. R. Lajoie, et al., The three-dimensional folding of the alpha-globin gene domain reveals formation of chromatin globules, Nat. Struct. Mol. Biol., 18 (2011), 107–114. |
[13] | H. Tanizawa, O. Iwasaki, A. Tanaka, et al., Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation, Nucleic Acids Res., 38 (2010), 8164–8177. |
[14] | Z. Zhang, G. Li, K. C. Toh, et al., 3D chromosome modeling with semi-definite programming and Hi-C data, J. Comput. Biol., 20 (2013), 831–846. |
[15] | S. Ben-Elazar, Z. Yakhini and I. Yanai, Spatial localization of co-regulated genes exceeds genomic gene clustering in the Saccharomyces cerevisiae genome, Nucleic Acids Res., 41 (2013), 2191–2201. |
[16] | N. Varoquaux, F. Ay, W. S. Noble, et al., A statistical approach for inferring the 3D structure of the genome, Bioinformatics, 30 (2014), i26–33. |
[17] | M. Hu, K. Deng, Z. Qin, et al., Bayesian inference of spatial organizations of chromosomes, PLoS Comput. Biol., 9 (2013), e1002893. |
[18] | C. Zou, Y. Zhang and Z. Ouyang, HSA: Integrating multi-track Hi-C data for genome-scale reconstruction of 3D chromatin structure, Genome Biol., 17 (2016), 40. |
[19] | O. Oluwadare, Y. Zhang and J. Cheng, A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data, BMC Genomics, 19 (2018), 161. |
[20] | D. W. Heermann, H. Jerabek, L. Liu, et al., A model for the 3D chromatin architecture of pro and eukaryotes, Methods, 58 (2012), 307–314. |
[21] | P. M. Diesinger and D. W. Heermann, Monte Carlo Simulations indicate that Chromati: Nanostructure is accessible by Light Microscopy, PMC Biophys, 3 (2010), 11. |
[22] | M. F. Lyon, Gene action in the X-chromosome of the mouse (Mus musculus L.), Nature, 190 (1961), 372–373. |
[23] | C. J. Brown, B. D. Hendrich, J. L. Rupert, et al., The human XIST gene: Analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus, Cell, 71 (1992), 527–542. |
[24] | N. Brockdorff, A. Ashworth, G. F. Kay, et al., The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus, Cell, 71 (1992), 515–526. |
[25] | C. J. Brown, A. Ballabio, J. L. Rupert, et al., A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome, Nature, 349 (1991), 38–44. |
[26] | N. Brockdorff, A. Ashworth, G. F. Kay, et al., Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome, Nature, 351 (1991), 329–331. |
[27] | R. M. Boumil and J. T. Lee, Forty years of decoding the silence in X-chromosome inactivation, Hum. Mol. Genet., 10 (2001), 2225–2232. |
[28] | G. Bonora and C. M. Disteche, Structural aspects of the inactive X chromosome, Philos Trans. R Soc. Lond. B Biol. Sci., 372 (2017). |
[29] | C. Naughton, D. Sproul, C. Hamilton, et al., Analysis of active and inactive X chromosome architecture reveals the independent organization of 30 nm and large-scale chromatin structures, Mol. Cell, 40 (2010), 397–409. |
[30] | A. Minajigi, J. Froberg, C. Wei, et al., Chromosomes. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation, Science, 349 (2015). |
[31] | E. P. Nora, B. R. Lajoie, E. G. Schulz, et al., Spatial partitioning of the regulatory landscape of the X-inactivation centre, Nature, 485 (2012), 381–385. |
[32] | X. Deng, W. Ma, V. Ramani, et al., Bipartite structure of the inactive mouse X chromosome, Genome Biol., 16 (2015), 152. |
[33] | J. Chaumeil, S. Augui, J. C. Chow, et al., Combined immunofluorescence, RNA fluorescent in situ hybridization, and DNA fluorescent in situ hybridization to study chromatin changes, transcriptional activity, nuclear organization and X-chromosome inactivation, Methods Mol. Biol., 463 (2008), 297–308. |
[34] | J. M. Engreitz, A. Pandya-Jones, P. McDonel, et al., The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome, Science, 341 (2013), 1237973. |
[35] | L. Giorgetti, B. R. Lajoie, A. C. Carter, et al., Structural organization of the inactive X chromosome in the mouse, Nature, 535 (2016), 575–579. |
[36] | R. B. Pandey and B. L. Farmer, Conformational response to solvent interaction and temperature of a protein (Histone h3.1) by a multi-grained monte carlo simulation, PLoS One, 8 (2013), e76069. |
[37] | K. Binder, Monte Carlo and molecular dynamics simulations in polymer science. New York:Oxford University Press. 1995, xiv, pp587. |
[38] | S. Kirkpatrick, C. D. Gelatt Jr. and M. P. Vecchi, Optimization by simulated annealing, Science, 220 (1983), 671–680. |
[39] | Z. Wang, J. Eickholt and J. Cheng, APOLLO: A quality assessment service for single andmultiple protein models, Bioinformatics, 27 (2011), 1715–1716. |
[40] | Y. Zhang and J. Skolnick, TM-align: A protein structure alignment algorithm based on theTM-score, Nucleic Acids Res., 33 (2005), 2302–2309. |
[41] | A. Kryshtafovych, A. Barbato, K. Fidelis, et al., Assessment of the assessment: Evaluation of themodel quality estimates in CASP10, Proteins, 82 Suppl 2 (2014), 112–126. |
[5] | Simulated data | |||
Parameters | Estimates | SE | Estimates | SE |
Constant | -0.3067 | 0.0750 | 0.0500 | * |
Attachment | 0.8105 | 0.0803 | 0.8142 | * |
Security | * | * | * | * |
Enjoyment | 0.2632 | 0.1010 | 0.2842 | 0.0394 |
Role | 0.1908 | 0.0974 | 0.1611 | 0.0400 |
Control | 0.1076 | 0.0971 | 0.1148 | 0.0402 |
Attachment None | -1.9678 | 0.1129 | -1.8535 | 0.0548 |
Attachment Little | 0.1694 | 0.1012 | 0.1389 | 0.0532 |
Attachment Lot | 0.9053 | 0.0905 | 0.9210 | 0.0561 |
Attachment All | 0.8932 | * | 0.7936 | * |
Security None | -0.6123 | 0.1180 | -0.6262 | 0.0541 |
Security Little | -0.3761 | 0.1302 | -0.4077 | 0.0547 |
Security Lot | 0.0373 | 0.1153 | 0.1027 | 0.0543 |
Security All | 0.9511 | * | 0.9312 | * |
Enjoyment None | -0.8888 | 0.1286 | -0.8166 | 0.0542 |
Enjoyment Little | -0.3367 | 0.1632 | -0.3814 | 0.0544 |
Enjoyment Lot | 0.6561 | 0.1493 | 0.6844 | 0.0548 |
Enjoyment All | 0.5695 | * | 0.5136 | * |
Role None | -0.8956 | 0.1239 | -0.8903 | 0.0546 |
Role Few | -0.0277 | 0.1532 | -0.0079 | 0.0546 |
Role Many | 0.4435 | 0.1363 | 0.4007 | 0.0546 |
Role All | 0.4798 | * | 0.4975 | * |
Control None | -0.8085 | 0.1122 | -0.7254 | 0.0546 |
Control Few | 0.0835 | 0.1596 | 0.0755 | 0.0552 |
Control Many | 0.2780 | 0.1376 | 0.2592 | 0.0543 |
Control All | 0.4471 | * | 0.3907 | * |
Best Attribute | Level | Worst Attribute | Level | Utility |
1 | 3 | 5 | 1 | 8.9107 |
1 | 3 | 4 | 1 | 7.7977 |
1 | 4 | 5 | 1 | 7.2599 |
1 | 3 | 3 | 1 | 6.9108 |
1 | 4 | 4 | 1 | 6.6562 |
1 | 3 | 2 | 1 | 6.4402 |
Best Attribute | Level | Worst Attribute | Level | Utility |
5 | 1 | 1 | 3 | -4.3159 |
4 | 1 | 1 | 3 | -4.1167 |
5 | 1 | 1 | 4 | -3.9912 |
3 | 1 | 1 | 3 | -3.9082 |
4 | 1 | 1 | 4 | -3.8493 |
2 | 1 | 1 | 3 | -3.7974 |
0.518 | 0.000 | 0.038 | 0.001 | 0.081 | 0.000 | 0.192 | 0.000 | 0.000 | 0.069 | 0.001 | 0.032 | 0.002 | 0.014 | 0.011 | 0.002 | 0.026 | 0.001 | 0.012 | 0.002 | |
| 0.000 | 0.487 | 0.000 | 0.226 | 0.000 | 0.105 | 0.001 | 0.044 | 0.010 | 0.002 | 0.022 | 0.001 | 0.052 | 0.000 | 0.010 | 0.002 | 0.024 | 0.001 | 0.011 | 0.002 |
| 0.025 | 0.000 | 0.703 | 0.000 | 0.037 | 0.000 | 0.088 | 0.000 | 0.065 | 0.000 | 0.003 | 0.002 | 0.008 | 0.001 | 0.000 | 0.043 | 0.000 | 0.018 | 0.005 | 0.001 |
| 0.000 | 0.076 | 0.000 | 0.703 | 0.000 | 0.051 | 0.000 | 0.021 | 0.000 | 0.021 | 0.003 | 0.002 | 0.008 | 0.001 | 0.032 | 0.000 | 0.075 | 0.000 | 0.005 | 0.001 |
| 0.091 | 0.001 | 0.063 | 0.001 | 0.331 | 0.000 | 0.032 | 0.000 | 0.006 | 0.012 | 0.031 | 0.002 | 0.030 | 0.002 | 0.044 | 0.002 | 0.043 | 0.002 | 0.008 | 0.009 |
| 0.000 | 0.223 | 0.000 | 0.320 | 0.000 | 0.262 | 0.001 | 0.063 | 0.005 | 0.010 | 0.006 | 0.008 | 0.024 | 0.002 | 0.008 | 0.005 | 0.034 | 0.001 | 0.028 | 0.002 |
| 0.025 | 0.000 | 0.018 | 0.000 | 0.038 | 0.000 | 0.701 | 0.000 | 0.002 | 0.003 | 0.004 | 0.002 | 0.065 | 0.000 | 0.005 | 0.001 | 0.093 | 0.000 | 0.043 | 0.000 |
| 0.000 | 0.076 | 0.000 | 0.110 | 0.000 | 0.051 | 0.000 | 0.681 | 0.002 | 0.003 | 0.003 | 0.002 | 0.000 | 0.020 | 0.005 | 0.001 | 0.000 | 0.014 | 0.000 | 0.031 |
| 0.003 | 0.011 | 0.229 | 0.000 | 0.012 | 0.002 | 0.029 | 0.001 | 0.469 | 0.000 | 0.025 | 0.001 | 0.058 | 0.001 | 0.000 | 0.101 | 0.001 | 0.043 | 0.013 | 0.002 |
| 0.082 | 0.000 | 0.001 | 0.034 | 0.013 | 0.003 | 0.031 | 0.001 | 0.000 | 0.501 | 0.001 | 0.036 | 0.002 | 0.015 | 0.078 | 0.000 | 0.185 | 0.000 | 0.013 | 0.002 |
| 0.009 | 0.038 | 0.020 | 0.018 | 0.103 | 0.003 | 0.100 | 0.003 | 0.040 | 0.009 | 0.211 | 0.002 | 0.206 | 0.002 | 0.098 | 0.004 | 0.095 | 0.004 | 0.018 | 0.019 |
| 0.226 | 0.001 | 0.016 | 0.015 | 0.020 | 0.012 | 0.084 | 0.003 | 0.001 | 0.215 | 0.001 | 0.176 | 0.006 | 0.042 | 0.019 | 0.013 | 0.079 | 0.003 | 0.065 | 0.004 |
| 0.002 | 0.010 | 0.005 | 0.005 | 0.011 | 0.002 | 0.206 | 0.000 | 0.011 | 0.002 | 0.023 | 0.001 | 0.422 | 0.000 | 0.011 | 0.002 | 0.196 | 0.000 | 0.091 | 0.000 |
| 0.095 | 0.000 | 0.007 | 0.006 | 0.015 | 0.003 | 0.001 | 0.038 | 0.001 | 0.090 | 0.001 | 0.042 | 0.000 | 0.557 | 0.014 | 0.003 | 0.001 | 0.040 | 0.001 | 0.087 |
| 0.014 | 0.006 | 0.002 | 0.058 | 0.053 | 0.002 | 0.051 | 0.002 | 0.001 | 0.088 | 0.035 | 0.003 | 0.034 | 0.003 | 0.319 | 0.000 | 0.312 | 0.000 | 0.009 | 0.010 |
| 0.011 | 0.005 | 0.324 | 0.000 | 0.010 | 0.006 | 0.040 | 0.001 | 0.214 | 0.000 | 0.006 | 0.009 | 0.027 | 0.002 | 0.000 | 0.251 | 0.001 | 0.060 | 0.031 | 0.002 |
| 0.004 | 0.002 | 0.000 | 0.016 | 0.006 | 0.001 | 0.110 | 0.000 | 0.000 | 0.024 | 0.004 | 0.002 | 0.073 | 0.000 | 0.036 | 0.000 | 0.672 | 0.000 | 0.049 | 0.000 |
| 0.004 | 0.002 | 0.113 | 0.000 | 0.006 | 0.001 | 0.000 | 0.015 | 0.075 | 0.000 | 0.004 | 0.002 | 0.000 | 0.023 | 0.000 | 0.050 | 0.000 | 0.668 | 0.000 | 0.035 |
| 0.010 | 0.004 | 0.007 | 0.006 | 0.008 | 0.005 | 0.272 | 0.000 | 0.00 | 0.009 | 0.00 | 0.008 | 0.179 | 0.000 | 0.008 | 0.005 | 0.258 | 0.000 | 0.211 | 0.000 |
| 0.020 | 0.009 | 0.014 | 0.013 | 0.073 | 0.002 | 0.002 | 0.078 | 0.009 | 0.019 | 0.048 | 0.004 | 0.002 | 0.118 | 0.070 | 0.003 | 0.002 | 0.082 | 0.000 | 0.432 |
0.980 | 0.000 | 0.002 | 0.000 | 0.005 | 0.000 | 0.012 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| 0.000 | 0.974 | 0.000 | 0.015 | 0.000 | 0.007 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.999 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.999 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.048 | 0.000 | 0.033 | 0.000 | 0.748 | 0.000 | 0.170 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.129 | 0.000 | 0.185 | 0.000 | 0.650 | 0.000 | 0.036 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.999 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.998 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.973 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.007 | 0.000 | 0.003 | 0.000 | 0.000 |
| 0.001 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.980 | 0.000 | 0.000 | 0.000 | 0.000 | 0.005 | 0.000 | 0.012 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.031 | 0.001 | 0.001 | 0.012 | 0.000 | 0.003 | 0.000 | 0.033 | 0.000 | 0.737 | 0.000 | 0.167 | 0.000 | 0.011 | 0.000 | 0.003 | 0.000 | 0.000 | 0.002 |
| 0.180 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.002 | 0.000 | 0.000 | 0.171 | 0.000 | 0.600 | 0.000 | 0.033 | 0.000 | 0.002 | 0.002 | 0.000 | 0.008 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.962 | 0.000 | 0.000 | 0.000 | 0.015 | 0.000 | 0.007 | 0.000 |
| 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.989 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.005 |
| 0.000 | 0.000 | 0.000 | 0.032 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.048 | 0.000 | 0.000 | 0.000 | 0.000 | 0.749 | 0.000 | 0.170 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.193 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.127 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.643 | 0.000 | 0.036 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.998 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.998 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.168 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.111 | 0.000 | 0.000 | 0.000 | 0.160 | 0.000 | 0.561 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.037 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.055 | 0.000 | 0.000 | 0.000 | 0.039 | 0.000 | 0.868 |
1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.001 | 0.000 | 0.000 | 0.000 | 0.996 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.002 | 0.000 | 0.004 | 0.000 | 0.993 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.996 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.004 | 0.000 | 0.992 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.996 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.993 | 0.000 | 0.001 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.004 | 0.000 | 0.990 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.998 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
[5] | Simulated data | |||
Parameters | Estimates | SE | Estimates | SE |
Constant | -0.3067 | 0.0750 | 0.0500 | * |
Attachment | 0.8105 | 0.0803 | 0.8142 | * |
Security | * | * | * | * |
Enjoyment | 0.2632 | 0.1010 | 0.2842 | 0.0394 |
Role | 0.1908 | 0.0974 | 0.1611 | 0.0400 |
Control | 0.1076 | 0.0971 | 0.1148 | 0.0402 |
Attachment None | -1.9678 | 0.1129 | -1.8535 | 0.0548 |
Attachment Little | 0.1694 | 0.1012 | 0.1389 | 0.0532 |
Attachment Lot | 0.9053 | 0.0905 | 0.9210 | 0.0561 |
Attachment All | 0.8932 | * | 0.7936 | * |
Security None | -0.6123 | 0.1180 | -0.6262 | 0.0541 |
Security Little | -0.3761 | 0.1302 | -0.4077 | 0.0547 |
Security Lot | 0.0373 | 0.1153 | 0.1027 | 0.0543 |
Security All | 0.9511 | * | 0.9312 | * |
Enjoyment None | -0.8888 | 0.1286 | -0.8166 | 0.0542 |
Enjoyment Little | -0.3367 | 0.1632 | -0.3814 | 0.0544 |
Enjoyment Lot | 0.6561 | 0.1493 | 0.6844 | 0.0548 |
Enjoyment All | 0.5695 | * | 0.5136 | * |
Role None | -0.8956 | 0.1239 | -0.8903 | 0.0546 |
Role Few | -0.0277 | 0.1532 | -0.0079 | 0.0546 |
Role Many | 0.4435 | 0.1363 | 0.4007 | 0.0546 |
Role All | 0.4798 | * | 0.4975 | * |
Control None | -0.8085 | 0.1122 | -0.7254 | 0.0546 |
Control Few | 0.0835 | 0.1596 | 0.0755 | 0.0552 |
Control Many | 0.2780 | 0.1376 | 0.2592 | 0.0543 |
Control All | 0.4471 | * | 0.3907 | * |
Best Attribute | Level | Worst Attribute | Level | Utility |
1 | 3 | 5 | 1 | 8.9107 |
1 | 3 | 4 | 1 | 7.7977 |
1 | 4 | 5 | 1 | 7.2599 |
1 | 3 | 3 | 1 | 6.9108 |
1 | 4 | 4 | 1 | 6.6562 |
1 | 3 | 2 | 1 | 6.4402 |
Best Attribute | Level | Worst Attribute | Level | Utility |
5 | 1 | 1 | 3 | -4.3159 |
4 | 1 | 1 | 3 | -4.1167 |
5 | 1 | 1 | 4 | -3.9912 |
3 | 1 | 1 | 3 | -3.9082 |
4 | 1 | 1 | 4 | -3.8493 |
2 | 1 | 1 | 3 | -3.7974 |
0.518 | 0.000 | 0.038 | 0.001 | 0.081 | 0.000 | 0.192 | 0.000 | 0.000 | 0.069 | 0.001 | 0.032 | 0.002 | 0.014 | 0.011 | 0.002 | 0.026 | 0.001 | 0.012 | 0.002 | |
| 0.000 | 0.487 | 0.000 | 0.226 | 0.000 | 0.105 | 0.001 | 0.044 | 0.010 | 0.002 | 0.022 | 0.001 | 0.052 | 0.000 | 0.010 | 0.002 | 0.024 | 0.001 | 0.011 | 0.002 |
| 0.025 | 0.000 | 0.703 | 0.000 | 0.037 | 0.000 | 0.088 | 0.000 | 0.065 | 0.000 | 0.003 | 0.002 | 0.008 | 0.001 | 0.000 | 0.043 | 0.000 | 0.018 | 0.005 | 0.001 |
| 0.000 | 0.076 | 0.000 | 0.703 | 0.000 | 0.051 | 0.000 | 0.021 | 0.000 | 0.021 | 0.003 | 0.002 | 0.008 | 0.001 | 0.032 | 0.000 | 0.075 | 0.000 | 0.005 | 0.001 |
| 0.091 | 0.001 | 0.063 | 0.001 | 0.331 | 0.000 | 0.032 | 0.000 | 0.006 | 0.012 | 0.031 | 0.002 | 0.030 | 0.002 | 0.044 | 0.002 | 0.043 | 0.002 | 0.008 | 0.009 |
| 0.000 | 0.223 | 0.000 | 0.320 | 0.000 | 0.262 | 0.001 | 0.063 | 0.005 | 0.010 | 0.006 | 0.008 | 0.024 | 0.002 | 0.008 | 0.005 | 0.034 | 0.001 | 0.028 | 0.002 |
| 0.025 | 0.000 | 0.018 | 0.000 | 0.038 | 0.000 | 0.701 | 0.000 | 0.002 | 0.003 | 0.004 | 0.002 | 0.065 | 0.000 | 0.005 | 0.001 | 0.093 | 0.000 | 0.043 | 0.000 |
| 0.000 | 0.076 | 0.000 | 0.110 | 0.000 | 0.051 | 0.000 | 0.681 | 0.002 | 0.003 | 0.003 | 0.002 | 0.000 | 0.020 | 0.005 | 0.001 | 0.000 | 0.014 | 0.000 | 0.031 |
| 0.003 | 0.011 | 0.229 | 0.000 | 0.012 | 0.002 | 0.029 | 0.001 | 0.469 | 0.000 | 0.025 | 0.001 | 0.058 | 0.001 | 0.000 | 0.101 | 0.001 | 0.043 | 0.013 | 0.002 |
| 0.082 | 0.000 | 0.001 | 0.034 | 0.013 | 0.003 | 0.031 | 0.001 | 0.000 | 0.501 | 0.001 | 0.036 | 0.002 | 0.015 | 0.078 | 0.000 | 0.185 | 0.000 | 0.013 | 0.002 |
| 0.009 | 0.038 | 0.020 | 0.018 | 0.103 | 0.003 | 0.100 | 0.003 | 0.040 | 0.009 | 0.211 | 0.002 | 0.206 | 0.002 | 0.098 | 0.004 | 0.095 | 0.004 | 0.018 | 0.019 |
| 0.226 | 0.001 | 0.016 | 0.015 | 0.020 | 0.012 | 0.084 | 0.003 | 0.001 | 0.215 | 0.001 | 0.176 | 0.006 | 0.042 | 0.019 | 0.013 | 0.079 | 0.003 | 0.065 | 0.004 |
| 0.002 | 0.010 | 0.005 | 0.005 | 0.011 | 0.002 | 0.206 | 0.000 | 0.011 | 0.002 | 0.023 | 0.001 | 0.422 | 0.000 | 0.011 | 0.002 | 0.196 | 0.000 | 0.091 | 0.000 |
| 0.095 | 0.000 | 0.007 | 0.006 | 0.015 | 0.003 | 0.001 | 0.038 | 0.001 | 0.090 | 0.001 | 0.042 | 0.000 | 0.557 | 0.014 | 0.003 | 0.001 | 0.040 | 0.001 | 0.087 |
| 0.014 | 0.006 | 0.002 | 0.058 | 0.053 | 0.002 | 0.051 | 0.002 | 0.001 | 0.088 | 0.035 | 0.003 | 0.034 | 0.003 | 0.319 | 0.000 | 0.312 | 0.000 | 0.009 | 0.010 |
| 0.011 | 0.005 | 0.324 | 0.000 | 0.010 | 0.006 | 0.040 | 0.001 | 0.214 | 0.000 | 0.006 | 0.009 | 0.027 | 0.002 | 0.000 | 0.251 | 0.001 | 0.060 | 0.031 | 0.002 |
| 0.004 | 0.002 | 0.000 | 0.016 | 0.006 | 0.001 | 0.110 | 0.000 | 0.000 | 0.024 | 0.004 | 0.002 | 0.073 | 0.000 | 0.036 | 0.000 | 0.672 | 0.000 | 0.049 | 0.000 |
| 0.004 | 0.002 | 0.113 | 0.000 | 0.006 | 0.001 | 0.000 | 0.015 | 0.075 | 0.000 | 0.004 | 0.002 | 0.000 | 0.023 | 0.000 | 0.050 | 0.000 | 0.668 | 0.000 | 0.035 |
| 0.010 | 0.004 | 0.007 | 0.006 | 0.008 | 0.005 | 0.272 | 0.000 | 0.00 | 0.009 | 0.00 | 0.008 | 0.179 | 0.000 | 0.008 | 0.005 | 0.258 | 0.000 | 0.211 | 0.000 |
| 0.020 | 0.009 | 0.014 | 0.013 | 0.073 | 0.002 | 0.002 | 0.078 | 0.009 | 0.019 | 0.048 | 0.004 | 0.002 | 0.118 | 0.070 | 0.003 | 0.002 | 0.082 | 0.000 | 0.432 |
0.980 | 0.000 | 0.002 | 0.000 | 0.005 | 0.000 | 0.012 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| 0.000 | 0.974 | 0.000 | 0.015 | 0.000 | 0.007 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.999 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.999 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.048 | 0.000 | 0.033 | 0.000 | 0.748 | 0.000 | 0.170 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.129 | 0.000 | 0.185 | 0.000 | 0.650 | 0.000 | 0.036 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.999 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.998 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.973 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.007 | 0.000 | 0.003 | 0.000 | 0.000 |
| 0.001 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.980 | 0.000 | 0.000 | 0.000 | 0.000 | 0.005 | 0.000 | 0.012 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.031 | 0.001 | 0.001 | 0.012 | 0.000 | 0.003 | 0.000 | 0.033 | 0.000 | 0.737 | 0.000 | 0.167 | 0.000 | 0.011 | 0.000 | 0.003 | 0.000 | 0.000 | 0.002 |
| 0.180 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.002 | 0.000 | 0.000 | 0.171 | 0.000 | 0.600 | 0.000 | 0.033 | 0.000 | 0.002 | 0.002 | 0.000 | 0.008 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.962 | 0.000 | 0.000 | 0.000 | 0.015 | 0.000 | 0.007 | 0.000 |
| 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.989 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.005 |
| 0.000 | 0.000 | 0.000 | 0.032 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.048 | 0.000 | 0.000 | 0.000 | 0.000 | 0.749 | 0.000 | 0.170 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.193 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.127 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.643 | 0.000 | 0.036 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.998 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.998 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.168 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.111 | 0.000 | 0.000 | 0.000 | 0.160 | 0.000 | 0.561 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.037 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.055 | 0.000 | 0.000 | 0.000 | 0.039 | 0.000 | 0.868 |
1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.001 | 0.000 | 0.000 | 0.000 | 0.996 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.002 | 0.000 | 0.004 | 0.000 | 0.993 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.996 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.004 | 0.000 | 0.992 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.996 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.993 | 0.000 | 0.001 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.004 | 0.000 | 0.990 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.998 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |