Mathematical Biosciences and Engineering, 2014, 11(3): 573-597. doi: 10.3934/mbe.2014.11.573.

Primary: 62F15, 65C35, 92D25; Secondary: 65C30.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A Rao-Blackwellized particle filter for joint parameter estimation and biomass tracking in a stochastic predator-prey system

1. Departamento de Física Aplicada, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada
2. Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25125 Brescia
3. CNR-IMATI, Via Bassini 15, 20133 Milano
4. Departamento de Teoría de la Señal y Comunicaciones, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid

Functional response estimation and population tracking in predator-prey systems are critical problems in ecology. In this paper we consider a stochastic predator-prey system with a Lotka-Volterra functional response and propose a particle filtering method for: (a) estimating the behavioral parameter representing the rate of effective search per predator in the functional responseand (b) forecasting the population biomass using field data. In particular, the proposed technique combines a sequential Monte Carlo sampling scheme for tracking the time-varying biomass with the analytical integration of the unknown behavioral parameter. In order to assess the performance of the method, we show results for both synthetic and observed data collected in an acarine predator-prey system, namely the pest mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis.
  Figure/Table
  Supplementary
  Article Metrics

Keywords state-space model; Prey-predator system; parameter estimation; Rao-Blackwellized particle filter.; population tracking

Citation: Laura Martín-Fernández, Gianni Gilioli, Ettore Lanzarone, Joaquín Míguez, Sara Pasquali, Fabrizio Ruggeri, Diego P. Ruiz. A Rao-Blackwellized particle filter for joint parameter estimation and biomass tracking in a stochastic predator-prey system. Mathematical Biosciences and Engineering, 2014, 11(3): 573-597. doi: 10.3934/mbe.2014.11.573

References

  • 1. Econometrica, 70 (2002), 223-262.
  • 2. Englewood Cliffs, 1979.
  • 3. Journal of the Royal Statistical Society Series B-Statistical Methodology, 72 (2010), 269-342.
  • 4. Proceedings of the IEEE, 92 (2004), 423-438.
  • 5. Springer, 2008.
  • 6. J. Roy. Stat. Soc. Ser. B, 68 (2006), 333-382.
  • 7. Ecological Modelling, 170 (2003), 155-171.
  • 8. Proceedings of the IEEE, 95 (2007), 899-924.
  • 9. IEE Proceedings - Radar, Sonar and Navigation, 146 (1999), 2-7.
  • 10. Ecology, 75 (1994), 1254-1264.
  • 11. Journal of the Royal Statistics Society B, 62 (2000), 493-508.
  • 12. Journal of the Royal Statistical Society: Series B (Statistical Methodology), (2012).
  • 13. Academic Press, New York, 1999.
  • 14. in ISPA 2005: Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005, 64-69.
  • 15. Springer, New York (USA), 2001.
  • 16. Statistics and Computing, 10 (2000), 197-208.
  • 17. Environmetrics, 17 (2006), 435-455.
  • 18. Environmetrics, 22 (2011), 501-515.
  • 19. Ecology, 92 (2011), 568-575.
  • 20. J. Bus. Econ. Stat., 20 (2002), 297-316.
  • 21. Econometrica, 69 (2001), 959-993.
  • 22. J. Bus. Econ. Stat., 19 (2001), 177-191.
  • 23. Bulletin of Mathematical Biology, 70 (2008), 358-381.
  • 24. Mathematical Biosciences and Engineering, 9 (2012), 75-96.
  • 25. in Atti del Convegno "La difesa delle colture in agricoltura biologica" - Notiziario sulla protezione delle piante, vol. 13, 2001.
  • 26. Biometrics, 61 (2005), 781-788.
  • 27. Interface Focus, 1 (2011), 807-820.
  • 28. IEE Proceedings-F, 140 (1993), 107-113.
  • 29. Proc. Roy. Soc. Lond. B, 267 (2000), 1611-1620.
  • 30. Journal of Basic Engineering, 82 (1960), 35-45.
  • 31. Ecology, 93 (2012), 256-263.
  • 32. in Sequential Monte Carlo Methods in Practice (eds. A. Doucet, N. de Freitas and N. Gordon), chap. 10, Springer, 2001, 197-223.
  • 33. Journal of the American Statistical Association, 93 (1998), 1032-1044.
  • 34. Statistics and Computing.
  • 35. Springer, 2004.
  • 36. Ecology, 77 (1996), 337-349.
  • 37. Scand. J. Stat., 22 (1995), 55-71.
  • 38. Journal of the American statistical association, 94 (1999), 590-599.
  • 39. Arnold, London, 1999.
  • 40. Springer, 2004.
  • 41. Ecological Applications, 12 (2002), 927-936.
  • 42. Int. Stat. Rev., 72 (2004), 337-354.
  • 43. J. Comput. Graph. Stat., 16 (2007).
  • 44. Environmental Entomology, 32 (2003), 151-162.

 

This article has been cited by

  • 1. E. Lanzarone, S. Pasquali, G. Gilioli, E. Marchesini, A Bayesian estimation approach for the mortality in a stage-structured demographic model, Journal of Mathematical Biology, 2017, 75, 3, 759, 10.1007/s00285-017-1099-4
  • 2. Laura Martín-Fernández, Ettore Lanzarone, A Particle-Filtering Approach for Real-Time Estimation of Thermal Conductivity and Temperature Tracking in Homogeneous Masses, Numerical Heat Transfer, Part B: Fundamentals, 2015, 67, 6, 507, 10.1080/10407790.2014.992060
  • 3. Vladimir Serebriakov, Mirko Dohnal, Trend prey predator model - Analysis of gause model, Global Ecology and Conservation, 2019, e00634, 10.1016/j.gecco.2019.e00634
  • 4. Laura Martín-Fernández, Ettore Lanzarone, , Bayesian Statistics from Methods to Models and Applications, 2015, Chapter 13, 143, 10.1007/978-3-319-16238-6_13

Reader Comments

your name: *   your email: *  

Copyright Info: 2014, Laura Martín-Fernández, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved