Processing math: 34%
Correction

Correction: Interval-valued intuitionistic fuzzy MADM method based on TOPSIS and grey correlation analysis

  • Citation: Fankang Bu, Jun He, Haorun Li, Qiang Fu. Correction: Interval-valued intuitionistic fuzzy MADM method based on TOPSIS and grey correlation analysis[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 6699-6701. doi: 10.3934/mbe.2020348

    Related Papers:

    [1] Yan Wang, Minmin Lu, Daqing Jiang . Viral dynamics of a latent HIV infection model with Beddington-DeAngelis incidence function, B-cell immune response and multiple delays. Mathematical Biosciences and Engineering, 2021, 18(1): 274-299. doi: 10.3934/mbe.2021014
    [2] Yu Yang, Gang Huang, Yueping Dong . Stability and Hopf bifurcation of an HIV infection model with two time delays. Mathematical Biosciences and Engineering, 2023, 20(2): 1938-1959. doi: 10.3934/mbe.2023089
    [3] A. M. Elaiw, N. H. AlShamrani . Stability of HTLV/HIV dual infection model with mitosis and latency. Mathematical Biosciences and Engineering, 2021, 18(2): 1077-1120. doi: 10.3934/mbe.2021059
    [4] Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341
    [5] A. M. Elaiw, A. S. Shflot, A. D. Hobiny . Stability analysis of general delayed HTLV-I dynamics model with mitosis and CTL immunity. Mathematical Biosciences and Engineering, 2022, 19(12): 12693-12729. doi: 10.3934/mbe.2022593
    [6] A. M. Elaiw, N. H. AlShamrani . Analysis of an HTLV/HIV dual infection model with diffusion. Mathematical Biosciences and Engineering, 2021, 18(6): 9430-9473. doi: 10.3934/mbe.2021464
    [7] Yan Wang, Tingting Zhao, Jun Liu . Viral dynamics of an HIV stochastic model with cell-to-cell infection, CTL immune response and distributed delays. Mathematical Biosciences and Engineering, 2019, 16(6): 7126-7154. doi: 10.3934/mbe.2019358
    [8] Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022
    [9] Xiaohong Tian, Rui Xu, Jiazhe Lin . Mathematical analysis of an age-structured HIV-1 infection model with CTL immune response. Mathematical Biosciences and Engineering, 2019, 16(6): 7850-7882. doi: 10.3934/mbe.2019395
    [10] Xinran Zhou, Long Zhang, Tao Zheng, Hong-li Li, Zhidong Teng . Global stability for a class of HIV virus-to-cell dynamical model with Beddington-DeAngelis functional response and distributed time delay. Mathematical Biosciences and Engineering, 2020, 17(5): 4527-4543. doi: 10.3934/mbe.2020250


  • During the last decades, mathematical modeling and analysis of within-host human immunodeficiency virus (HIV) infection have become important and helpful tools for better understanding of HIV dynamics [1]. HIV is the causative agent of acquired immunodeficiency syndrome (AIDS). The main target cells of HIV is the healthy CD4+T cells which play an important role in the immune system. The basic HIV dynamics model has been formulated by Nowak and Bangham [1], which describes the interaction between CD4+T cells (S), infected cells (I), and free HIV particles (V). The incidence rate of infection has been given by bilinear form ηSV. This form has been generalized by considering saturation incidence [2,3], Beddington-DeAngelis incidence [4,5], general incidence [6,7,8,9]. The basic model has also been extended by including time delay [10,11,12,13].

    An adaptive immunity after viral infection plays a fundamental role in controlling the disease progression for long period up to 10 years. The adaptive immune response has two main arms, cell-mediated immunity which based on the Cytotoxic T lymphocytes (CTLs) that kill the HIV-infected cells, and humoral immunity which based on the B cells that produce antibodies to neutralize the HIV particles. In the literature, many works have been published which are devoted to address the effect of CTL-mediated immune response on the HIV infection (see e.g. [1] and [14,15]). Moreover, antibody immune response has been considered into mathematical models of viral infection in several works (see e.g. [16,17,18]). In 2003, Wodarz [19] has presented a virus dynamics model which incorporates the effect of both antibody and CTL-mediated immune responses. Dubey et al. [20] have extended the model in [19] by adding a logistic growth term which represents the proliferation of healthy CD4+T cells. Moreover, the model in [20] incorporates a combination of two classes of antiviral treatment, protease inhibitor and reverse transcriptase. Su et al. [21] have developed the model presented in [19] by considering Beddington-DeAngelis incidence rate to replace the mass-action incidence rate. Yousfi et al. [22] have suggested a model to describe the dynamics of hepatitis B virus. In [20,21,22], it has been assumed that the infection processes are instantaneous. However, it has been estimated that the time between the HIV enters a target cell until producing new HIV particlesis about 0.9 day [23]. Therefore, more realistic virus dynamics models are obtained when time delay is incorporated. Yan and Wang [24] have extended the model of Wodarz [19] by incorporating a discrete-time delay for production of active infected cells. The model of Yan and Wang [24] has been extended by Wang and Liu [25] and Wang et al. [26] to include; saturated incidence rate and two types of distributed delays, respectively. Elaiw and AlShamrani [27] have studied an adaptive immunity viral infection model with distributed time delays and general incidence rate.

    In [19,20,21,22,23,24,25,26,27], it has been assumed that the infection occurs due to virus-to-cell transmission (VTC). It has been reported in several works that the healthy CD4+T cells can also be infected due to cell-cell contact known as cell-to-cell transmission (CTC) (see e.g. [28,29,30]). Therefore, CTC transmission plays an important role in the HIV infection process even during the antiviral treatment [31]. Guo et al. [32] incorporated the CTC transmission and two discrete-time delays to the same model of Yan and Wang [24]. Lin et al. [33] have replaced the VTC bilinear incidence rate by a saturated incidence one. Adaptive immunity HIV dynamics model with two distributed-time delays and both VTC and CTC transmission has been studied in [34].

    Highly active anti-retroviral therapy is very effective in controlling HIV replication and reducing disease progression, however, it can not completely remove the HIV from the body. The major barrier to HIV clearance is the silent (latent) CD4+T infected cells [35]. Silent CD4+T infected cells are considered as viral reservoirs for long time until they are activated to produce new HIV particles. Mathematical models of HIV with silent infected cells have been considered in several works (see e.g. [36,37,38,39,40]). Recently, Agosto et al. [41] have shown that both silent and active infected CD4+T cells can infect the healthy CD4+T cells through CTC mechanism. Silent HIV-infected cells have been included in the virus dynamics models with both VTC and CTC transmissions in [42,43,44,45], however, the contribution of silent infected cells in the CTC transmission has been neglected. In [46,47] a class of viral infection models have been formulated by assuming that both silent and active infected cells can participate in cell-to-cell infection, however, the immune response has been neglected. In a very recent work, Elaiw and Alshamrani [48] have investigated an HIV dynamics model with silent and active CTC transmissions and CTL immune response. In [48] the antibody immune response has not been included.

    In this present paper, we extend on the research done in the above mentioned works by including three distributed time delays and both VTC and CTC transmissions. The CTC mechanism consists of silent HIV-infected CTC and active HIV-infected CTC transmissions. The incidence rates of the healthy CD4+T cells with free HIV particles, silent HIV-infected cells, and active HIV-infected cells are given by general functions. Moreover, the production/proliferation and removal/death rates of all compartments are represented by general functions.

    The rest of the paper is organized as follows: In Section 2, we formulate an HIV dynamics model. In Section 3, we prove the nonnegativity and boundedness of solutions of the proposed model. Then we study the existence of all possible equilibria of the model in Section 4, which depend on five threshold parameters. In Section 5, we investigate the global stability of the five equilibria by constructing suitable Lyapunov functionals. These results are supported with numerical simulations in Section 6. The paper ends with a conclusion.

    We formulate an adaptive immunity HIV infection model by assuming that the HIV virions can replicate by two mechanisms, VTC and CTC transmissions. The CTC infection has two sources, (i) the contact between healthy CD4+T cells and silent HIV-infected cells, and (ii) the contact between healthy CD4+T cells and active HIV-infected cells. Under these assumptions we propose a model that contains six compartments: healthy CD4+T cells, silent HIV-infected CD4+T cells, active HIV-infected CD4+T cells, free HIV particles, HIV-specific CTLs and HIV-specific antibodies.

    {˙S(t)=¥(S(t))1(S(t),V(t))2(S(t),L(t))3(S(t),I(t)),˙L(t)=κ10Λ1(θ)e1θ[1(S(tθ),V(tθ))+2(S(tθ),L(tθ))+3(S(tθ),I(tθ))]dθ(λ+γ)J1(L(t)),˙I(t)=λκ20Λ2(θ)e2θJ1(L(tθ))dθaJ2(I(t))μJ4(C(t))J2(I(t)),˙V(t)=bκ30Λ3(θ)e3θJ2(I(tθ))dθεJ3(V(t))ϖJ5(A(t))J3(V(t)),˙C(t)=σJ4(C(t))J2(I(t))πJ4(C(t)),˙A(t)=τJ5(A(t))J3(V(t))ζJ5(A(t)), (2.1)

    where S(t), L(t), I(t), V(t), C(t) and A(t) are the concentrations of healthy CD4+T cells, silent HIV-infected cells, active HIV-infected cells, free HIV particles, HIV-specific CTLs and HIV-specific antibodies at time t, respectively. Function ¥(S) refers to the intrinsic growth rate of healthy CD4+T cells accounting for both production and natural mortality. The virus-cell, silent infected cell-cell and active infected cell-cell incidence rates are given by general nonlinear functions 1(S,V), 2(S,L) and 3(S,I), respectively. The terms λJ1(L) and γJ1(L) are the rates of silent HIV-infected cells that become active and the natural death of the silent HIV-infected cells, respectively. The term μJ4(C)J2(I) is the killing rate of active HIV-infected cells due to their specific CTL-mediated immunity. The proliferation rates for effective HIV-specific CTLs is given by σJ4(C)J2(I). The proliferation rate for HIV-specific antibodies is given by τJ5(A)J3(V). The integral κ30Λ3(θ)e3θJ2(I(tθ))dθ describes the mature viral particles produced at time t. The mature HIV particles die at rate εJ3(V) and neutralized from the plasma due to HIV-specific antibodies at rate ϖJ5(A)J3(V). In this proposed model, we assume the following:

    ● The virus or silent HIV-infected cells or active HIV-infected cells contacts a healthy CD4+T cell at time tθ, and the cell becomes silent HIV-infected cells at time t, where θ is a random variable taken from a probability distribution Λi(θ) over the time interval [0,κ1], where κ1 is the limit superior of this delay period. The term e1θ represents the probability of surviving from time tθ to time θ [37].

    ● The silent HIV-infected cell takes θ time units to transmit to active HIV-infected cell, where θ is a random variable taken from a probability distribution Λ2(θ) over the time interval [0,κ2], where κ2 is the limit superior of this delay period. The term e2θ represents the probability of surviving from time tθ to time θ.

    ● The time necessary for the newly produced virions to become mature and infectious is a random variable with a probability distribution Λ3(θ) over the time interval [0,κ3], where κ3 is the limit superior of this delay period. The term e3θ denotes the probability of surviving the immature virions during the delay period [37]. Here i, i=1,2,3 are positive constants.

    The function Λi(θ), i=1,2,3 satisfies Λi(θ)>0 and

    κi0Λi(θ)dθ=1 and κi0Λi(θ)euθdθ<,

    where u>0. Let us denote

    ˉHi(θ)=Λi(θ)eiθ and Hi=κi0ˉHi(θ)dθ, i=1,2,3.

    Thus 0<Hi1, i=1,2,3. The initial conditions of system (2.1) is given by:

    S()=ϵ1(), L()=ϵ2(), I()=ϵ3(), V()=ϵ4(), C()=ϵ5(), A()=ϵ6(),ϵj()0, [κ,0], j=1,2,...,6,     κ=max{κ1,κ2,κ3}, (2.2)

    where ϵj()C([κ,0],R0), j=1,2,...,6 and C=C([κ,0],R0) is the Banach space of continuous functions mapping the interval [κ,0]  into R0 with norm ϵj=supκm0|ϵj(m)| for ϵjC. Therefore, system (2.1) with initial conditions (2.2) has a unique solution by using the standard theory of functional differential equations (see [49,50]). All parameters and their definitions are summarized in Table 1.

    Table 1.  Parameters of model (2.1) and their interpretations.
    Symbol Biological meaning
    γ Death rate constant of silent HIV-infected cells
    a Death rate constant of active HIV-infected cells
    μ Killing rate constant of active HIV-infected cells due to their specific CTL-mediated immunity
    λ Transmission rate constant of silent HIV-infected cells that become active HIV-infected cells
    b Generation rate constant of new HIV particles
    ε Death rate constant of free HIV particles
    σ Proliferation rate constant of HIV-specific CTLs
    π Decay rate constant of HIV-specific CTLs
    ϖ Neutralization rate constant of HIV particles due to HIV-specific antibodies
    τ Proliferation rate constant of HIV-specific antibodies
    ζ Decay rate constant of HIV-specific antibodies
    θ Delay parameter
    Λi(θ) Probability distribution function

     | Show Table
    DownLoad: CSV

    Functions ¥, i, i=1,2,3 and Jk, k=1,2,...,5, are continuously differentiable and satisfy the following conditions in [6,51,52]:

    Condition (H1). (i) there exists S0 such that ¥(S0)=0 and ¥(S)>0 for S[0,S0),

    (ii) ¥(S)<0 for all S>0,

    (iii) there are ρ>0 and α0>0 such that ¥(S)ρα0S for S0.

    Condition (H2). (i) i(S,U)>0 and i(0,U)=i(S,0)=0 for all S>0, U>0, i=1,2,3,

    (ii) i(S,U)S>0, i(S,U)U>0 and i(S,U)U|U=0>0 for all S>0, U>0, i=1,2,3,

    (iii) ddS(i(S,U)U|U=0)>0 for all  S>0, i=1,2,3.

    Condition (H3).(i) Jk(x)>0 for all x>0, Jk(0)=0, k=1,2,...,5,

    (ii) Jk(x)>0 for all x>0, k=1,2,...,5. Further, Jk(0)>0, k=1,2,3,

    (iii) there are αk>0 such that Jk(x)αkx for all x0, k=1,2,...,5.

    Condition (H4). V(1(S,V)J3(V))0, L(2(S,L)J1(L))0

    and I(3(S,I)J2(I))0 for all  S, L, I, V>0.

    Proposition 1. Suppose that conditions H1-H3 are satisfied. Then all solutions of system (2.1) with initial conditions (2.2) are nonnegative and ultimately bounded.

    Proof. First, we show the nonnegativity of solutions. The proof is similar to the one given in [53]. System (2.1) can be written as: ˙X(t)=W(X(t)), where X(t)=(S(t),L(t),I(t),V(t),C(t),A(t))T, W=(W1,W2,W3,W4,W5,W6)T , and

    (W1(X(t))W2(X(t))W3(X(t))W4(X(t))W5(X(t))W6(X(t)))=(¥(S(t))1(S(t),V(t))2(S(t),L(t))3(S(t),I(t))κ10ˉH1(θ)[1(S(tθ),V(tθ))+2(S(tθ),L(tθ))+3(S(tθ),I(tθ))]dθ(λ+γ)J1(L(t))λκ20ˉH2(θ)J1(L(tθ))dθaJ2(I(t))μJ4(C(t))J2(I(t))bκ30ˉH3(θ)J2(I(tθ))dθεJ3(V(t))ϖJ5(A(t))J3(V(t))σJ4(C(t))J2(I(t))πJ4(C(t))τJ5(A(t))J3(V(t))ζJ5(A(t))).

    It is easy to see that the function W satisfies the following condition

    Wi(X(t))|Xi(t)=0,X(t)C600, i=1,2,...,6.

    Due to Lemma 2 in [54], any solution of system (2.1) with initial conditions (2.2) satisfies X(t)R60 for all t0. It means that model (2.1) is biologically acceptable in the sense that no population goes negative. In addition, the orthant R60 is positively invariant for system (2.1). Next, we establish the boundedness of the model's solutions. The nonnegativity of the model's solution together with condition H1 implies that limsuptS(t)ρα0. To show the ultimate boundedness of L(t) we let Ψ1(t)=κ10ˉH1(θ)S(tθ)dθ+L(t), then using conditions H1 and H3 we get

    ˙Ψ1(t)=κ10ˉH1(θ)¥(S(tθ))dθ(λ+γ)J1(L(t))ρH1α0κ10ˉH1(θ)S(tθ)dθα1(λ+γ)L(t)ρϕ1(κ10ˉH1(θ)S(tθ)dθ+L(t))=ρϕ1Ψ1(t),

    where ϕ1=min{α0,α1(λ+γ)}. It follows that, limsuptΨ1(t)Ω1, where Ω1=ρϕ1. Since κ10ˉH1(θ)S(tθ)dθ and L(t) are nonnegative, then limsuptL(t)Ω1. Moreover, we let Ψ2(t)=I(t)+μσC(t), then using condition H3 we obtain

    ˙Ψ2(t)=λκ20ˉH2(θ)J1(L(tθ))dθaJ2(I(t))μπσJ4(C(t))λH2J1(Ω1)aα2I(t)μπα4σC(t)λJ1(Ω1)aα2I(t)μπα4σC(t)λJ1(Ω1)ϕ2(I(t)+μσC(t))=λJ1(Ω1)ϕ2Ψ2(t),

    where ϕ2=min{aα2,πα4}. It follows that, limsuptΨ2(t)Ω2, where Ω2=λJ1(Ω1)ϕ2. Since I(t)0 and C(t)0, then limsuptI(t)Ω2 and limsuptC(t)Ω3, where Ω3=σμΩ2. Finally, let Ψ3(t)=V(t)+ϖτA(t), then applying condition H3 we get

    ˙Ψ3(t)=bκ30ˉH3(θ)J2(I(tθ))dθεJ3(V(t))ϖζτJ5(A(t))bH3J2(Ω2)εα3V(t)ϖζα5τA(t)bJ2(Ω2)εα3V(t)ϖζα5τA(t)bJ2(Ω2)ϕ3(V(t)+ϖτA(t))=bJ2(Ω2)ϕ3Ψ3(t),

    where ϕ3=min{εα3,ζα5}. It follows that, limsuptΨ3(t)Ω4, where Ω4=bJ2(Ω2)ϕ3. Since V(t)0 and A(t)0, then limsuptV(t)Ω4 and limsuptA(t)Ω5, where Ω5=τϖΩ4.

    According to Proposition 1 we can show that the region

    Θ={(S,L,I,V,C,A)C60:SΩ1,LΩ1,IΩ2,CΩ3,VΩ4,AΩ5}

    is positively invariant with respect to system (2.1).

    In this section, we study the equilibria of the model and derive the conditions for their existence.Let Ð1=(S,L,I,V,C,A) be any equilibrium satisfying the following system of algebraic equations:

    0=¥(S)1(S,V)2(S,L)3(S,I), (4.1)
    0=H1[1(S,V)+2(S,L)+3(S,I)](λ+γ)J1(L), (4.2)
    0=λH2J1(L)aJ2(I)μJ4(C)J2(I), (4.3)
    0=bH3J2(I)εJ3(V)ϖJ5(A)J3(V), (4.4)
    0=(σJ2(I)π)J4(C), (4.5)
    0=(τJ3(V)ζ)J5(A). (4.6)

    If V=0, then model (2.1) always admits an infection-free equilibrium, Ð0=(S0,0,0,0,0,0), where ¥(S0)=0. This case describes the situation of healthy state where the HIV infection is absent. If V0, then from Eqs. (4.5) and (4.6) we have four possibilities:

    (i) J4(C)=J5(A)=0; which leads to C1=A1=0. From Eqs. (4.1)-(4.4) we get

    ¥(S)=1(S,V)+2(S,L)+3(S,I)=λ+γH1J1(L)=a(λ+γ)λH1H2J2(I)=aε(λ+γ)bλH1H2H3J3(V). (4.7)

    Condition H3 implies that J1k exists, continuous and strictly increasing. From Eq. (4.7), we obtain

    L=f1(S),      I=f2(S),      V=f3(S), (4.8)

    where

    f1(S)=J11(H1¥(S)λ+γ),  f2(S)=J12(λH1H2¥(S)a(λ+γ)),  f3(S)=J13(bλH1H2H3¥(S)aε(λ+γ)).

    Obviously from condition H1, fi(S)>0 for all S[0,S0) and fi(S0)=0, i=1,2,3 . Let us define

    F1(S)=1(S,f3(S))+2(S,f1(S))+3(S,f2(S))aε(λ+γ)bλH1H2H3J3(f3(S))=0.

    Then from conditions H1-H3, we have

    F1(0)=aε(λ+γ)bλH1H2H3J3(f3(0))<0,       F1(S0)=0.

    Moreover,

    F1(S)=1S+f3(S)1V+2S+f1(S)2L+3S+f2(S)3Iaε(λ+γ)bλH1H2H3J3(f3(S))f3(S),F1(S0)=1(S0,0)S+f3(S0)1(S0,0)V+2(S0,0)S+f1(S0)2(S0,0)L+3(S0,0)S+f2(S0)3(S0,0)Iaε(λ+γ)bλH1H2H3J3(0)f3(S0).

    Condition H2 implies that i(S0,0)S=0, i=1,2,3. Also, from condition H3, we have J3(0)>0, then

    F1(S0)=aε(λ+γ)bλH1H2H3J3(0)f3(S0)[bλH1H2H3aε(λ+γ)J3(0)1(S0,0)V+bλH1H2H3f1(S0)aε(λ+γ)J3(0)f3(S0)2(S0,0)L+bλH1H2H3f2(S0)aε(λ+γ)J3(0)f3(S0)3(S0,0)I1].

    From Eqs. (4.7) and (4.8), we obtain

    F1(S0)=¥(S0)[bλH1H2H3aε(λ+γ)J3(0)1(S0,0)V+H1(λ+γ)J1(0)2(S0,0)L+λH1H2a(λ+γ)J2(0)3(S0,0)I1].

    From condition H1, we have ¥(S0)<0. Therefore, if

    bλH1H2H3aε(λ+γ)J3(0)1(S0,0)V+H1(λ+γ)J1(0)2(S0,0)L+λH1H2a(λ+γ)J2(0)3(S0,0)I>1,

    then F1(S0)<0 and there exists S1(0,S0) such that F1(S1)=0. From Eq. (4.8) and condition H3, we have

    L1=J11(H1¥(S1)λ+γ)>0,     I1=J12(λH1H2¥(S1)a(λ+γ))>0,     V1=J13(bλH1H2H3¥(S1)aε(λ+γ))>0.

    It follows that Ð1=(S1,L1,I1,V1,0,0) exists when

    bλH1H2H3aε(λ+γ)J3(0)1(S0,0)V+H1(λ+γ)J1(0)2(S0,0)L+λH1H2a(λ+γ)J2(0)3(S0,0)I>1.

    We call Ð1 as a chronic HIV infection equilibrium with inactive immune responses. In order to state the threshold dynamics of infection-free equilibrium, it is necessary to define the basic HIV reproduction number 0 of the model. The basic HIV reproduction number of model (2.1) can be calculated by different methods such as (a) the next-generation matrix method of van den Driessche and Watmough [55], (b) local stability of the infection-free equilibrium, and (c) the existence of the chronic HIV infection equilibrium with inactive immune responses. In the present paper, we derive 0 by method (c) as follows:

    0=01+02+03,

    where

    01=bλH1H2H3aε(λ+γ)J3(0)1(S0,0)V,02=H1(λ+γ)J1(0)2(S0,0)L,03=λH1H2a(λ+γ)J2(0)3(S0,0)I.

    The parameter 0 determines whether or not the infection will be chronic. In fact, 01 measures the average number of secondary HIV-infected cells caused by free HIV particles due to VTC transmission, while 02 and 03 measure the average numbers of secondary HIV-infected cells caused by silent and active HIV-infected cells, respectively, due to CTC transmission.

    (ii) J4(C)0, J5(A)=0; which leads to J2(I2)=πσ, A2=0  and this gives I2=J12(πσ). From Eqs. (2.1)-(4.3) we get

    ¥(S)=1(S,V)+2(S,L)+3(S,I)=λ+γH1J1(L)=λ+γλH1H2(a+μJ4(C))J2(I). (4.9)

    According to condition H3 and from Eq. (4.4) we have

    εJ3(V2)=bH3J2(I2). (4.10)

    Then, we obtain

    V2=J13(bH3J2(I2)ε)=J13(bπH3εσ)>0.

    From Eq. (4.9), we get

    L=J11(H1¥(S)λ+γ)=f4(S). (4.11)

    Obviously from condition H1 we have f4(S)>0 for all S[0,S0) and f4(S0)=0 . Let V=V2, I=I2 and using Eq. (4.11) in Eq. (4.1), we define

    F2(S)=¥(S)1(S,V2)2(S,f4(S))3(S,I2)=0.

    Conditions H1 and H2 imply that F2(0)=¥(0)>0 and F2(S0)=[1(S0,V2)+3(S0,I2)]<0. Thus, from the intermediate value property there exists S2(0,S0) such that F2(S2)=0.From Eq. (4.11) and condition H3, we obtain

    L2=J11(H1¥(S2)λ+γ)>0.

    Further, from Eq. (4.9), we have

    C2=J14(aμ[λH1H2{1(S2,V2)+2(S2,L2)+3(S2,I2)}a(λ+γ)J2(I2)1]).

    Clearly, C2>0 when λH1H2[1(S2,V2)+2(S2,L2)+3(S2,I2)]a(λ+γ)J2(I2)>1. Now we define the HIV-specific CTL-mediated immunity reproduction number as follows:

    1=λH1H2[1(S2,V2)+2(S2,L2)+3(S2,I2)]a(λ+γ)J2(I2).

    From Eq. (4.10), we get

    1=bλH1H2H31(S2,V2)aε(λ+γ)J3(V2)+λH1H22(S2,L2)a(λ+γ)J2(I2)+λH1H23(S2,I2)a(λ+γ)J2(I2).

    Thus, C2=J14(aμ(11)). The parameter 1 determines whether or not the HIV-specific CTL-mediated immune response is stimulated. Therefore, Ð2=(S2,L2,I2,V2,C2,0) exists when 1>1. We call Ð2 as a chronic HIV infection equilibrium with only active CTL-mediated immune response.

    (iii) J4(C)=0, J5(A)0; which leads to C3=0, J3(V3)=ζτ and this gives V3=J13(ζτ). From Eqs. (2.1)-(4.4) we get

    ¥(S)=1(S,V)+2(S,L)+3(S,I)=λ+γH1J1(L)=a(λ+γ)λH1H2J2(I)=a(λ+γ)(ε+ϖJ5(A))bλH1H2H3J3(V). (4.12)

    From Eq. (4.12), we get

    L=J11(H1¥(S)λ+γ)=f5(S),     I=J12(λH1H2¥(S)a(λ+γ))=f6(S). (4.13)

    Obviously from condition H1 we have fi(S)>0 for all S[0,S0) and fi(S0)=0, i=5,6 .Using Eq. (4.13) and letting V=V3 in Eq. (4.1), we define

    F3(S)=¥(S)1(S,V3)2(S,f5(S))3(S,f6(S))=0. (4.14)

    Then, we get

    F3(0)=¥(0)>0,F3(S0)=¥(S0)1(S0,V3)2(S0,0)3(S0,0)=1(S0,V3)<0.

    Since F3(S) is continuous on [0,S0), then there exists S3(0,S0) such that F3(S0)=0.From Eq. (4.13) and condition H3, we obtain

    L3=J11(H1¥(S3)λ+γ)>0,     I3=J12(λH1H2¥(S3)a(λ+γ))>0.

    Moreover, from Eq. (4.12) and condition H3, we have

    A3=J15(εϖ[bλH1H2H3{1(S3,V3)+2(S3,L3)+3(S3,I3)}aε(λ+γ)J3(V3)1]).

    Clearly, A3>0 when bλH1H2H3[1(S3,V3)+2(S3,L3)+3(S3,I3)]aε(λ+γ)J3(V3)>1. Now we define the HIV-specific antibody immune response reproduction number

    2=bλH1H2H3[1(S3,V3)+2(S3,L3)+3(S3,I3)]aε(λ+γ)J3(V3)=τbλH1H2H3[1(S3,V3)+2(S3,L3)+3(S3,I3)]aεζ(λ+γ).

    Thus, A3=J15(εϖ(21)). The parameter 2 determines whether or not the HIV-specific antibody immune response is stimulated. It follows that, Ð3=(S3,L3,I3,V3,0,A3) exists when 2>1. We call Ð3 as a chronic HIV infection equilibrium with only active antibody immune response.

    (iv) J4(C)0, J5(A)0; which leads to I4=J12(πσ) and V4=J13(ζτ). From Eqs. (4.1)-(4.4) we get

    ¥(S)=1(S,V)+2(S,L)+3(S,I)=λ+γH1J1(L)=λ+γλH1H2(a+μJ4(C))J2(I),bH3J2(I)=(ε+ϖJ5(A))J3(V). (4.15)

    From Eq. (4.15), we get

    L=J11(H1¥(S)λ+γ)=f7(S). (4.16)

    Obviously from condition H1 we have f7(S)>0 for all S[0,S0) and f7(S0)=0 .Let I=I4, V=V4 and using Eq. (4.16) in Eq. (4.1), we define

    F4(S)=¥(S)1(S,V4)2(S,f7(S))3(S,I4)=0.

    Conditions H1 and H2 imply that F4(0)=¥(0)>0 and F2(S0)=[1(S0,V4)+3(S0,I4)]<0. Thus, there exists S4(0,S0) such that F4(S4)=0.From Eq. (4.16) and condition H3, we obtain

    L4=J11(H1¥(S4)λ+γ)>0.

    Moreover, from Eq. (4.15), we have

    C4=J14(aμ[λH1H2{1(S4,V4)+2(S4,L4)+3(S4,I4)}a(λ+γ)J2(I4)1]),A4=J15(εϖ(bH3J2(I4)εJ3(V4)1)).

    It follows that C4>0 and A4>0 only when

    λH1H2[1(S4,V4)+2(S4,L4)+3(S4,I4)]a(λ+γ)J2(I4)>1 and bH3J2(I4)εJ3(V4)>1.

    The HIV-specific CTL-mediated immune competitive reproduction number and the HIV-specific antibody immune competitive reproduction number of system (2.1) are stated, respectively, as:

    3=λH1H2[1(S4,V4)+2(S4,L4)+3(S4,I4)]a(λ+γ)J2(I4)=σλH1H2[1(S4,V4)+2(S4,L4)+3(S4,I4)]aπ(λ+γ),4=bH3J2(I4)εJ3(V4)=τbπH3σεζ.

    The parameters 3 and 4 together determine whether or not the HIV-specific CTL-mediated and antibody immune responses are both stimulated. Clearly, Ð4=(S4,L4,I4,V4,C4,A4) exists when 3>1 and 4>1 and we can write C4=J14(aμ(31)), A4=J15(εϖ(41)). We call Ð4 as a chronic HIV infection equilibrium with active CTL-mediated and antibody immune responses.

    The threshold parameters are given as follows:

    0=bλH1H2H3aε(λ+γ)J3(0)1(S0,0)V+H1(λ+γ)J1(0)2(S0,0)L+λH1H2a(λ+γ)J2(0)3(S0,0)I,1=bλH1H2H31(S2,V2)aε(λ+γ)J3(V2)+λH1H22(S2,L2)a(λ+γ)J2(I2)+λH1H23(S2,I2)a(λ+γ)J2(I2),2=τbλH1H2H3[1(S3,V3)+2(S3,L3)+3(S3,I3)]aεζ(λ+γ),3=σλH1H2[1(S4,V4)+2(S4,L4)+3(S4,I4)]aπ(λ+γ),4=τbπH3σεζ. (4.17)

    Considering the above discussion, we sum up the following result:

    Lemma 1. Suppose that conditions H1-H3 are hold true, then there exist five positive threshold parameters 0, 1, 2, 3 and 4 such that

    (i) if 01, then there exists only one equilibrium Ð0,

    (ii) if 11<0 and 21 then there exist only two equilibria Ð0 and Ð1,

    (iii) if 1>1, then there exist three equilibria Ð0, Ð1 and Ð2,

    (iv) if 2>1, then there exist three equilibria Ð0, Ð1 and Ð3, and

    (v) if 3>1 and 4>1, then there exist five equilibria Ð0, Ð1, Ð2, Ð3 and Ð4.

    In this section we prove the global asymptotic stability of all equilibria by constructing Lyapunov functional following the method presented in [56,57,58,59]. Let us state the function K:(0,)[0,) as K()=1ln. In addition, we define

    ϝ1(S)=limV0+1(S,V)J3(V),     ϝ2(S)=limL0+2(S,L)J1(L),     ϝ3(S)=limI0+3(S,I)J2(I). (5.1)

    From conditions H2 and H3 we obtain

    ϝ1(S)=1J3(0)1(S,0)V>0ϝ2(S)=1J1(0)2(S,0)L>0ϝ3(S)=1J2(0)3(S,0)I>0 for any S>0,

    moreover,

    ϝi(S)>0,  i=1,2,3. (5.2)

    Therefore, the parameter 0 can be rewritten as

    0=bλH1H2H3ϝ1(S0)aε(λ+γ)+H1ϝ2(S0)λ+γ+λH1H2ϝ3(S0)a(λ+γ).

    To investigate the next theorem we need the following condition [60]:

    Condition (H5). (i) The supremum of ϝ2(S)ϝ1(S) is achieved at S=S0 for all S(0,S0],

    (ii) The supremum of ϝ3(S)ϝ1(S) is achieved at S=S0 for all S(0,S0].

    Theorem 1. Let 01 and conditions H1-H5 are satisfied, then Ð0 is globally asymptotically stable (G.A.S).

    Remark 1. From conditions H2 and H4 we get

    (1(S,V)1(S,Vi))(1(S,V)J3(V)1(S,Vi)J3(Vi))0,   S,V,Vi>0, i=1,2,3,4,

    which leads to

    (11(S,Vi)1(S,V))(1(S,V)1(S,Vi)J3(V)J3(Vi))0,   S,V,Vi>0, i=1,2,3,4. (5.3)

    Define the following functions [60]:

    GLi(S,L)=2(S,L)1(S,Vi),     GIi(S,I)=3(S,I)1(S,Vi), i=1,2,3,4. (5.4)

    We state the following condition

    Condition(H6)

    (i)(GLi(S,L)GLi(Si,Li))(GLi(S,L)J1(L)GLi(Si,Li)J1(Li))0,(ii)(GIi(S,I)GIi(Si,Ii))(GIi(S,I)J2(I)GIi(Si,Ii)J2(Ii))0,

    for all L, Li, I, Ii>0, i=1,2,3,4, S(0,S0).

    Remark 2. From Condition H6 we get

    (1GLi(Si,Li)GLi(S,L))(GLi(S,L)GLi(Si,Li)J1(L)J1(Li))0,   S(0,S0), L, Li,>0, i=1,2,3,4,(1GIi(Si,Ii)GIi(S,I))(GIi(S,I)GIi(Si,Ii)J2(I)J2(Ii))0,   S(0,S0), I, Ii>0, i=1,2,3,4. (5.5)

    We consider the following equalities to be used in the proceeding theorems:

    ln(1(S(tθ),V(tθ))1(S,V))=ln(1(S(tθ),V(tθ))J1(Ln)1(Sn,Vn)J1(L))+ln(1(Sn,Vn)1(S,Vn))+ln(J1(L)J2(In)J1(Ln)J2(I))+ln(J2(I)J3(Vn)J2(In)J3(V))+ln(1(S,Vn)J3(V)1(S,V)J3(Vn)),ln(2(S(tθ),L(tθ))2(S,L))=ln(2(S(tθ),L(tθ))J1(Ln)2(Sn,Ln)J1(L))+ln(1(Sn,Vn)1(S,Vn))+ln(1(S,Vn)2(Sn,Ln)J1(L)1(Sn,Vn)2(S,L)J1(Ln)),ln(3(S(tθ),I(tθ))3(S,I))=ln(3(S(tθ),I(tθ))J1(Ln)3(Sn,In)J1(L))+ln(1(Sn,Vn)1(S,Vn))+ln(J1(L)J2(In)J1(Ln)J2(I))+ln(1(S,Vn)3(Sn,In)J2(I)1(Sn,Vn)3(S,I)J2(In)),ln(J1(L(tθ))J1(L))=ln(J1(L(tθ))J2(In)J1(Ln)J2(I))+ln(J1(Ln)J2(I)J1(L)J2(In)),ln(J2(I(tθ))J2(I))=ln(J2(I(tθ))J3(Vn)J2(In)J3(V))+ln(J2(In)J3(V)J2(I)J3(Vn)),  n=1,2,3,4. (5.6)

    Theorem 2. Suppose that 11<0, 21 and conditions H1-H4, H6 are hold true, then Ð1 is G.A.S.

    Theorem 3. Let 1>1, 41 and conditions H1-H4, H6 are satisfied, then Ð2 is G.A.S.

    Theorem 4. Suppose that 2>1, 31 and conditions H1-H4, H6 are satisfied, then Ð3 is G.A.S.

    Theorem 5. If 3>1, 4>1 and conditions H1 -H4, H6 are hold true, then Ð4 is G.A.S.

    In this section we present an example and perform some numerical simulations to illustrate our theoretical results. For numerical purposes we transform the distributed-time delay model (2.1) to a discrete-time delay one by a dirac delta function ˉΛ(.) as a specific form of the kernel Λi(ς) as [14]:

    Λi(ς)=ˉΛ(ςθi),     θi[0,κi],  i=1,2,3.

    The constants θi[0,κi], i=1,2,3 are discrete-time delays which are special cases of the three distributed-time delays presented in model (2.1). Let κi tends to , then using the properties of Dirac delta function we get

    0Λj(ς)dς=1,     Hj=0ˉΛ(ςθj)ejςdς=ejθj,     j=1,2,3.

    Then, model (2.1) reduces to the following model with discrete-time delays:

    {˙S(t)=¥(S(t))1(S(t),V(t))2(S(t),L(t))3(S(t),I(t)),˙L(t)=e1θ1[1(S(tθ1),V(tθ1))+2(S(tθ1),L(tθ1))+3(S(tθ1),I(tθ1))](λ+γ)J1(L(t)),˙I(t)=λe2θ2J1(L(tθ2))aJ2(I(t))μJ4(C(t))J2(I(t)),˙V(t)=be3θ3J2(I(tθ3))εJ3(V(t))ϖJ5(A(t))J3(V(t)),˙C(t)=σJ4(C(t))J2(I(t))πJ4(C(t)),˙A(t)=τJ5(A(t))J3(V(t))ζJ5(A(t)). (6.1)

    From Theorems 1-5, the corresponding stability results of system (6.1) reads as:

    Corollary 1. Let \Re_{i} , i = 0, 1, ..., 4 be defined as in (4.17). The following statements hold true.

    (i) If \Re_{0}\leq1 and conditions H1-H5 are satisfied, then Ð _{0} is G.A.S.

    (ii) If \Re_{1}\leq1 < \Re_{0}, \Re_{2}\leq1 and conditions H1 -H4, H6 are statisfied, then Ð _{1} is G.A.S.

    (iii) If \Re_{1} > 1, \Re_{4}\leq1 and conditions H1-H4, H6 are satisfied, then Ð _{2} is G.A.S.

    (iv) If \Re_{2} > 1 , \Re_{3}\leq1 and conditions H1-H4, H6 are satisfied, then Ð _{3} is G.A.S.

    (v) If \Re_{3} > 1 , \Re_{4} > 1 and conditions H1-H4, H6 are hold true, then Ð _{4} is G.A.S.

    Let us consider the following example:

    \begin{equation} \left \{ \begin{array} [c]{l} \dot{S} = \rho-\alpha S+pS\left( 1-\dfrac{S}{S_{\max}}\right) -\dfrac{S^{q} }{1+\delta S^{q}}\left( \dfrac{\eta_{1}V}{1+\beta_{1}V}+\dfrac{\eta_{2} L}{1+\beta_{2}L}+\dfrac{\eta_{3}I}{1+\beta_{3}I}\right) , \\ \dot{L} = \dfrac{e^{-\hslash_{1}\theta_{1}}S^{q}(t-\theta_{1})}{1+\delta S^{q}(t-\theta_{1})}\left( \dfrac{\eta_{1}V(t-\theta_{1})}{1+\beta _{1}V(t-\theta_{1})}+\dfrac{\eta_{2}L(t-\theta_{1})}{1+\beta_{2}L(t-\theta _{1})}+\dfrac{\eta_{3}I(t-\theta_{1})}{1+\beta_{3}I(t-\theta_{1})}\right) -\left( \lambda+\gamma \right) L, \\ \dot{I} = \lambda e^{-\hslash_{2}\theta_{2}}L(t-\theta_{2})-aI-\mu CI, \\ \dot{V} = be^{-\hslash_{3}\theta_{3}}I(t-\theta_{3})-\varepsilon V-\varpi AV, \\ \dot{C} = \sigma CI-\pi C, \\ \dot{A} = \tau AV-\zeta A. \end{array} \right. \end{equation} (6.2)

    This example is a special case of system (6.1) by considering the following particular forms:

    ● The intrinsic growth rate of healthy {\rm{CD}}{4^ + }{\rm{T}} cells is chosen as

    \yen (S) = \rho-\alpha S+pS\left( 1-\frac{S}{S_{\max}}\right) .

    Here we consider another source for producing healthy {\rm{CD}}{4^ + }{\rm{T}} cells which is the proliferation of existing healthy cells in the body [61]. The maximum proliferation rate of healthy {\rm{CD}}{4^ + }{\rm{T}} cells is given by p > 0 . It is well known that there is a maximum level of healthy {\rm{CD}}{4^ + }{\rm{T}} cell concentration in the body which is described by the parameter S_{\max} > 0 . If the concentration reaches S_{\max} , it should decrease. We assume that p < \alpha [62]. It is clear that \yen (0) = \rho > 0 and \yen (S_{0}) = 0 , where

    S_{0} = \frac{S_{\max}}{2p}\left( p-\alpha+\sqrt{(p-\alpha)^{2}+\frac{4\rho p}{S_{\max}}}\right) .

    In addition, we have

    \begin{equation} \yen ^{\prime}(S) = p-\alpha-\frac{2pS}{S_{\max}} \lt 0. \end{equation} (6.3)

    Clearly, \yen (S) > 0 whereas \yen ^{\prime}(S) < 0 for all S\in \lbrack0, S_{0}) . Hence, condition H1 is hold true.

    ● The virus-cell, silent infected cell-cell, and active infected cell-cell incidence rates of infection are, respectively, given by:

    \begin{align*} \aleph_{1}(S, V) & = \dfrac{\eta_{1}S^{q}V}{\left( 1+\delta S^{q}\right) \left( 1+\beta_{1}V\right) }, \\ \aleph_{2}(S, L) & = \dfrac{\eta_{2}S^{q}L}{\left( 1+\delta S^{q}\right) \left( 1+\beta_{2}L\right) }, \\ \aleph_{3}(S, I) & = \dfrac{\eta_{3}S^{q}I}{\left( 1+\delta S^{q}\right) \left( 1+\beta_{3}I\right) }. \end{align*}

    The parameters \eta_{i} > 0, i = 1, 2, 3 account for the infection rate constants. Parameters q, \delta, \beta_{i}, i = 1, 2, 3 are positive constants. It is clear that

    \begin{align*} \aleph_{1}(S, V) & \gt 0, \text{ }\aleph_{2}(S, L) \gt 0, \text{ }\aleph_{3} (S, I) \gt 0\text{ for all }S, L, I, V \gt 0, \\ \aleph_{1}(0, V) & = \aleph_{2}(0, L) = \aleph_{3}(0, I) = 0\text{ for all }L, I, V \gt 0, \\ \aleph_{1}(S, 0) & = \aleph_{2}(S, 0) = \aleph_{3}(S, 0) = 0\text{ for all }S \gt 0. \end{align*}

    Further, we have

    \begin{align*} \frac{\partial \aleph_{1}(S, V)}{\partial S} & = \frac{q\text{ $ \eta $ } _{1}S^{q-1}V}{\left( 1+\delta S^{q}\right) ^{2}(1+\text{ $ \beta $ }_{1} V)} \gt 0, \ \ \frac{\partial \aleph_{2}(S, L)}{\partial S} = \frac {q\text{ $ \eta $ }_{2}S^{q-1}L}{\left( 1+\delta S^{q}\right) ^{2} (1+\text{ $ \beta_{2} $ }L)} \gt 0, \\ \frac{\partial \aleph_{3}(S, I)}{\partial S} & = \frac{q\text{ $ \eta $ } _{3}S^{q-1}I}{\left( 1+\delta S^{q}\right) ^{2}(1+\text{ $ \beta_{3}I $ } )} \gt 0, \ \ \frac{\partial \aleph_{1}(S, V)}{\partial V} = \frac{\text{ $ \eta $ }_{1}S^{q}}{\left( 1+\delta S^{q}\right) (1+\text{ $ \beta $ }_{1}V)^{2}} \gt 0, \\ \frac{\partial \aleph_{2}(S, L)}{\partial L} & = \frac{\text{ $ \eta $ }_{2}S^{q} }{\left( 1+\delta S^{q}\right) (1+\text{ $ \beta_{2} $ }L)^{2}} \gt 0, \ \ \frac{\partial \aleph_{3}(S, I)}{\partial I} = \frac{\text{ $ \eta $ }_{3}S^{q} }{\left( 1+\delta S^{q}\right) (1+\text{ $ \beta_{3}I $ })^{2}} \gt 0, \\ \frac{\partial \aleph_{1}(S, 0)}{\partial V} & = \frac{\text{ $ \eta $ }_{1}S^{q} }{1+\delta S^{q}} \gt 0, \ \ \frac{\partial \aleph_{2}(S, 0)}{\partial L} = \frac{\text{ $ \eta $ }_{2}S^{q}}{1+\delta S^{q}} \gt 0, \ \ \frac {\partial \aleph_{3}(S, 0)}{\partial I} = \frac{\text{ $ \eta $ }_{3}S^{q}}{1+\delta S^{q}} \gt 0, \end{align*}

    for all S, L, I, V > 0 . Furthermore, we have

    \begin{align*} \dfrac{d}{dS}\left( \frac{\partial \aleph_{1}(S, 0)}{\partial V}\right) & = \frac{q\text{ $ \eta $ }_{1}S^{q-1}}{\left( 1+\delta S^{q}\right) ^{2}} \gt 0, \\ \dfrac{d}{dS}\left( \frac{\partial \aleph_{2}(S, 0)}{\partial L}\right) & = \frac{q\text{ $ \eta $ }_{2}S^{q-1}}{\left( 1+\delta S^{q}\right) ^{2}} \gt 0, \\ \dfrac{d}{dS}\left( \frac{\partial \aleph_{3}(S, 0)}{\partial I}\right) & = \frac{q\text{ $ \eta $ }_{3}S^{q-1}}{\left( 1+\delta S^{q}\right) ^{2} } \gt 0, \text{ for all }S \gt 0. \end{align*}

    All above discussion ensures that condition H2 is confirmed.

    ● The natural death rate of the silent/active HIV-infected cells, HIV particles, HIV-specific CTLs and HIV-specific antibodies are given by

    \mathcal{J}_{k}(x) = x, \ \ \ \ \ k = 1, 2, ..., 5.

    Obviously, condition H3 is valid.

    In addition, we have

    \begin{align*} \dfrac{\partial}{\partial V}\left( \dfrac{\aleph_{1}(S, V)}{\mathcal{J} _{3}(V)}\right) & = \dfrac{\partial}{\partial V}\left( \dfrac{\eta_{1} S^{q}}{\left( 1+\delta S^{q}\right) \left( 1+\beta_{1}V\right) }\right) = -\frac{\text{ $ \eta $ }_{1}\text{ $ \beta $ }\text{ $ _{1} $ }S^{q}}{(1+\text{ $ \beta $ }\text{ $ _{1} $ }V)^{2}\left( 1+\delta S^{q}\right) } \lt 0, \\ \dfrac{\partial}{\partial L}\left( \dfrac{\aleph_{2}(S, L)}{\mathcal{J} _{1}(L)}\right) & = \dfrac{\partial}{\partial L}\left( \dfrac{\eta_{2} S^{q}}{\left( 1+\delta S^{q}\right) \left( 1+\beta_{2}L\right) }\right) = -\frac{\text{ $ \eta $ }_{2}\text{ $ \beta $ }_{2}S^{q}}{(1+\text{ $ \beta $ }_{2} L)^{2}\left( 1+\delta S^{q}\right) } \lt 0, \\ \dfrac{\partial}{\partial I}\left( \dfrac{\aleph_{3}(S, I)}{\mathcal{J} _{2}(I)}\right) & = \dfrac{\partial}{\partial I}\left( \dfrac{\eta_{3} S^{q}}{\left( 1+\delta S^{q}\right) \left( 1+\beta_{3}I\right) }\right) = -\frac{\text{ $ \eta $ }_{3}\text{ $ \beta $ }_{3}S^{q}}{(1+\text{ $ \beta $ }_{3} I)^{2}\left( 1+\delta S^{q}\right) } \lt 0, \end{align*}

    for all S, L, I, V > 0 . Therefore, condition H4 is also verified. On the other hand, we have \mathcal{J}_{k}^{\prime}(x) = 1 and then

    \begin{align*} \digamma_{1}(S) & = \frac{\partial \aleph_{1}(S, 0)}{\partial V} = \frac {\text{ $ \eta $ }_{1}S^{q}}{1+\delta S^{q}}, \\ \digamma_{2}(S) & = \frac{\partial \aleph_{2}(S, 0)}{\partial L} = \frac {\text{ $ \eta $ }_{2}S^{q}}{1+\delta S^{q}}, \\ \digamma_{3}(S) & = \frac{\partial \aleph_{3}(S, 0)}{\partial L} = \frac {\text{ $ \eta $ }_{3}S^{q}}{1+\delta S^{q}}. \end{align*}

    Clearly, \dfrac{\digamma_{2}(S)}{\digamma_{1}(S)} = \dfrac{\eta_{2} }{\eta_{1}} and \dfrac{\digamma_{3}(S)}{\digamma_{1}(S)} = \dfrac{\eta_{3}}{\eta_{1}}, hence, condition H5 is satisfied. In addition,

    \begin{align*} \mathcal{G}_{i}^{L}(S, L) & = \frac{\aleph_{2}(S, L)}{\aleph_{1}(S, V_{i} )} = \frac{\text{ $ \eta $ }_{2}(1+\text{ $ \beta $ }_{1}V_{i})L}{\text{ $ \eta $ } _{1}(1+\text{ $ \beta $ }_{2}L)V_{i}}, \ \ \mathcal{G}_{i}^{L}(S_{i} , L_{i}) = \frac{\aleph_{2}(S_{i}, L_{i})}{\aleph_{1}(S_{i}, V_{i})} = \frac {\text{ $ \eta $ }_{2}(1+\text{ $ \beta $ }_{1}V_{i})L_{i}}{\text{ $ \eta $ } _{1}(1+\text{ $ \beta $ }_{2}L_{i})V_{i}}, \\ \mathcal{G}_{i}^{I}(S, I) & = \frac{\aleph_{3}(S, I)}{\aleph_{1}(S, V_{i} )} = \frac{\text{ $ \eta $ }_{3}(1+\text{ $ \beta $ }_{1}V_{i})I}{\text{ $ \eta $ } _{1}(1+\text{ $ \beta $ }_{3}I)V_{i}}, \ \ \mathcal{G}_{i}^{I}(S_{i} , I_{i}) = \frac{\aleph_{3}(S_{i}, I_{i})}{\aleph_{1}(S_{i}, V_{i})} = \frac {\text{ $ \eta $ }_{3}(1+\text{ $ \beta $ }_{1}V_{i})I_{i}}{\text{ $ \eta $ } _{1}(1+\text{ $ \beta $ }_{3}I_{i})V_{i}}, \end{align*}

    and

    \begin{align*} \left( \mathcal{G}_{i}^{L}(S, L)-\mathcal{G}_{i}^{L}(S_{i}, L_{i})\right) \left( \frac{\mathcal{G}_{i}^{L}(S, L)}{L}-\frac{\mathcal{G}_{i}^{L} (S_{i}, L_{i})}{L_{i}}\right) & = -\frac{\text{ $ \beta $ }\text{ $ _{2}\eta $ } _{2}^{2}(1+\text{ $ \beta $ }_{1}V_{i})^{2}(L-L_{i})^{2}}{\text{ $ \eta $ }_{1} ^{2}V_{i}^{2}(1+\text{ $ \beta $ }_{2}L_{i})^{2}(1+\text{ $ \beta $ }_{2}L)^{2}} \leq0, \\ \left( \mathcal{G}_{i}^{I}(S, I)-\mathcal{G}_{i}^{I}(S_{i}, I_{i})\right) \left( \frac{\mathcal{G}_{i}^{I}(S, I)}{I}-\frac{\mathcal{G}_{i}^{I} (S_{i}, I_{i})}{I_{i}}\right) & = -\frac{\text{ $ \beta $ }\text{ $ _{3}\eta $ } _{3}^{2}(1+\text{ $ \beta $ }_{1}V_{i})^{2}(I-I_{i})^{2}}{\text{ $ \eta $ }_{1} ^{2}V_{i}^{2}(1+\text{ $ \beta $ }_{3}I_{i})^{2}(1+\text{ $ \beta $ }_{3}I)^{2}}\leq0, \end{align*}

    for all L, I > 0, S\in \left(0, S_{0}\right), where i = 1, 2, 3, 4 . Hence, condition H6 is ensured. Consequently, the validity of conditions H1-H6 guarantees that the global stability results demonstrated in Theorems 1-5 are valid for this example. Thus, the threshold parameters for system (4.2) are given by:

    \begin{align} \Re_{0} & = \frac{e^{-\hslash_{1}\theta_{1}}S_{0}^{q}\left[ a\varepsilon \text{ $ \eta $ }_{2}+\lambda e^{-\hslash_{2}\theta_{2}}\left( b\text{ $ \eta $ } _{1}e^{-\hslash_{3}\theta_{3}}+\varepsilon \text{ $ \eta $ }_{3}\right) \right] }{a\varepsilon \left( \lambda+\gamma \right) \left( 1+\delta S_{0} ^{q}\right) }, \\ \Re_{1} & = \dfrac{\sigma \lambda e^{-\left( \hslash_{1}\theta_{1} +\hslash_{2}\theta_{2}\right) }S_{2}^{q}}{a\pi \left( \lambda+\gamma \right) \left( 1+\delta S_{2}^{q}\right) }\left( \dfrac{b\pi \eta_{1}e^{-\hslash _{3}\theta_{3}}}{\varepsilon \sigma+b\pi \beta_{1}e^{-\hslash_{3}\theta_{3}} }+\dfrac{\eta_{2}L_{2}}{1+\beta_{2}L_{2}}+\dfrac{\pi \eta_{3}}{\sigma+\pi \beta_{3}}\right) , \\ \Re_{2} & = \dfrac{\tau b\lambda e^{-\left( \hslash_{1}\theta_{1} +\hslash_{2}\theta_{2}+\hslash_{3}\theta_{3}\right) }S_{3}^{q}} {a\varepsilon \zeta \left( \lambda+\gamma \right) \left( 1+\delta S_{3} ^{q}\right) }\left( \dfrac{\zeta \eta_{1}}{\tau+\zeta \beta_{1}}+\dfrac {\eta_{2}L_{3}}{1+\beta_{2}L_{3}}+\dfrac{\eta_{3}I_{3}}{1+\beta_{3}I_{3} }\right) , \\ \Re_{3} & = \frac{\sigma \lambda e^{-\left( \hslash_{1}\theta_{1}+\hslash _{2}\theta_{2}\right) }S_{4}^{q}}{a\pi \left( \lambda+\gamma \right) \left( 1+\delta S_{4}^{q}\right) }\left( \dfrac{\zeta \eta_{1}}{\tau+\zeta \beta_{1} }+\dfrac{\eta_{2}L_{4}}{1+\beta_{2}L_{4}}+\dfrac{\pi \eta_{3}}{\sigma+\pi \beta_{3}}\right) , \\ \Re_{4} & = \dfrac{\tau b\pi e^{-\hslash_{3}\theta_{3}}}{\sigma \varepsilon \zeta}. \end{align} (6.4)

    To solve system (6.2) numerically we fix the values of some parameters (see Table 2) and the others will be varied. In the coming subsections, we present some numerical simulations for model (6.2) to illustrate the theoretical results. Moreover, we study the influence of time delays and silent HIV-infected CTCtransmission on the stability behavior of equilibria and HIV dynamics.

    Table 2.  Some values of the parameters of model (4.2).
    Parameter Value Parameter Value Parameter Value Parameter Value
    \rho 10 \eta_{3} Varied \beta_{1} 0.1 \hslash_{2} 0.1
    \alpha 0.01 a 0.5 \beta_{2} 0.2 \hslash_{3} 0.1
    p 0.005 \gamma 0.2 \beta_{3} 0.3 \theta_{1} Varied
    S_{\max} 1200 \lambda 0.2 \sigma Varied \theta_{2} Varied
    \delta 0.7 b 5 \varpi 0.3 \theta_{3} Varied
    q 2 \pi 0.1 \tau Varied
    \eta_{1} Varied \mu 0.2 \zeta 0.2
    \eta_{2} Varied \varepsilon 2 \hslash_{1} 0.1

     | Show Table
    DownLoad: CSV

    In this subsection, we illustrate the stability results given in Theorems 1-5. To do so, we fix the values \theta_{1} = 3, \theta_{2} = 2 and \theta_{3} = 1. We consider the following initial conditions for model (4.2):

    Initial-1: (S(\theta), L(\theta), I(\theta), V(\theta), C(\theta), A(\theta)) = (1000, 2.5, 0.5, 0.3, 1.75, 8) ,

    Initial-2: (S(\theta), L(\theta), I(\theta), V(\theta), C(\theta), A(\theta)) = (950, 2.75, 0.55, 0.5, 2.25, 11),

    Initial-3: (S(\theta), L(\theta), I(\theta), V(\theta), C(\theta), A(\theta)) = (850, 3, 0.6, 0.7, 2.8, 15) , where \theta \in \lbrack-3, 0].

    We choose the values \eta_{1} , \eta_{2} , \eta_{3}, \sigma and \tau as follows:

    Stability of Ð _{0} : \eta_{1} = 0.1, \eta_{2} = 0.05 , \eta_{3} = 0.2, \sigma = 0.02 and \tau = 0.004 . For this set of parameters, we have \Re_{0} = 0.50 < 1 . Figure 1 displays that the trajectories initiating with Initial-1, Initial-2 and Initial-3 reach the equilibrium Ð _{0} = (1061.32, 0, 0, 0, 0, 0) . This shows that Ð _{0} is G.A.S according to Theorem 1. In this case, the HIV particles will be cleared from the body.

    Figure 1.  The behavior of solution trajectories of system (4.2) in case of \Re_{0}\leq1 .

    Stability of Ð _{1} : \eta_{1} = 0.5, \eta_{2} = 0.3 , \eta_{3} = 0.7, \sigma = 0.02 and \tau = 0.004 . With such choice we get \Re_{1} = 0.89 < 1 < 2.38 = \Re_{0} and \Re_{2} = 0.27 < 1 . It is clear that the equilibrium point Ð _{1} exists with Ð _{1} = \left(456.98, 12.68, 4.15, 9.39, 0, 0\right) . Figure 2 displays that the trajectories initiating with Initial-1, Initial-2 and Initial-3 tend to Ð _{1} . Therefore, the numerical results supports Theorem 2. This case represents the persistence of the HIV infection but with unstimulated immune responses.

    Figure 2.  The behavior of solution trajectories of system (4.2) in case of \Re_{1}\leq1 < \Re_{0} and \Re_{2}\leq1. .

    Stability of Ð _{2} : \eta_{1} = 0.5, \eta_{2} = 0.3 , \eta_{3} = 0.7, \sigma = 0.2 and \tau = 0.04 . Then, we calculate \Re_{1} = 2.54 > 1 and \Re_{4} = 0.23 < 1 . In Figure 3 we show that Ð _{2} = \left(902.20, 3.88, 0.50, 1.13, 3.86, 0\right) exists and it is G.A.S and this agrees with Theorem 3. Hence, a chronic HIV infection with only CTL-mediated immune response is attained.

    Figure 3.  The behavior of solution trajectories of system (4.2) in case of \Re_{1} > 1 and \Re_{4}\leq1 .

    Stability of Ð _{3} . \eta_{1} = 0.5, \eta_{2} = 0.3 , \eta_{3} = 0.7, \sigma = 0.02 and \tau = 0.4 . Then, we calculate \Re_{2} = 6.37 > 1 and \Re_{3} = 0.43 < 1 . The numerical results plotted in Figure 4 show that Ð _{3} = \left(884.32, 4.30, 1.41, 0.50, 0, 35.77\right) exists and it is G.A.S and this agrees with Theorem 4. As a result, a chronic HIV infection with only antibody immune response is attained.

    Figure 4.  The behavior of solution trajectories of system (4.2) in case of \Re_{2} > 1 and \Re_{3}\leq1 .

    Stability of Ð _{4} . \eta_{1} = 0.5, \eta_{2} = 0.3 , \eta_{3} = 0.7, \sigma = 0.2 and \tau = 0.4 . Then, we calculate \Re_{3} = 1.89 > 1 and \Re_{4} = 2.26 > 1 . The numerical results displayed in Figure 5 show that Ð _{4} = \left(944.58, 2.89, 0.50, 0.50, 2.23, 8.41\right) exists and it is G.A.S according to Theorem 5. In this case, a chronic HIV infection is attained where both CTL-mediated and antibody immune responses are working.

    Figure 5.  The behavior of solution trajectories of system (4.2) in case of \Re_{3} > 1 and \Re_{4} > 1 .

    In this subsection, we investigate the influence of silent HIV-infected CTCtransmission on the HIV dynamics (4.2). We use the parameters given in Table 2 and fix the parameters \eta_{1} = 0.5, \eta_{3} = 0.7, \sigma = 0.1 , \tau = 0.4, \theta_{1} = 3, \theta_{2} = 2 , \theta_{3} = 1 . We consider the following initial condition:

    Initial-4: (S(\theta), L(\theta), I(\theta), V(\theta), C(\theta), A(\theta)) = (600, 10, 1, 0.5, 5, 15), where \theta \in \lbrack-3, 0].

    We vary the parameter \eta_{2} as shown in Table 3 which displays that as the silent cell-cell incidence rate constant \eta_{2} is changed the dynamical behavior is also changed. Figure 6 and Table 3 illustrate the effect of parameter \eta_{2} on the solution trajectories of the system. We observe that, as \eta_{2} is decreased, the concentration of the healthy cells is increased, while the concentrations of silent/active HIV-infected cells, free HIV particles, HIV-specific CTLs and HIV-specific antibodies are decreased.

    Figure 6.  The evolution of HIV dynamics (6.2) under different values of silent cell-cell incidence rate constant \eta_{2} .
    Table 3.  The equilibria related to different values of silent cell-cell incidence rate constant \eta_{2} .
    Value of \eta_{2} Equilibrium point
    1.5 Ð _{4}=\left(104.23, 17.48, 1, 0.50, 11.81, 23.49\right)
    1.0 Ð _{4}=\left(543.92, 11.20, 1, 0.50, 6.67, 23.49\right)
    0.5 Ð _{4}=\left(829.58, 5.53, 1, 0.50, 2.03, 23.49\right)
    0.1 Ð _{3}=\left(979.39, 2.05, 0.67, 0.50, 0, 13.57\right)
    0.0 Ð _{3}=\left(1007.59, 1.36, 0.44, 0.50, 0, 6.72\right)

     | Show Table
    DownLoad: CSV
    Figure 7.  The evolution of HIV dynamics (6.2) under different values of silent cell-cell incidence rate constant \eta_{2} . (cont.).

    In this subsection, we study the influence of time delays \theta_{1}, \theta_{2} and \theta_{3} on the stability of the equilibria. We fix the parameters \eta_{1} = 0.6, \eta_{2} = 0.5 , \eta_{3} = 0.7 , \sigma = 0.1 and \tau = 0.2 and the remaining values will be used as given in Table 2. We observe from Eq. (6.4) that the threshold parameter \Re_{0} depends on the delay parameters which leads to a significant change in the stability of the equilibria. To illustrate this situation, we consider the following initial condition:

    Initial-5: (S(\theta), L(\theta), I(\theta), V(\theta), C(\theta), A(\theta)) = (900, 4, 0.7, 0.5, 3, 10), where \theta \in \lbrack-\max \left \{ \theta_{1}, \theta_{2}, \theta_{3}\right \}, 0].

    Further, we choose the following sets of parameters \theta_{1}, \theta_{2} and \theta_{3} :

    Set (I): \theta_{1} = \theta_{2} = \theta_{3} = 0 ,

    Set (II): \theta_{1} = 4, \theta_{2} = 3 and \theta_{3} = 2 ,

    Set (III): \theta_{1} = 8, \theta_{2} = 7 and \theta_{3} = 6 ,

    Set (IV): \theta_{1} = 15, \theta_{2} = 14 and \theta_{3} = 13 .

    Table 4 demonstrates that as the delay parameters \theta_{1}, \theta_{2} and \theta_{3} are increased the threshold parameter \Re_{0} is decreased and the stability behavior of the infection-free equilibrium Ð _{0} is changed. Figure 7 shows the effect of time delay on the solution trajectories of the system. We observe that as time delays are increased, the concentration of the healthy cells is increased, while the concentrations of silent/active HIV-infected cells, free HIV particles, HIV-specific CTLs and HIV-specific antibodies are decreased. Let us fix the parameters \theta_{2} and \theta_{3} . Using Eq. (6.4) we can define the threshold parameter \Re_{0} as a function of \theta_{1} as:

    \begin{equation} \Re_{0}(\theta_{1}) = \frac{e^{-\hslash_{1}\theta_{1}}S_{0}^{q}\left[ a\varepsilon \text{ $ \eta $ }_{2}+\lambda e^{-\hslash_{2}\theta_{2}}\left( b\text{ $ \eta $ }_{1}e^{-\hslash_{3}\theta_{3}}+\varepsilon \text{ $ \eta $ } _{3}\right) \right] }{a\varepsilon \left( \lambda+\gamma \right) \left( 1+\delta S_{0}^{q}\right) }.\nonumber \end{equation}
    Table 4.  The values of \Re_{0} for selected values of delay parameters.
    Value of delay parameters Threshold parameter \Re_{0} Equilibrium point
    \theta_{1}=\theta_{2}=\theta_{3}=0 4.92857 Ð _{4}=\left(749.53, 9.78, 1, 1, 7.28, 10\right)
    \theta_{1}=3, \theta_{2}=0 , \theta_{3}=0 3.65117 Ð _{4}=\left(778.18, 6.64, 1, 1, 4.14, 10\right)
    \theta_{1}=3, \theta_{2}=0 , \theta_{3}=1 3.5001 Ð _{4}=\left(778.18, 6.64, 1, 1, 4.14, 8.41\right)
    \theta_{1}=3, \theta_{2}=2 , \theta_{3}=1 3.10544 Ð _{4}=\left(778.18, 6.64, 1, 1, 2.94, 8.41\right)
    \theta_{1}=4, \theta_{2}=3 , \theta_{3}=2 2.5648 Ð _{4}=\left(788.38, 5.81, 1, 1, 1.81, 6.98\right)
    \theta_{1}=5, \theta_{2}=4 , \theta_{3}=3 2.13507 Ð _{4}=\left(798.77, 5.08, 1, 1, 0.90, 5.68\right)
    \theta_{1}=6, \theta_{2}=5 , \theta_{3}=4 1.79103 Ð _{4}=\left(809.23, 4.43, 1, 1, 0.18, 4.51\right)
    \theta_{1}=7, \theta_{2}=6 , \theta_{3}=5 1.5135 Ð _{3}=\left(834.56, 3.63, 0.80, 1, 0, 1.39\right)
    \theta_{1}=8, \theta_{2}=7 , \theta_{3}=6 1.28791 Ð _{1}=\left(911.73, 2.22, 0.44, 0.61, 0, 0\right)
    \theta_{1}=10, \theta_{2}=9 , \theta_{3}=8 0.950507 Ð _{0}=\left(1061.32, 0, 0, 0, 0, 0\right)
    \theta_{1}=15, \theta_{2}=14 , \theta_{3}=13 0.485603 Ð _{0}=\left(1061.32, 0, 0, 0, 0, 0\right)

     | Show Table
    DownLoad: CSV

    When \Re_{0}\left(\theta_{1}\right) \leq1 , we obtain

    \begin{equation} \theta_{1}\geq \theta_{1}^{\min}, \text{ where }\theta_{1}^{\min} = \max \left \{ 0, \frac{1}{\hslash_{1}}\ln \left( \frac{S_{0}^{q}\left \{ a\varepsilon \text{ $ \eta $ }_{2}+\lambda e^{-\hslash_{2}\theta_{2}}\left( b\text{ $ \eta $ } _{1}e^{-\hslash_{3}\theta_{3}}+\varepsilon \text{ $ \eta $ }_{3}\right) \right \} }{a\varepsilon \left( \lambda+\gamma \right) \left( 1+\delta S_{0} ^{q}\right) }\right) \right \} .\nonumber \end{equation}

    Therefore, if \theta_{1}\geq \theta_{1}^{\min} , then the infection-free equilibrium Ð _{0} is G.A.S. We select the values \theta_{2} = 7 and \theta_{3} = 6 to compute \theta_{1}^{\min} as \theta_{1}^{\min} = 10.5302 . As a result, we have the following scenarios:

    (i) If \theta_{1}\geq10.5302 , then \Re_{0}(\theta_{1})\leq1 and Ð _{0} is G.A.S,

    (ii) If \theta_{1} < 10.5302 , then \Re_{0}(\theta_{1}) > 1 and one of the other equilibria is G.A.S.

    The above discussion gives us a significant insights that the increase of time delays period can play the same influence as antiviral treatment

    In this paper, we formulated an HIV dynamics model with three types of distributed-time delays. Both CTL and antibody immune responses were considered. The model incorporated two routes of transmission, VTC and CTC. The CTC transmission is due to (i) the contact between healthy {\rm{CD}}{4^ + }{\rm{T}} cells and silent HIV-infected cells, and (ii) the contact between healthy {\rm{CD}}{4^ + }{\rm{T}} cells and active HIV-infected cells. We proved that the solutions of the model are nonnegative and bounded. We showed that the model has five possible equilibria, and their existence is determined by five threshold parameters. The global asymptotic stability of all equilibria was investigated by constructing Lyapunov functionals and utilizing LaSalle's invariance principle. Theorems 1-5 and Corollary 1 extend many existing results in the literature. We performed numerical simulations to support our theoretical results. We studied the effect of the time delay and CTC transmission on the HIV dynamics. We showed that the inclusion of time delay can significantly increase the concentration of the healthy CD4 ^{+} T cells and reduce the concentrations of the infected cells and free HIV particles. This gives us a significant observation that increasing the delay period can play the same influence of antiviral treatment. We showed that the presence of CTC transmission reduces the number of healthy CD4 ^{+} T cells and raises the numbers of infected cells and free HIV particles. We observed that the presence of silent and active HIV-infected CTC transmissions into the HIV infection model increases the basic HIV reproduction number \Re_{0} , since \Re_{0} = \sum_{i = 1}^{3}\Re_{0i} > \Re_{01} . Therefore, neglecting the CTC transmission will lead to under-evaluated basic HIV reproduction number. Our proposed HIV dynamics model can be generalized and extended to incorporate different biological phenomena such as reaction-diffusion [63,64,65,66,67,68] and stochastic interactions [69].

    This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia under grant no. (KEP-PhD-20-130-41). The authors, therefore, acknowledge with thanks DSR technical and financial support.

    The authors declare that they have no conflict interests.

    In this appendix we present the proof of Theorems 1-5.

    Proof of Theorem 1. Constructing a Lyapunov functional candidate:

    \begin{align*} \Phi_{0}(S, L, I, V, C, A) & = S-S_{0}-\int_{S_{0}}^{S}\frac{\digamma_{1}(S_{0} )}{\digamma_{1}(\theta)}d\theta+\frac{1}{\mathcal{H}_{1}}L+\frac {b\mathcal{H}_{3}\digamma_{1}(S_{0})+\varepsilon \digamma_{3}(S_{0} )}{a\varepsilon}I\\ & +\frac{\digamma_{1}(S_{0})}{\varepsilon}V+\frac{\mu \left[ b\mathcal{H} _{3}\digamma_{1}(S_{0})+\varepsilon \digamma_{3}(S_{0})\right] }{\sigma a\varepsilon}C+\frac{\varpi \digamma_{1}(S_{0})}{\tau \varepsilon}A\\ & +\frac{1}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}} _{1}(\theta)\int \limits_{t-\theta}^{t}\left[ \aleph_{1}(S(\varkappa ), V(\varkappa))+\aleph_{2}(S(\varkappa), L(\varkappa))+\aleph_{3} (S(\varkappa), I(\varkappa))\right] d\varkappa d\theta \\ & +\frac{\lambda \left[ b\mathcal{H}_{3}\digamma_{1}(S_{0})+\varepsilon \digamma_{3}(S_{0})\right] }{a\varepsilon}\int \limits_{0}^{\kappa_{2} }\mathcal{\bar{H}}_{2}(\theta)\int \limits_{t-\theta}^{t}\mathcal{J} _{1}(L(\varkappa))d\varkappa d\theta \\ & +\frac{b\digamma_{1}(S_{0})}{\varepsilon}\int \limits_{0}^{\kappa_{3} }\mathcal{\bar{H}}_{3}(\theta)\int \limits_{t-\theta}^{t}\mathcal{J} _{2}(I(\varkappa))d\varkappa d\theta. \end{align*}

    We note that, \Phi_{0}(S, L, I, V, C, A) > 0 for all S, L, I, V, C, A > 0, and \Phi_{0}(S_{0}, 0, 0, 0, 0, 0) = 0 . We calculate \frac{d\Phi_{0}}{dt} along the solutions of model (2.1) as:

    \begin{align} \frac{d\Phi_{0}}{dt} & = \left( 1-\frac{\digamma_{1}(S_{0})}{\digamma _{1}(S)}\right) \left( \yen (S)-\aleph_{1}(S, V)-\aleph_{2}(S, L)-\aleph _{3}(S, I)\right) +\frac{1}{\mathcal{H}_{1}}\left[ \int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\right. \\ & \left. \times \left \{ \aleph_{1}(S(t-\theta), V(t-\theta))+\aleph _{2}(S(t-\theta), L(t-\theta))+\aleph_{3}(S(t-\theta), I(t-\theta))\right \} d\theta \right. \\ & \left. -\left( \lambda+\gamma \right) \mathcal{J}_{1}(L)\right] +\frac{b\mathcal{H}_{3}\digamma_{1}(S_{0})+\varepsilon \digamma_{3}(S_{0} )}{a\varepsilon}\left[ \lambda \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H} }_{2}(\theta)\mathcal{J}_{1}(L(t-\theta))d\theta-a\mathcal{J}_{2}(I)\right. \\ & \left. -\mu \mathcal{J}_{4}(C)\mathcal{J}_{2}(I)\right] +\frac {\digamma_{1}(S_{0})}{\varepsilon}\left[ b\int \limits_{0}^{\kappa_{3} }\mathcal{\bar{H}}_{3}(\theta)\mathcal{J}_{2}(I(t-\theta))d\theta -\varepsilon \mathcal{J}_{3}(V)-\varpi \mathcal{J}_{5}(A)\mathcal{J} _{3}(V)\right] \\ & +\frac{\mu \left[ b\mathcal{H}_{3}\digamma_{1}(S_{0})+\varepsilon \digamma_{3}(S_{0})\right] }{\sigma a\varepsilon}\left( \sigma \mathcal{J}_{4}(C)\mathcal{J}_{2}(I)-\pi \mathcal{J}_{4}(C)\right) +\frac{\varpi \digamma_{1}(S_{0})}{\tau \varepsilon} \\ & \times \left( \tau \mathcal{J}_{5}(A)\mathcal{J}_{3}(V)-\zeta \mathcal{J} _{5}(A)\right) +\frac{1}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1} }\mathcal{\bar{H}}_{1}(\theta)\left[ \aleph_{1}(S, V)+\aleph_{2} (S, L)+\aleph_{3}(S, I)\right] d\theta \\ & -\frac{1}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}} _{1}(\theta)\left[ \aleph_{1}(S(t-\theta), V(t-\theta))+\aleph_{2} (S(t-\theta), L(t-\theta))\right. \\ & \left. +\aleph_{3}(S(t-\theta), I(t-\theta))\right] d\theta+\frac {\lambda \left[ b\mathcal{H}_{3}\digamma_{1}(S_{0})+\varepsilon \digamma _{3}(S_{0})\right] }{a\varepsilon}\int \limits_{0}^{\kappa_{2}}\mathcal{\bar {H}}_{2}(\theta) \\ & \times \left[ \mathcal{J}_{1}(L)-\mathcal{J}_{1}(L(t-\theta))\right] d\theta+\frac{b\digamma_{1}(S_{0})}{\varepsilon}\int \limits_{0}^{\kappa_{3} }\mathcal{\bar{H}}_{3}(\theta)\left[ \mathcal{J}_{2}(I)-\mathcal{J} _{2}(I(t-\theta))\right] d\theta. \end{align} (8.1)

    Collecting terms of Eq. (8.1), we get

    \begin{align} \frac{d\Phi_{0}}{dt} & = \yen (S)\left( 1-\frac{\digamma_{1}(S_{0} )}{\digamma_{1}(S)}\right) +\aleph_{1}(S, V)\frac{\digamma_{1}(S_{0} )}{\digamma_{1}(S)}+\aleph_{2}(S, L)\frac{\digamma_{1}(S_{0})}{\digamma_{1} (S)}+\aleph_{3}(S, I)\frac{\digamma_{1}(S_{0})}{\digamma_{1}(S)} \\ & -\frac{\lambda+\gamma}{\mathcal{H}_{1}}\mathcal{J}_{1}(L)+\frac {\lambda \mathcal{H}_{2}\left[ b\mathcal{H}_{3}\digamma_{1}(S_{0} )+\varepsilon \digamma_{3}(S_{0})\right] }{a\varepsilon}\mathcal{J} _{1}(L)-\digamma_{3}(S_{0})\mathcal{J}_{2}(I) \\ & -\digamma_{1}(S_{0})\mathcal{J}_{3}(V)-\frac{\mu \pi \left[ b\mathcal{H} _{3}\digamma_{1}(S_{0})+\varepsilon \digamma_{3}(S_{0})\right] }{\sigma a\varepsilon}\mathcal{J}_{4}(C)-\frac{\varpi \zeta \digamma_{1}(S_{0})} {\tau \varepsilon}\mathcal{J}_{5}(A). \end{align} (8.2)

    From condition H4 and Eq. (5.1), we get

    \begin{align*} \frac{\aleph_{1}(S, V)}{\mathcal{J}_{3}(V)} & \leq \lim \limits_{V\rightarrow 0^{+}}\frac{\aleph_{1}(S, V)}{\mathcal{J}_{3}(V)} = \digamma_{1}(S)\text{, }\\ \frac{\aleph_{2}(S, L)}{\mathcal{J}_{1}(L)} & \leq \lim \limits_{L\rightarrow 0^{+}}\frac{\aleph_{2}(S, L)}{\mathcal{J}_{1}(L)} = \digamma_{2}(S), \\ \frac{\aleph_{3}(S, I)}{\mathcal{J}_{2}(I)} & \leq \lim \limits_{I\rightarrow 0^{+}}\frac{\aleph_{3}(S, I)}{\mathcal{J}_{2}(I)} = \digamma_{3}(S). \end{align*}

    Then,

    \aleph_{1}(S, V)\leq \digamma_{1}(S)\mathcal{J}_{3}(V), \ \ \ \ \ \aleph_{2}(S, L)\leq \digamma_{2}(S)\mathcal{J}_{1}(L), \ \ \ \ \ \aleph_{3}(S, I)\leq \digamma_{3}(S)\mathcal{J}_{2}(I).

    Therefore, Eq. (8.2) will become

    \begin{align} \frac{d\Phi_{0}}{dt} & \leq \yen (S)\left( 1-\frac{\digamma_{1}(S_{0} )}{\digamma_{1}(S)}\right) +\frac{\digamma_{1}(S_{0})\digamma_{2} (S)}{\digamma_{1}(S)}\mathcal{J}_{1}(L)+\frac{\digamma_{1}(S_{0})\digamma _{3}(S)}{\digamma_{1}(S)}\mathcal{J}_{2}(I) \\ & -\frac{\lambda+\gamma}{\mathcal{H}_{1}}\mathcal{J}_{1}(L)+\frac {\lambda \mathcal{H}_{2}\left[ b\mathcal{H}_{3}\digamma_{1}(S_{0} )+\varepsilon \digamma_{3}(S_{0})\right] }{a\varepsilon}\mathcal{J} _{1}(L)-\digamma_{3}(S_{0})\mathcal{J}_{2}(I) \\ & -\frac{\mu \pi \left[ b\mathcal{H}_{3}\digamma_{1}(S_{0})+\varepsilon \digamma_{3}(S_{0})\right] }{\sigma a\varepsilon}\mathcal{J}_{4} (C)-\frac{\varpi \zeta \digamma_{1}(S_{0})}{\tau \varepsilon}\mathcal{J} _{5}(A) \\ & = \yen (S)\left( 1-\frac{\digamma_{1}(S_{0})}{\digamma_{1}(S)}\right) +\left[ \frac{\digamma_{1}(S_{0})\digamma_{3}(S)}{\digamma_{1}(S)} -\digamma_{3}(S_{0})\right] \mathcal{J}_{2}(I) \\ & +\frac{\lambda+\gamma}{\mathcal{H}_{1}}\left[ \frac{\mathcal{H} _{1}\digamma_{1}(S_{0})\digamma_{2}(S)}{\left( \lambda+\gamma \right) \digamma_{1}(S)}+\frac{\lambda \mathcal{H}_{1}\mathcal{H}_{2}\left \{ b\mathcal{H}_{3}\digamma_{1}(S_{0})+\varepsilon \digamma_{3}(S_{0})\right \} }{a\varepsilon \left( \lambda+\gamma \right) }-1\right] \mathcal{J} _{1}(L) \\ & -\frac{\mu \pi \left[ b\mathcal{H}_{3}\digamma_{1}(S_{0})+\varepsilon \digamma_{3}(S_{0})\right] }{\sigma a\varepsilon}\mathcal{J}_{4} (C)-\frac{\varpi \zeta \digamma_{1}(S_{0})}{\tau \varepsilon}\mathcal{J}_{5}(A). \end{align} (8.3)

    Condition H5 implies that

    \begin{align} \frac{\digamma_{1}(S_{0})\digamma_{2}(S)}{\digamma_{1}(S)} & \leq \digamma_{1}(S_{0})\frac{\digamma_{2}(S_{0})}{\digamma_{1}(S_{0})} = \digamma_{2}(S_{0})\text{, } \\ \frac{\digamma_{1}(S_{0})\digamma_{3}(S)}{\digamma_{1}(S)} & \leq \digamma_{1}(S_{0})\frac{\digamma_{3}(S_{0})}{\digamma_{1}(S_{0})} = \digamma_{3}(S_{0})\text{ for }0 \lt S\leq S_{0}. \end{align} (8.4)

    Substituting inequality (8.4) into Eq. (8.3) and using \yen (S_{0}) = 0 , we get

    \begin{align*} \frac{d\Phi_{0}}{dt} & \leq \left( \yen (S)-\yen (S_{0})\right) \left( 1-\frac{\digamma_{1}(S_{0})}{\digamma_{1}(S)}\right) \\ & +\frac{\lambda+\gamma}{\mathcal{H}_{1}}\left[ \frac{b\lambda \mathcal{H}_{1}\mathcal{H}_{2}\mathcal{H}_{3}\digamma_{1}(S_{0})} {a\varepsilon \left( \lambda+\gamma \right) }+\frac{\mathcal{H}_{1} \digamma_{2}(S_{0})}{\lambda+\gamma}+\frac{\lambda \mathcal{H}_{1} \mathcal{H}_{2}\digamma_{3}(S_{0})}{a\left( \lambda+\gamma \right) }-1\right] \mathcal{J}_{1}(L)\\ & -\frac{\mu \pi \left[ b\mathcal{H}_{3}\digamma_{1}(S_{0})+\varepsilon \digamma_{3}(S_{0})\right] }{\sigma a\varepsilon}\mathcal{J}_{4} (C)-\frac{\varpi \zeta \digamma_{1}(S_{0})}{\tau \varepsilon}\mathcal{J}_{5}(A)\\ & = \left( \yen (S)-\yen (S_{0})\right) \left( 1-\frac{\digamma_{1}(S_{0} )}{\digamma_{1}(S)}\right) +\frac{\lambda+\gamma}{\mathcal{H}_{1}}\left( \Re_{0}-1\right) \mathcal{J}_{1}(L)\\ & -\frac{\mu \pi \left[ b\mathcal{H}_{3}\digamma_{1}(S_{0})+\varepsilon \digamma_{3}(S_{0})\right] }{\sigma a\varepsilon}\mathcal{J}_{4} (C)-\frac{\varpi \zeta \digamma_{1}(S_{0})}{\tau \varepsilon}\mathcal{J}_{5}(A). \end{align*}

    Conditions H1, H2 and Eq. (5.2) provide that \yen (S) is a strictly decreasing function of S , while \digamma_{1}(S) is a strictly increasing function of S . Then,

    \left( \yen (S)-\yen (S_{0})\right) \left( 1-\frac{\digamma_{1}(S_{0} )}{\digamma_{1}(S)}\right) \leq0.

    Therefore, \frac{d\Phi_{0}}{dt}\leq0 for all S, L, I, V, C, A > 0 with equality holding when S = S_{0} and L = C = A = 0. Let \Upsilon_{0} = \left \{ (S, L, I, V, C, A):\frac{d\Phi_{0}}{dt} = 0\right \} and \Upsilon_{0}^{^{\prime}} be the largest invariant subset of \Upsilon_{0} . Therefore, the solutions of system (2.1) converge to \Upsilon_{0}^{^{\prime}} [49]. The set \Upsilon_{0}^{^{\prime}} is invariant and contains elements which satisfy S(t) = S_{0} and L(t) = C(t) = A(t) = 0 . According to LaSalle's invariance principle we have \lim \limits_{t\rightarrow \infty} S(t) = S_{0} and \lim \limits_{t\rightarrow \infty} L(t) = \lim \limits_{t\rightarrow \infty }C(t) = \lim \limits_{t\rightarrow \infty}A(t) = 0 . Then, \dot{S}(t) = 0 and \dot{L}(t) = \dot{C}(t) = \dot{A}(t) = 0. From the third and fourth equations of system (2.1), we have

    \begin{align} \dot{I} & = -a\mathcal{J}_{2}(I), \end{align} (8.5)
    \begin{align} \dot{V} & = b\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta )\mathcal{J}_{2}(I(t-\theta))d\theta-\varepsilon \mathcal{J}_{3}(V). \end{align} (8.6)

    Let us define a Lyapunov function as follows:

    \tilde{\Phi}_{0} = I(t)+\frac{a}{2b\mathcal{H}_{3}}V(t)+\frac{a}{2\mathcal{H} _{3}}\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\int \limits_{t-\theta}^{t}\mathcal{J}_{2}(I(\varkappa))d\varkappa d\theta.

    Therefore, the time derivative of \tilde{\Phi}_{0} along the solutions of system (8.5)-(8.6) can be calculated as follows:

    \frac{d\tilde{\Phi}_{0}}{dt} = -\frac{a}{2}\left( \mathcal{J}_{2} (I)+\frac{\varepsilon}{b\mathcal{H}_{3}}\mathcal{J}_{3}(V)\right) \leq0.

    Utilizing condition H3it is clear that \frac{d\tilde{\Phi}_{0}} {dt} = 0 if and only if I(t) = V(t) = 0 for all t . Let \Upsilon_{0} ^{^{^{\prime \prime}}} = \left \{ (S, L, I, V, C, A)\in \Upsilon_{0}^{^{\prime}} :\frac{d\tilde{\Phi}_{0}}{dt} = 0\right \} . Then, \Upsilon_{0}^{^{^{\prime \prime}}} = \left \{ (S, L, I, V, C, A)\in \Upsilon_{0}^{^{\prime}}:S = S_{0}, L = I = V = C = A = 0\right \} = \left \{ \text{\DJ }_{0}\right \} . Hence, all solutions trajectories approach Ð _{0} and this means that Ð _{0} is G.A.S [49].

    Proof of Theorem 2. Define \Phi_{1}(S, L, I, V, C, A) as:

    \begin{align*} \Phi_{1} & = S-S_{1}-\int_{S_{1}}^{S}\frac{\aleph_{1}(S_{1}, V_{1})} {\aleph_{1}(\varkappa, V_{1})}d\varkappa+\frac{1}{\mathcal{H}_{1}}\left( L-L_{1}-\int_{L_{1}}^{L}\frac{\mathcal{J}_{1}(L_{1})}{\mathcal{J} _{1}(\varkappa)}d\varkappa \right) \\ & +\frac{b\mathcal{H}_{3}\mathcal{J}_{2}(I_{1})\aleph_{1}(S_{1} , V_{1})+\varepsilon \mathcal{J}_{3}(V_{1})\aleph_{3}(S_{1}, I_{1})} {a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1})}\left( I-I_{1} -\int_{I_{1}}^{I}\frac{\mathcal{J}_{2}(I_{1})}{\mathcal{J}_{2}(\varkappa )}d\varkappa \right) \\ & +\frac{\aleph_{1}(S_{1}, V_{1})}{\varepsilon \mathcal{J}_{3}(V_{1})}\left( V-V_{1}-\int_{V_{1}}^{V}\frac{\mathcal{J}_{3}(V_{1})}{\mathcal{J} _{3}(\varkappa)}d\varkappa \right) \\ & +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{1})\aleph_{1} (S_{1}, V_{1})+\varepsilon \mathcal{J}_{3}(V_{1})\aleph_{3}(S_{1}, I_{1})\right] }{\sigma a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1})} C+\frac{\varpi \aleph_{1}(S_{1}, V_{1})}{\tau \varepsilon \mathcal{J}_{3}(V_{1} )}A\\ & +\frac{\aleph_{1}(S_{1}, V_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\aleph_{1}(S(\varkappa), V(\varkappa))}{\aleph_{1}(S_{1}, V_{1})}\right) d\varkappa d\theta \\ & +\frac{\aleph_{2}(S_{1}, L_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\aleph_{2}(S(\varkappa), L(\varkappa))}{\aleph_{2}(S_{1}, L_{1})}\right) d\varkappa d\theta \\ & +\frac{\aleph_{3}(S_{1}, I_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\aleph_{3}(S(\varkappa), I(\varkappa))}{\aleph_{3}(S_{1}, I_{1})}\right) d\varkappa d\theta \\ & +\frac{\lambda \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{1})\aleph _{1}(S_{1}, V_{1})+\varepsilon \mathcal{J}_{3}(V_{1})\aleph_{3}(S_{1} , I_{1})\right] \mathcal{J}_{1}(L_{1})}{a\varepsilon \mathcal{J}_{2} (I_{1})\mathcal{J}_{3}(V_{1})}\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H} }_{2}(\theta)\\ & \times \int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\mathcal{J} _{1}(L(\varkappa))}{\mathcal{J}_{1}(L_{1})}\right) d\varkappa d\theta +\frac{b\aleph_{1}(S_{1}, V_{1})\mathcal{J}_{2}(I_{1})}{\varepsilon \mathcal{J}_{3}(V_{1})}\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}} _{3}(\theta)\int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\mathcal{J} _{2}(I(\varkappa))}{\mathcal{J}_{2}(I_{1})}\right) d\varkappa d\theta. \end{align*}

    Calculating \frac{d\Phi_{1}}{dt} as:

    \begin{align} \frac{d\Phi_{1}}{dt} & = \left( 1-\frac{\aleph_{1}(S_{1}, V_{1})}{\aleph _{1}(S, V_{1})}\right) \left( \yen (S)-\aleph_{1}(S, V)-\aleph_{2} (S, L)-\aleph_{3}(S, I)\right) +\frac{1}{\mathcal{H}_{1}}\left( 1-\frac {\mathcal{J}_{1}(L_{1})}{\mathcal{J}_{1}(L)}\right) \\ & \times \left[ \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta)\left \{ \aleph_{1}(S(t-\theta), V(t-\theta))+\aleph_{2}(S(t-\theta ), L(t-\theta))+\aleph_{3}(S(t-\theta), I(t-\theta))\right \} d\theta \right. \\ & \left. -\left( \lambda+\gamma \right) \mathcal{J}_{1}(L)\right] +\frac{b\mathcal{H}_{3}\mathcal{J}_{2}(I_{1})\aleph_{1}(S_{1}, V_{1} )+\varepsilon \mathcal{J}_{3}(V_{1})\aleph_{3}(S_{1}, I_{1})}{a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1})}\left( 1-\frac{\mathcal{J} _{2}(I_{1})}{\mathcal{J}_{2}(I)}\right) \\ & \times \left[ \lambda \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}} _{2}(\theta)\mathcal{J}_{1}(L(t-\theta))d\theta-a\mathcal{J}_{2} (I)-\mu \mathcal{J}_{4}(C)\mathcal{J}_{2}(I)\right] +\frac{\aleph_{1} (S_{1}, V_{1})}{\varepsilon \mathcal{J}_{3}(V_{1})} \\ & \times \left( 1-\frac{\mathcal{J}_{3}(V_{1})}{\mathcal{J}_{3}(V)}\right) \left[ b\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta )\mathcal{J}_{2}(I(t-\theta))d\theta-\varepsilon \mathcal{J}_{3}(V)-\varpi \mathcal{J}_{5}(A)\mathcal{J}_{3}(V)\right] \\ & +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{1})\aleph_{1} (S_{1}, V_{1})+\varepsilon \mathcal{J}_{3}(V_{1})\aleph_{3}(S_{1}, I_{1})\right] }{\sigma a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1})}\left( \sigma \mathcal{J}_{4}(C)\mathcal{J}_{2}(I)-\pi \mathcal{J}_{4}(C)\right) \\ & +\frac{\varpi \aleph_{1}(S_{1}, V_{1})}{\tau \varepsilon \mathcal{J}_{3} (V_{1})}\left( \tau \mathcal{J}_{5}(A)\mathcal{J}_{3}(V)-\zeta \mathcal{J} _{5}(A)\right) +\frac{\aleph_{1}(S_{1}, V_{1})}{\mathcal{H}_{1}} \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac {\aleph_{1}(S, V)}{\aleph_{1}(S_{1}, V_{1})}\right. \\ & \left. -\frac{\aleph_{1}(S(t-\theta), V(t-\theta))}{\aleph_{1}(S_{1} , V_{1})}+\ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))}{\aleph _{1}(S, V)}\right) \right] d\theta+\frac{\aleph_{2}(S_{1}, L_{1})} {\mathcal{H}_{1}} \\ & \times \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac{\aleph_{2}(S, L)}{\aleph_{2}(S_{1}, L_{1})}-\frac{\aleph_{2} (S(t-\theta), L(t-\theta))}{\aleph_{2}(S_{1}, L_{1})}+\ln \left( \frac {\aleph_{2}(S(t-\theta), L(t-\theta))}{\aleph_{2}(S, L)}\right) \right] d\theta \\ & +\frac{\aleph_{3}(S_{1}, I_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac{\aleph_{3}(S, I)}{\aleph _{3}(S_{1}, I_{1})}-\frac{\aleph_{3}(S(t-\theta), I(t-\theta))}{\aleph_{3} (S_{1}, I_{1})}\right. \\ & \left. +\ln \left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta))}{\aleph _{3}(S, I)}\right) \right] d\theta+\frac{\lambda \left[ b\mathcal{H} _{3}\mathcal{J}_{2}(I_{1})\aleph_{1}(S_{1}, V_{1})+\varepsilon \mathcal{J} _{3}(V_{1})\aleph_{3}(S_{1}, I_{1})\right] \mathcal{J}_{1}(L_{1} )}{a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1})} \\ & \times \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\left[ \frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{1})}-\frac{\mathcal{J} _{1}(L(t-\theta))}{\mathcal{J}_{1}(L_{1})}+\ln \left( \frac{\mathcal{J} _{1}(L(t-\theta))}{\mathcal{J}_{1}(L)}\right) \right] d\theta \\ & +\frac{b\aleph_{1}(S_{1}, V_{1})\mathcal{J}_{2}(I_{1})}{\varepsilon \mathcal{J}_{3}(V_{1})}\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}} _{3}(\theta)\left[ \frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{1})} -\frac{\mathcal{J}_{2}(I(t-\theta))}{\mathcal{J}_{2}(I_{1})}+\ln \left( \frac{\mathcal{J}_{2}(I(t-\theta))}{\mathcal{J}_{2}(I)}\right) \right] d\theta. \end{align} (8.7)

    Collecting terms of Eq. (8.7), we derive

    \begin{align*} \frac{d\Phi_{1}}{dt} & = \yen (S)\left( 1-\frac{\aleph_{1}(S_{1}, V_{1} )}{\aleph_{1}(S, V_{1})}\right) +\aleph_{1}(S, V)\frac{\aleph_{1}(S_{1}, V_{1} )}{\aleph_{1}(S, V_{1})}+\aleph_{2}(S, L)\frac{\aleph_{1}(S_{1}, V_{1})} {\aleph_{1}(S, V_{1})}\\ & +\aleph_{3}(S, I)\frac{\aleph_{1}(S_{1}, V_{1})}{\aleph_{1}(S, V_{1})} -\frac{\lambda+\gamma}{\mathcal{H}_{1}}\mathcal{J}_{1}(L)-\frac{1} {\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta)\frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J}_{1}(L_{1} )}{\mathcal{J}_{1}(L)}d\theta \\ & -\frac{1}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}} _{1}(\theta)\frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J}_{1}(L_{1} )}{\mathcal{J}_{1}(L)}d\theta-\frac{1}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \frac{\aleph_{3}(S(t-\theta), I(t-\theta))\mathcal{J}_{1}(L_{1} )}{\mathcal{J}_{1}(L)}d\theta+\frac{\lambda+\gamma}{\mathcal{H}_{1} }\mathcal{J}_{1}(L_{1})-\aleph_{3}(S_{1}, I_{1})\frac{\mathcal{J}_{2} (I)}{\mathcal{J}_{2}(I_{1})}\\ & -\frac{\lambda \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{1})\aleph _{1}(S_{1}, V_{1})+\varepsilon \mathcal{J}_{3}(V_{1})\aleph_{3}(S_{1} , I_{1})\right] }{a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1} )}\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\frac {\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2}(I_{1})}{\mathcal{J}_{2} (I)}d\theta \\ & +\frac{b\mathcal{H}_{3}\mathcal{J}_{2}(I_{1})\aleph_{1}(S_{1} , V_{1})+\varepsilon \mathcal{J}_{3}(V_{1})\aleph_{3}(S_{1}, I_{1})} {\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1})}\mathcal{J}_{2} (I_{1})\\ & +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{1})\aleph_{1} (S_{1}, V_{1})+\varepsilon \mathcal{J}_{3}(V_{1})\aleph_{3}(S_{1}, I_{1})\right] }{a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1})}\mathcal{J} _{4}(C)\mathcal{J}_{2}(I_{1})\\ & -\aleph_{1}(S_{1}, V_{1})\frac{\mathcal{J}_{3}(V)}{\mathcal{J}_{3}(V_{1} )}-\frac{b\aleph_{1}(S_{1}, V_{1})}{\varepsilon \mathcal{J}_{3}(V_{1})} \int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\frac{\mathcal{J} _{2}(I(t-\theta))\mathcal{J}_{3}(V_{1})}{\mathcal{J}_{3}(V)}d\theta+\aleph _{1}(S_{1}, V_{1})\\ & +\frac{\varpi \aleph_{1}(S_{1}, V_{1})}{\varepsilon \mathcal{J}_{3}(V_{1} )}\mathcal{J}_{5}(A)\mathcal{J}_{3}(V_{1})-\frac{\mu \pi \left[ b\mathcal{H} _{3}\mathcal{J}_{2}(I_{1})\aleph_{1}(S_{1}, V_{1})+\varepsilon \mathcal{J} _{3}(V_{1})\aleph_{3}(S_{1}, I_{1})\right] }{\sigma a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1})}\mathcal{J}_{4}(C)\\ & -\frac{\varpi \zeta \aleph_{1}(S_{1}, V_{1})}{\tau \varepsilon \mathcal{J} _{3}(V_{1})}\mathcal{J}_{5}(A)+\frac{\aleph_{1}(S_{1}, V_{1})}{\mathcal{H}_{1} }\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))}{\aleph_{1}(S, V)}\right) d\theta \\ & +\frac{\aleph_{2}(S_{1}, L_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{2}(S(t-\theta ), L(t-\theta))}{\aleph_{2}(S, L)}\right) d\theta+\frac{\aleph_{3}(S_{1} , I_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}} _{1}(\theta)\\ & \times \ln \left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta))}{\aleph _{3}(S, I)}\right) d\theta+\frac{\lambda \mathcal{H}_{2}\left[ b\mathcal{H} _{3}\mathcal{J}_{2}(I_{1})\aleph_{1}(S_{1}, V_{1})+\varepsilon \mathcal{J} _{3}(V_{1})\aleph_{3}(S_{1}, I_{1})\right] }{a\varepsilon \mathcal{J}_{2} (I_{1})\mathcal{J}_{3}(V_{1})}\\ & \times \mathcal{J}_{1}(L)+\frac{\lambda \left[ b\mathcal{H}_{3} \mathcal{J}_{2}(I_{1})\aleph_{1}(S_{1}, V_{1})+\varepsilon \mathcal{J}_{3} (V_{1})\aleph_{3}(S_{1}, I_{1})\right] \mathcal{J}_{1}(L_{1})}{a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1})}\int \limits_{0}^{\kappa_{2} }\mathcal{\bar{H}}_{2}(\theta)\\ & \times \ln \left( \frac{\mathcal{J}_{1}(L(t-\theta))}{\mathcal{J}_{1} (L)}\right) d\theta+\frac{b\aleph_{1}(S_{1}, V_{1})\mathcal{J}_{2}(I_{1} )}{\varepsilon \mathcal{J}_{3}(V_{1})}\int \limits_{0}^{\kappa_{3}} \mathcal{\bar{H}}_{3}(\theta)\ln \left( \frac{\mathcal{J}_{2}(I(t-\theta ))}{\mathcal{J}_{2}(I)}\right) d\theta. \end{align*}

    Using the equilibrium conditions for Ð _{1} , we get

    \begin{align*} & \left. \yen (S_{1}) = \aleph_{1}(S_{1}, V_{1})+\aleph_{2}(S_{1}, L_{1} )+\aleph_{3}(S_{1}, I_{1}) = \frac{\lambda+\gamma}{\mathcal{H}_{1}} \mathcal{J}_{1}(L_{1}), \right. \\ & \left. \frac{\lambda \mathcal{H}_{2}\mathcal{J}_{1}(L_{1})}{a} = \mathcal{J}_{2}(I_{1}), \ \ \ \ \ \mathcal{J}_{3}(V_{1}) = \frac {b\mathcal{H}_{3}\mathcal{J}_{2}(I_{1})}{\varepsilon}.\right. \end{align*}

    In addition,

    \begin{align*} \aleph_{1}(S_{1}, V_{1})+\aleph_{3}(S_{1}, I_{1}) & = \frac{b\mathcal{H} _{3}\mathcal{J}_{2}(I_{1})\aleph_{1}(S_{1}, V_{1})+\varepsilon \mathcal{J} _{3}(V_{1})\aleph_{3}(S_{1}, I_{1})}{\varepsilon \mathcal{J}_{2}(I_{1} )\mathcal{J}_{3}(V_{1})}\mathcal{J}_{2}(I_{1})\\ & = \frac{\lambda \mathcal{H}_{2}\left[ b\mathcal{H}_{3}\mathcal{J}_{2} (I_{1})\aleph_{1}(S_{1}, V_{1})+\varepsilon \mathcal{J}_{3}(V_{1})\aleph _{3}(S_{1}, I_{1})\right] }{a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J} _{3}(V_{1})}\mathcal{J}_{1}(L_{1}). \end{align*}

    Then, we obtain

    \begin{align*} \frac{d\Phi_{1}}{dt} & = \left( \yen (S)-\yen (S_{1})\right) \left( 1-\frac{\aleph_{1}(S_{1}, V_{1})}{\aleph_{1}(S, V_{1})}\right) +\left( \aleph_{1}(S_{1}, V_{1})+\aleph_{2}(S_{1}, L_{1})+\aleph_{3}(S_{1}, I_{1})\right) \\ & \times \left( 1-\frac{\aleph_{1}(S_{1}, V_{1})}{\aleph_{1}(S, V_{1})}\right) +\aleph_{1}(S_{1}, V_{1})\frac{\aleph_{1}(S, V)}{\aleph_{1}(S, V_{1})}+\aleph _{2}(S_{1}, L_{1})\frac{\aleph_{2}(S, L)\aleph_{1}(S_{1}, V_{1})}{\aleph _{2}(S_{1}, L_{1})\aleph_{1}(S, V_{1})}\\ & +\aleph_{3}(S_{1}, I_{1})\frac{\aleph_{3}(S, I)\aleph_{1}(S_{1}, V_{1} )}{\aleph_{3}(S_{1}, I_{1})\aleph_{1}(S, V_{1})}-\aleph_{2}(S_{1}, L_{1} )\frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{1})}-\frac{\aleph_{1} (S_{1}, V_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H} }_{1}(\theta)\\ & \times \frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J}_{1}(L_{1} )}{\aleph_{1}(S_{1}, V_{1})\mathcal{J}_{1}(L)}d\theta-\frac{\aleph_{2} (S_{1}, L_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H} }_{1}(\theta)\frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J}_{1}(L_{1} )}{\aleph_{2}(S_{1}, L_{1})\mathcal{J}_{1}(L)}d\theta \\ & -\frac{\aleph_{3}(S_{1}, I_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\frac{\aleph_{3}(S(t-\theta), I(t-\theta ))\mathcal{J}_{1}(L_{1})}{\aleph_{3}(S_{1}, I_{1})\mathcal{J}_{1}(L)} d\theta+\aleph_{1}(S_{1}, V_{1})+\aleph_{2}(S_{1}, L_{1})\\ & +\aleph_{3}(S_{1}, I_{1})-\aleph_{3}(S_{1}, I_{1})\frac{\mathcal{J}_{2} (I)}{\mathcal{J}_{2}(I_{1})}-\frac{\aleph_{1}(S_{1}, V_{1})+\aleph_{3} (S_{1}, I_{1})}{\mathcal{H}_{2}}\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H} }_{2}(\theta)\frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2}(I_{1} )}{\mathcal{J}_{1}(L_{1})\mathcal{J}_{2}(I)}d\theta \\ & +\aleph_{1}(S_{1}, V_{1})+\aleph_{3}(S_{1}, I_{1})+\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{1})\aleph_{1}(S_{1}, V_{1})+\varepsilon \mathcal{J}_{3}(V_{1})\aleph_{3}(S_{1}, I_{1})\right] }{a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1})}\mathcal{J}_{4}(C)\mathcal{J} _{2}(I_{1})\\ & -\aleph_{1}(S_{1}, V_{1})\frac{\mathcal{J}_{3}(V)}{\mathcal{J}_{3}(V_{1} )}-\frac{\aleph_{1}(S_{1}, V_{1})}{\mathcal{H}_{3}}\int \limits_{0}^{\kappa_{3} }\mathcal{\bar{H}}_{3}(\theta)\frac{\mathcal{J}_{2}(I(t-\theta))\mathcal{J} _{3}(V_{1})}{\mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V)}d\theta+\aleph_{1} (S_{1}, V_{1})\\ & +\frac{\varpi \aleph_{1}(S_{1}, V_{1})}{\varepsilon \mathcal{J}_{3}(V_{1} )}\mathcal{J}_{5}(A)\mathcal{J}_{3}(V_{1})-\frac{\mu \pi \left[ b\mathcal{H} _{3}\mathcal{J}_{2}(I_{1})\aleph_{1}(S_{1}, V_{1})+\varepsilon \mathcal{J} _{3}(V_{1})\aleph_{3}(S_{1}, I_{1})\right] }{\sigma a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1})}\mathcal{J}_{4}(C)\\ & -\frac{\varpi \zeta \aleph_{1}(S_{1}, V_{1})}{\tau \varepsilon \mathcal{J} _{3}(V_{1})}\mathcal{J}_{5}(A)+\frac{\aleph_{1}(S_{1}, V_{1})}{\mathcal{H}_{1} }\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))}{\aleph_{1}(S, V)}\right) d\theta \\ & +\frac{\aleph_{2}(S_{1}, L_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{2}(S(t-\theta ), L(t-\theta))}{\aleph_{2}(S, L)}\right) d\theta+\frac{\aleph_{3}(S_{1} , I_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}} _{1}(\theta)\\ & \times \ln \left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta))}{\aleph _{3}(S, I)}\right) d\theta+\frac{\aleph_{1}(S_{1}, V_{1})+\aleph_{3} (S_{1}, I_{1})}{\mathcal{H}_{2}}\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H} }_{2}(\theta)\\ & \times \ln \left( \frac{\mathcal{J}_{1}(L(t-\theta))}{\mathcal{J}_{1} (L)}\right) d\theta+\frac{\aleph_{1}(S_{1}, V_{1})}{\mathcal{H}_{3}} \int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\ln \left( \frac{\mathcal{J}_{2}(I(t-\theta))}{\mathcal{J}_{2}(I)}\right) d\theta. \end{align*}

    Considering the equalities given by (5.6) in case of n = 1 and after some calculations we get

    \begin{align*} \frac{d\Phi_{1}}{dt} & = \left( \yen (S)-\yen (S_{1})\right) \left( 1-\frac{\aleph_{1}(S_{1}, V_{1})}{\aleph_{1}(S, V_{1})}\right) -\left( \aleph_{1}(S_{1}, V_{1})+\aleph_{2}(S_{1}, L_{1})+\aleph_{3}(S_{1}, I_{1})\right) \\ & \times \left[ \frac{\aleph_{1}(S_{1}, V_{1})}{\aleph_{1}(S, V_{1})} -1-\ln \left( \frac{\aleph_{1}(S_{1}, V_{1})}{\aleph_{1}(S, V_{1})}\right) \right] -\frac{\aleph_{1}(S_{1}, V_{1})}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \left[ \frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J} _{1}(L_{1})}{\aleph_{1}(S_{1}, V_{1})\mathcal{J}_{1}(L)}-1-\ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J}_{1}(L_{1})}{\aleph _{1}(S_{1}, V_{1})\mathcal{J}_{1}(L)}\right) \right] d\theta \\ & -\frac{\aleph_{2}(S_{1}, L_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac{\aleph_{2}(S(t-\theta ), L(t-\theta))\mathcal{J}_{1}(L_{1})}{\aleph_{2}(S_{1}, L_{1})\mathcal{J} _{1}(L)}-1\right. \\ & \left. -\ln \left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J} _{1}(L_{1})}{\aleph_{2}(S_{1}, L_{1})\mathcal{J}_{1}(L)}\right) \right] d\theta-\frac{\aleph_{3}(S_{1}, I_{1})}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \left[ \frac{\aleph_{3}(S(t-\theta), I(t-\theta))\mathcal{J} _{1}(L_{1})}{\aleph_{3}(S_{1}, I_{1})\mathcal{J}_{1}(L)}-1-\ln \left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta))\mathcal{J}_{1}(L_{1})}{\aleph _{3}(S_{1}, I_{1})\mathcal{J}_{1}(L)}\right) \right] d\theta \\ & -\frac{\aleph_{1}(S_{1}, V_{1})+\aleph_{3}(S_{1}, I_{1})}{\mathcal{H}_{2} }\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\left[ \frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2}(I_{1})}{\mathcal{J} _{1}(L_{1})\mathcal{J}_{2}(I)}-1\right. \\ & \left. -\ln \left( \frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2} (I_{1})}{\mathcal{J}_{1}(L_{1})\mathcal{J}_{2}(I)}\right) \right] d\theta-\frac{\aleph_{1}(S_{1}, V_{1})}{\mathcal{H}_{3}}\int \limits_{0} ^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\\ & \times \left[ \frac{\mathcal{J}_{2}(I(t-\theta))\mathcal{J}_{3}(V_{1} )}{\mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V)}-1-\ln \left( \frac{\mathcal{J} _{2}(I(t-\theta))\mathcal{J}_{3}(V_{1})}{\mathcal{J}_{2}(I_{1})\mathcal{J} _{3}(V)}\right) \right] d\theta \\ & -\aleph_{1}(S_{1}, V_{1})\left[ \frac{\aleph_{1}(S, V_{1})\mathcal{J} _{3}(V)}{\aleph_{1}(S, V)\mathcal{J}_{3}(V_{1})}-1-\ln \left( \frac{\aleph _{1}(S, V_{1})\mathcal{J}_{3}(V)}{\aleph_{1}(S, V)\mathcal{J}_{3}(V_{1} )}\right) \right] \\ & -\aleph_{2}(S_{1}, L_{1})\left[ \frac{\aleph_{1}(S, V_{1})\aleph_{2} (S_{1}, L_{1})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{1}, V_{1})\aleph_{2} (S, L)\mathcal{J}_{1}(L_{1})}-1-\ln \left( \frac{\aleph_{1}(S, V_{1})\aleph _{2}(S_{1}, L_{1})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{1}, V_{1})\aleph _{2}(S, L)\mathcal{J}_{1}(L_{1})}\right) \right] \\ & -\aleph_{3}(S_{1}, I_{1})\left[ \frac{\aleph_{1}(S, V_{1})\aleph_{3} (S_{1}, I_{1})\mathcal{J}_{2}(I)}{\aleph_{1}(S_{1}, V_{1})\aleph_{3} (S, I)\mathcal{J}_{2}(I_{1})}-1-\ln \left( \frac{\aleph_{1}(S, V_{1})\aleph _{3}(S_{1}, I_{1})\mathcal{J}_{2}(I)}{\aleph_{1}(S_{1}, V_{1})\aleph _{3}(S, I)\mathcal{J}_{2}(I_{1})}\right) \right] \\ & +\aleph_{1}(S_{1}, V_{1})\left[ \frac{\aleph_{1}(S, V)}{\aleph_{1}(S, V_{1} )}-\frac{\mathcal{J}_{3}(V)}{\mathcal{J}_{3}(V_{1})}-1+\frac{\aleph _{1}(S, V_{1})\mathcal{J}_{3}(V)}{\aleph_{1}(S, V)\mathcal{J}_{3}(V_{1})}\right] \\ & +\aleph_{2}(S_{1}, L_{1})\left[ \frac{\aleph_{2}(S, L)\aleph_{1}(S_{1} , V_{1})}{\aleph_{2}(S_{1}, L_{1})\aleph_{1}(S, V_{1})}-\frac{\mathcal{J}_{1} (L)}{\mathcal{J}_{1}(L_{1})}-1+\frac{\aleph_{1}(S, V_{1})\aleph_{2}(S_{1} , L_{1})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{1}, V_{1})\aleph_{2}(S, L)\mathcal{J} _{1}(L_{1})}\right] \\ & +\aleph_{3}(S_{1}, I_{1})\left[ \frac{\aleph_{3}(S, I)\aleph_{1}(S_{1} , V_{1})}{\aleph_{3}(S_{1}, I_{1})\aleph_{1}(S, V_{1})}-\frac{\mathcal{J}_{2} (I)}{\mathcal{J}_{2}(I_{1})}-1+\frac{\aleph_{1}(S, V_{1})\aleph_{3}(S_{1} , I_{1})\mathcal{J}_{2}(I)}{\aleph_{1}(S_{1}, V_{1})\aleph_{3}(S, I)\mathcal{J} _{2}(I_{1})}\right] \\ & +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{1})\aleph_{1} (S_{1}, V_{1})+\varepsilon \mathcal{J}_{3}(V_{1})\aleph_{3}(S_{1}, I_{1})\right] }{a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1})}\left( \mathcal{J}_{2}(I_{1})-\frac{\pi}{\sigma}\right) \mathcal{J}_{4}(C)\\ & +\frac{\varpi \aleph_{1}(S_{1}, V_{1})}{\varepsilon \mathcal{J}_{3}(V_{1} )}\left( \mathcal{J}_{3}(V_{1})-\frac{\zeta}{\tau}\right) \mathcal{J} _{5}(A). \end{align*}

    Using the definition of \mathcal{G}_{1}^{U}(S, U) given in (5.4), we obtain

    \begin{align*} & \frac{\aleph_{2}(S, L)\aleph_{1}(S_{1}, V_{1})}{\aleph_{2}(S_{1}, L_{1} )\aleph_{1}(S, V_{1})}-\frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{1} )}-1+\frac{\aleph_{1}(S, V_{1})\aleph_{2}(S_{1}, L_{1})\mathcal{J}_{1} (L)}{\aleph_{1}(S_{1}, V_{1})\aleph_{2}(S, L)\mathcal{J}_{1}(L_{1})}\\ & = \frac{\mathcal{G}_{1}^{L}(S, L)}{\mathcal{G}_{1}^{L}(S_{1}, L_{1})} -\frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{1})}-1+\frac{\mathcal{J} _{1}(L)\mathcal{G}_{1}^{L}(S_{1}, L_{1})}{\mathcal{J}_{1}(L_{1})\mathcal{G} _{1}^{L}(S, L)}, \end{align*}

    and

    \begin{align*} & \frac{\aleph_{3}(S, I)\aleph_{1}(S_{1}, V_{1})}{\aleph_{3}(S_{1}, I_{1} )\aleph_{1}(S, V_{1})}-\frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{1} )}-1+\frac{\aleph_{1}(S, V_{1})\aleph_{3}(S_{1}, I_{1})\mathcal{J}_{2} (I)}{\aleph_{1}(S_{1}, V_{1})\aleph_{3}(S, I)\mathcal{J}_{2}(I_{1})}\\ & = \frac{\mathcal{G}_{1}^{I}(S, I)}{\mathcal{G}_{1}^{I}(S_{1}, I_{1})} -\frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{1})}-1+\frac{\mathcal{J} _{2}(I)\mathcal{G}_{1}^{I}(S_{1}, I_{1})}{\mathcal{J}_{2}(I_{1})\mathcal{G} _{1}^{I}(S, I)}. \end{align*}

    Then,

    \begin{align} \frac{d\Phi_{1}}{dt} & = \left( \yen (S)-\yen (S_{1})\right) \left( 1-\frac{\aleph_{1}(S_{1}, V_{1})}{\aleph_{1}(S, V_{1})}\right) -\frac {\aleph_{1}(S_{1}, V_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1} }\mathcal{\bar{H}}_{1}(\theta)\left[ \mathcal{K}\left( \frac{\aleph _{1}(S_{1}, V_{1})}{\aleph_{1}(S, V_{1})}\right) \right. \\ & \left. +\mathcal{K}\left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta ))\mathcal{J}_{1}(L_{1})}{\aleph_{1}(S_{1}, V_{1})\mathcal{J}_{1}(L)}\right) +\mathcal{K}\left( \frac{\aleph_{1}(S, V_{1})\mathcal{J}_{3}(V)}{\aleph _{1}(S, V)\mathcal{J}_{3}(V_{1})}\right) \right] d\theta \\ & -\frac{\aleph_{2}(S_{1}, L_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \mathcal{K}\left( \frac{\aleph _{1}(S_{1}, V_{1})}{\aleph_{1}(S, V_{1})}\right) +\mathcal{K}\left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J}_{1}(L_{1})}{\aleph _{2}(S_{1}, L_{1})\mathcal{J}_{1}(L)}\right) \right. \\ & \left. +\mathcal{K}\left( \frac{\aleph_{1}(S, V_{1})\aleph_{2}(S_{1} , L_{1})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{1}, V_{1})\aleph_{2}(S, L)\mathcal{J} _{1}(L_{1})}\right) \right] d\theta-\frac{\aleph_{3}(S_{1}, I_{1} )}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta)\left[ \mathcal{K}\left( \frac{\aleph_{1}(S_{1}, V_{1})}{\aleph _{1}(S, V_{1})}\right) \right. \\ & \left. +\mathcal{K}\left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta ))\mathcal{J}_{1}(L_{1})}{\aleph_{3}(S_{1}, I_{1})\mathcal{J}_{1}(L)}\right) +\mathcal{K}\left( \frac{\aleph_{1}(S, V_{1})\aleph_{3}(S_{1}, I_{1} )\mathcal{J}_{2}(I)}{\aleph_{1}(S_{1}, V_{1})\aleph_{3}(S, I)\mathcal{J} _{2}(I_{1})}\right) \right] d\theta \\ & -\frac{\aleph_{1}(S_{1}, V_{1})+\aleph_{3}(S_{1}, I_{1})}{\mathcal{H}_{2} }\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\mathcal{K}\left( \frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2}(I_{1})}{\mathcal{J} _{1}(L_{1})\mathcal{J}_{2}(I)}\right) d\theta-\frac{\aleph_{1}(S_{1}, V_{1} )}{\mathcal{H}_{3}}\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3} (\theta) \\ & \times \mathcal{K}\left( \frac{\mathcal{J}_{2}(I(t-\theta))\mathcal{J} _{3}(V_{1})}{\mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V)}\right) d\theta +\aleph_{1}(S_{1}, V_{1})\left( 1-\frac{\aleph_{1}(S, V_{1})}{\aleph_{1} (S, V)}\right) \left( \frac{\aleph_{1}(S, V)}{\aleph_{1}(S, V_{1})} -\frac{\mathcal{J}_{3}(V)}{\mathcal{J}_{3}(V_{1})}\right) \\ & +\aleph_{2}(S_{1}, L_{1})\left( 1-\frac{\mathcal{G}_{1}^{L}(S_{1}, L_{1} )}{\mathcal{G}_{1}^{L}(S, L)}\right) \left( \frac{\mathcal{G}_{1}^{L} (S, L)}{\mathcal{G}_{1}^{L}(S_{1}, L_{1})}-\frac{\mathcal{J}_{1}(L)} {\mathcal{J}_{1}(L_{1})}\right) +\aleph_{3}(S_{1}, I_{1})\left( 1-\frac{\mathcal{G}_{1}^{I}(S_{1}, I_{1})}{\mathcal{G}_{1}^{I}(S, I)}\right) \\ & \times \left( \frac{\mathcal{G}_{1}^{I}(S, I)}{\mathcal{G}_{1}^{I} (S_{1}, I_{1})}-\frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{1})}\right) +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{1})\aleph_{1}(S_{1} , V_{1})+\varepsilon \mathcal{J}_{3}(V_{1})\aleph_{3}(S_{1}, I_{1})\right] }{a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1})} \\ & \times \left( \mathcal{J}_{2}(I_{1})-\mathcal{J}_{2}(I_{2})\right) \mathcal{J}_{4}(C)+\frac{\varpi \aleph_{1}(S_{1}, V_{1})}{\varepsilon \mathcal{J}_{3}(V_{1})}\left( \mathcal{J}_{3}(V_{1})-\mathcal{J}_{3} (V_{3})\right) \mathcal{J}_{5}(A). \end{align} (8.8)

    We have C_{2} = \mathcal{J}_{4}^{-1}\left(\dfrac{a}{\mu}\left(\Re _{1}-1\right) \right) \leq0 when \Re_{1}\leq1 . It follows that \dot {C}(t) = \sigma \left(\mathcal{J}_{2}(I(t))-\dfrac{\pi}{\sigma}\right) \mathcal{J}_{4}(C(t)) = \sigma \left(\mathcal{J}_{2}(I(t))-\mathcal{J} _{2}(I_{2})\right) \mathcal{J}_{4}(C(t))\leq0 for all C > 0 , which implies that \mathcal{J}_{2}(I_{1})\leq \mathcal{J}_{2}(I_{2}) . Further, A_{3} = \mathcal{J}_{5}^{-1}\left(\dfrac{\varepsilon}{\varpi}(\Re _{2}-1)\right) \leq0 when \Re_{2}\leq1 . This implies that \dot{A} (t) = \tau \left(\mathcal{J}_{3}(V(t))-\dfrac{\zeta}{\tau}\right) \mathcal{J}_{5}(A(t)) = \tau \left(\mathcal{J}_{3}(V(t))-\mathcal{J}_{3} (V_{3})\right) \mathcal{J}_{5}(A(t))\leq0 for all A > 0 , which ensures the inequality \mathcal{J}_{3}(V_{1})\leq \mathcal{J}_{3}(V_{3}) . Furthermore, \Phi_{1} is always positive and approaches its global minimum at Ð _{1} . Therefore, from Eq. (8.8) we have \frac{d\Phi_{1}}{dt}\leq0 for all S, L, I, V, C, A > 0 with equality holding when S = S_{1}, L(t) = L_{1} , I(t) = I_{1}, V(t) = V_{1} and C = A = 0. Let \Upsilon_{1}^{\prime} be the largest invariant subset of \Upsilon_{1} = \left \{ (S, L, I, V, C, A):\frac {d\Phi_{1}}{dt} = 0\right \} . The solutions of system (2.1) are confined to \Upsilon_{1}^{^{\prime}} . It can be seen that \Upsilon_{1}^{\prime } = \left \{ \text{ $Ð_{1}$ }\right \} and Ð _{1} is G.A.S using LaSalle's invariance principle.

    Proof of Theorem 3. Define a function \Phi_{2}(S, L, I, V, C, A) as:

    \begin{align*} \Phi_{2} & = S-S_{2}-\int_{S_{2}}^{S}\frac{\aleph_{1}(S_{2}, V_{2})} {\aleph_{1}(\varkappa, V_{2})}d\varkappa+\frac{1}{\mathcal{H}_{1}}\left( L-L_{2}-\int_{L_{2}}^{L}\frac{\mathcal{J}_{1}(L_{2})}{\mathcal{J} _{1}(\varkappa)}d\varkappa \right) \\ & +\frac{b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})\aleph_{1}(S_{2} , V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph_{3}(S_{2}, I_{2})} {\varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J}_{2} (I_{2})\mathcal{J}_{3}(V_{2})}\left( I-I_{2}-\int_{I_{2}}^{I}\frac {\mathcal{J}_{2}(I_{2})}{\mathcal{J}_{2}(\varkappa)}d\varkappa \right) \\ & +\frac{\aleph_{1}(S_{2}, V_{2})}{\varepsilon \mathcal{J}_{3}(V_{2})}\left( V-V_{2}-\int_{V_{2}}^{V}\frac{\mathcal{J}_{3}(V_{2})}{\mathcal{J} _{3}(\varkappa)}d\varkappa \right) \\ & +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})\aleph_{1} (S_{2}, V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph_{3}(S_{2}, I_{2})\right] }{\sigma \varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J} _{2}(I_{2})\mathcal{J}_{3}(V_{2})}\left( C-C_{2}-\int_{C_{2}}^{C} \frac{\mathcal{J}_{4}(C_{2})}{\mathcal{J}_{4}(\varkappa)}d\varkappa \right) \\ & +\frac{\varpi \aleph_{1}(S_{2}, V_{2})}{\tau \varepsilon \mathcal{J}_{3} (V_{2})}A+\frac{\aleph_{1}(S_{2}, V_{2})}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\int \limits_{t-\theta} ^{t}\mathcal{K}\left( \frac{\aleph_{1}(S(\varkappa), V(\varkappa))}{\aleph _{1}(S_{2}, V_{2})}\right) d\varkappa d\theta \\ & +\frac{\aleph_{2}(S_{2}, L_{2})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\aleph_{2}(S(\varkappa), L(\varkappa))}{\aleph_{2}(S_{2}, L_{2})}\right) d\varkappa d\theta+\frac{\aleph_{3}(S_{2}, I_{2})}{\mathcal{H}_{1}} \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\aleph _{3}(S(\varkappa), I(\varkappa))}{\aleph_{3}(S_{2}, I_{2})}\right) d\varkappa d\theta+\frac{\lambda \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})\aleph _{1}(S_{2}, V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph_{3}(S_{2} , I_{2})\right] \mathcal{J}_{1}(L_{2})}{\varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J}_{2}(I_{2})\mathcal{J}_{3}(V_{2})}\\ & \times \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta )\int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\mathcal{J}_{1} (L(\varkappa))}{\mathcal{J}_{1}(L_{2})}\right) d\varkappa d\theta +\frac{b\aleph_{1}(S_{2}, V_{2})\mathcal{J}_{2}(I_{2})}{\varepsilon \mathcal{J}_{3}(V_{2})}\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}} _{3}(\theta)\int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\mathcal{J} _{2}(I(\varkappa))}{\mathcal{J}_{2}(I_{2})}\right) d\varkappa d\theta. \end{align*}

    We calculate \frac{d\Phi_{2}}{dt} as:

    \begin{align} \frac{d\Phi_{2}}{dt} & = \left( 1-\frac{\aleph_{1}(S_{2}, V_{2})}{\aleph _{1}(S, V_{2})}\right) \left( \yen (S)-\aleph_{1}(S, V)-\aleph_{2} (S, L)-\aleph_{3}(S, I)\right) +\frac{1}{\mathcal{H}_{1}}\left( 1-\frac {\mathcal{J}_{1}(L_{2})}{\mathcal{J}_{1}(L)}\right) \\ & \times \left[ \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta)\left \{ \aleph_{1}(S(t-\theta), V(t-\theta))+\aleph_{2}(S(t-\theta ), L(t-\theta))+\aleph_{3}(S(t-\theta), I(t-\theta))\right \} d\theta \right. \\ & \left. -\left( \lambda+\gamma \right) \mathcal{J}_{1}(L)\right] +\frac{b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})\aleph_{1}(S_{2}, V_{2} )+\varepsilon \mathcal{J}_{3}(V_{2})\aleph_{3}(S_{2}, I_{2})}{\varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J}_{2}(I_{2})\mathcal{J} _{3}(V_{2})}\left( 1-\frac{\mathcal{J}_{2}(I_{2})}{\mathcal{J}_{2}(I)}\right) \\ & \times \left[ \lambda \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}} _{2}(\theta)\mathcal{J}_{1}(L(t-\theta))d\theta-a\mathcal{J}_{2} (I)-\mu \mathcal{J}_{4}(C)\mathcal{J}_{2}(I)\right] +\frac{\aleph_{1} (S_{2}, V_{2})}{\varepsilon \mathcal{J}_{3}(V_{2})} \\ & \times \left( 1-\frac{\mathcal{J}_{3}(V_{2})}{\mathcal{J}_{3}(V)}\right) \left[ b\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta )\mathcal{J}_{2}(I(t-\theta))d\theta-\varepsilon \mathcal{J}_{3}(V)-\varpi \mathcal{J}_{5}(A)\mathcal{J}_{3}(V)\right] \\ & +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})\aleph_{1} (S_{2}, V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph_{3}(S_{2}, I_{2})\right] }{\sigma \varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J} _{2}(I_{2})\mathcal{J}_{3}(V_{2})}\left( 1-\frac{\mathcal{J}_{4}(C_{2} )}{\mathcal{J}_{4}(C)}\right) \left( \sigma \mathcal{J}_{4}(C)\mathcal{J} _{2}(I)-\pi \mathcal{J}_{4}(C)\right) \\ & +\frac{\varpi \aleph_{1}(S_{2}, V_{2})}{\tau \varepsilon \mathcal{J}_{3} (V_{2})}\left( \tau \mathcal{J}_{5}(A)\mathcal{J}_{3}(V)-\zeta \mathcal{J} _{5}(A)\right) +\frac{\aleph_{1}(S_{2}, V_{2})}{\mathcal{H}_{1}} \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac {\aleph_{1}(S, V)}{\aleph_{1}(S_{2}, V_{2})}\right. \\ & \left. -\frac{\aleph_{1}(S(t-\theta), V(t-\theta))}{\aleph_{1}(S_{2} , V_{2})}+\ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))}{\aleph _{1}(S, V)}\right) \right] d\theta+\frac{\aleph_{2}(S_{2}, L_{2})} {\mathcal{H}_{1}} \\ & \times \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac{\aleph_{2}(S, L)}{\aleph_{2}(S_{2}, L_{2})}-\frac{\aleph_{2} (S(t-\theta), L(t-\theta))}{\aleph_{2}(S_{2}, L_{2})}+\ln \left( \frac {\aleph_{2}(S(t-\theta), L(t-\theta))}{\aleph_{2}(S, L)}\right) \right] d\theta \\ & +\frac{\aleph_{3}(S_{2}, I_{2})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac{\aleph_{3}(S, I)}{\aleph _{3}(S_{2}, I_{2})}-\frac{\aleph_{3}(S(t-\theta), I(t-\theta))}{\aleph_{3} (S_{2}, I_{2})}\right. \\ & \left. +\ln \left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta))}{\aleph _{3}(S, I)}\right) \right] d\theta+\frac{\lambda \left[ b\mathcal{H} _{3}\mathcal{J}_{2}(I_{2})\aleph_{1}(S_{2}, V_{2})+\varepsilon \mathcal{J} _{3}(V_{2})\aleph_{3}(S_{2}, I_{2})\right] \mathcal{J}_{1}(L_{2})} {\varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J}_{2} (I_{2})\mathcal{J}_{3}(V_{2})} \\ & \times \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\left[ \frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{2})}-\frac{\mathcal{J} _{1}(L(t-\theta))}{\mathcal{J}_{1}(L_{2})}+\ln \left( \frac{\mathcal{J} _{1}(L(t-\theta))}{\mathcal{J}_{1}(L)}\right) \right] d\theta \\ & +\frac{b\aleph_{1}(S_{2}, V_{2})\mathcal{J}_{2}(I_{2})}{\varepsilon \mathcal{J}_{3}(V_{2})}\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}} _{3}(\theta)\left[ \frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{2})} -\frac{\mathcal{J}_{2}(I(t-\theta))}{\mathcal{J}_{2}(I_{2})}+\ln \left( \frac{\mathcal{J}_{2}(I(t-\theta))}{\mathcal{J}_{2}(I)}\right) \right] d\theta. \end{align} (8.9)

    Collecting terms of Eq. (8.9), we derive

    \begin{align*} \frac{d\Phi_{2}}{dt} & = \yen (S)\left( 1-\frac{\aleph_{1}(S_{2}, V_{2} )}{\aleph_{1}(S, V_{2})}\right) +\aleph_{1}(S, V)\frac{\aleph_{1}(S_{2}, V_{2} )}{\aleph_{1}(S, V_{2})}+\aleph_{2}(S, L)\frac{\aleph_{1}(S_{2}, V_{2})} {\aleph_{1}(S, V_{2})}\\ & +\aleph_{3}(S, I)\frac{\aleph_{1}(S_{2}, V_{2})}{\aleph_{1}(S, V_{2})} -\frac{\lambda+\gamma}{\mathcal{H}_{1}}\mathcal{J}_{1}(L)-\frac{1} {\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta)\frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J}_{1}(L_{2} )}{\mathcal{J}_{1}(L)}d\theta \\ & -\frac{1}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}} _{1}(\theta)\frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J}_{1}(L_{2} )}{\mathcal{J}_{1}(L)}d\theta-\frac{1}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\frac{\aleph_{3}(S(t-\theta ), I(t-\theta))\mathcal{J}_{1}(L_{2})}{\mathcal{J}_{1}(L)}d\theta \\ & +\frac{\lambda+\gamma}{\mathcal{H}_{1}}\mathcal{J}_{1}(L_{2})-\frac {a\left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})\aleph_{1}(S_{2} , V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph_{3}(S_{2}, I_{2})\right] }{\varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J}_{2} (I_{2})\mathcal{J}_{3}(V_{2})}\mathcal{J}_{2}(I)\\ & -\frac{\lambda \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})\aleph _{1}(S_{2}, V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph_{3}(S_{2} , I_{2})\right] }{\varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J}_{2}(I_{2})\mathcal{J}_{3}(V_{2})}\int \limits_{0}^{\kappa_{2} }\mathcal{\bar{H}}_{2}(\theta)\frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J} _{2}(I_{2})}{\mathcal{J}_{2}(I)}d\theta \\ & +\frac{a\left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})\aleph_{1} (S_{2}, V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph_{3}(S_{2}, I_{2})\right] }{\varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J}_{2} (I_{2})\mathcal{J}_{3}(V_{2})}\mathcal{J}_{2}(I_{2})\\ & +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})\aleph_{1} (S_{2}, V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph_{3}(S_{2}, I_{2})\right] }{\varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J}_{2} (I_{2})\mathcal{J}_{3}(V_{2})}\mathcal{J}_{4}(C)\mathcal{J}_{2}(I_{2} )-\aleph_{1}(S_{2}, V_{2})\frac{\mathcal{J}_{3}(V)}{\mathcal{J}_{3}(V_{2})}\\ & -\frac{b\aleph_{1}(S_{2}, V_{2})}{\varepsilon \mathcal{J}_{3}(V_{2})} \int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\frac{\mathcal{J} _{2}(I(t-\theta))\mathcal{J}_{3}(V_{2})}{\mathcal{J}_{3}(V)}d\theta+\aleph _{1}(S_{2}, V_{2})+\frac{\varpi \aleph_{1}(S_{2}, V_{2})}{\varepsilon \mathcal{J}_{3}(V_{2})}\mathcal{J}_{5}(A)\mathcal{J}_{3}(V_{2})\\ & -\frac{\mu \pi \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})\aleph_{1} (S_{2}, V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph_{3}(S_{2}, I_{2})\right] }{\sigma \varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J} _{2}(I_{2})\mathcal{J}_{3}(V_{2})}\mathcal{J}_{4}(C)\\ & -\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})\aleph_{1} (S_{2}, V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph_{3}(S_{2}, I_{2})\right] }{\varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J}_{2} (I_{2})\mathcal{J}_{3}(V_{2})}\mathcal{J}_{2}(I)\mathcal{J}_{4}(C_{2})\\ & +\frac{\mu \pi \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})\aleph_{1} (S_{2}, V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph_{3}(S_{2}, I_{2})\right] }{\sigma \varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J} _{2}(I_{2})\mathcal{J}_{3}(V_{2})}\mathcal{J}_{4}(C_{2})-\frac{\varpi \zeta \aleph_{1}(S_{2}, V_{2})}{\tau \varepsilon \mathcal{J}_{3}(V_{2} )}\mathcal{J}_{5}(A)\\ & +\frac{\aleph_{1}(S_{2}, V_{2})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{1}(S(t-\theta ), V(t-\theta))}{\aleph_{1}(S, V)}\right) d\theta+\frac{\aleph_{2}(S_{2} , L_{2})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}} _{1}(\theta)\\ & \times \ln \left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))}{\aleph _{2}(S, L)}\right) d\theta+\frac{\aleph_{3}(S_{2}, I_{2})}{\mathcal{H}_{1}} \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta))}{\aleph_{3}(S, I)}\right) d\theta \\ & +\frac{\lambda \mathcal{H}_{2}\left[ b\mathcal{H}_{3}\mathcal{J}_{2} (I_{2})\aleph_{1}(S_{2}, V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph _{3}(S_{2}, I_{2})\right] }{\varepsilon \left( a+\mu \mathcal{J}_{4} (C_{2})\right) \mathcal{J}_{2}(I_{2})\mathcal{J}_{3}(V_{2})}\mathcal{J} _{1}(L)\\ & +\frac{\lambda \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})\aleph _{1}(S_{2}, V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph_{3}(S_{2} , I_{2})\right] \mathcal{J}_{1}(L_{2})}{\varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J}_{2}(I_{2})\mathcal{J}_{3}(V_{2} )}\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\ln \left( \frac{\mathcal{J}_{1}(L(t-\theta))}{\mathcal{J}_{1}(L)}\right) d\theta \\ & +\frac{b\aleph_{1}(S_{2}, V_{2})}{\varepsilon \mathcal{J}_{3}(V_{2} )}\mathcal{J}_{2}(I)+\frac{b\aleph_{1}(S_{2}, V_{2})\mathcal{J}_{2}(I_{2} )}{\varepsilon \mathcal{J}_{3}(V_{2})}\int \limits_{0}^{\kappa_{3}} \mathcal{\bar{H}}_{3}(\theta)\ln \left( \frac{\mathcal{J}_{2}(I(t-\theta ))}{\mathcal{J}_{2}(I)}\right) d\theta. \end{align*}

    Using the equilibrium conditions for Ð _{2} :

    \begin{align*} & \left. \yen (S_{2}) = \aleph_{1}(S_{2}, V_{2})+\aleph_{2}(S_{2}, L_{2} )+\aleph_{3}(S_{2}, I_{2}) = \frac{\lambda+\gamma}{\mathcal{H}_{1}} \mathcal{J}_{1}(L_{2}), \right. \\ & \left. \lambda \mathcal{H}_{2}\mathcal{J}_{1}(L_{2}) = \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J}_{2}(I_{2}), \ \ \ \ \ \mathcal{J}_{2}(I_{2}) = \frac{\pi}{\sigma}, \ \ \ \ \ \mathcal{J}_{3} (V_{2}) = \frac{b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})}{\varepsilon}.\right. \end{align*}

    Moreover,

    \begin{align*} \aleph_{1}(S_{2}, V_{2})+\aleph_{3}(S_{2}, I_{2}) & = \frac{b\mathcal{H} _{3}\mathcal{J}_{2}(I_{2})\aleph_{1}(S_{2}, V_{2})+\varepsilon \mathcal{J} _{3}(V_{2})\aleph_{3}(S_{2}, I_{2})}{\varepsilon \mathcal{J}_{2}(I_{2} )\mathcal{J}_{3}(V_{2})}\mathcal{J}_{2}(I_{2})\\ & = \frac{\lambda \mathcal{H}_{2}\left[ b\mathcal{H}_{3}\mathcal{J}_{2} (I_{2})\aleph_{1}(S_{2}, V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph _{3}(S_{2}, I_{2})\right] }{\varepsilon \left( a+\mu \mathcal{J}_{4} (C_{2})\right) \mathcal{J}_{2}(I_{2})\mathcal{J}_{3}(V_{2})}\mathcal{J} _{1}(L_{2}). \end{align*}

    Therefore, we obtain

    \begin{align*} \frac{d\Phi_{2}}{dt} & = \left( \yen (S)-\yen (S_{2})\right) \left( 1-\frac{\aleph_{1}(S_{2}, V_{2})}{\aleph_{1}(S, V_{2})}\right) +\left( \aleph_{1}(S_{2}, V_{2})+\aleph_{2}(S_{2}, L_{2})+\aleph_{3}(S_{2}, I_{2})\right) \\ & \times \left( 1-\frac{\aleph_{1}(S_{2}, V_{2})}{\aleph_{1}(S, V_{2})}\right) +\aleph_{1}(S_{2}, V_{2})\frac{\aleph_{1}(S, V)}{\aleph_{1}(S, V_{2})}+\aleph _{2}(S_{2}, L_{2})\frac{\aleph_{2}(S, L)\aleph_{1}(S_{2}, V_{2})}{\aleph _{2}(S_{2}, L_{2})\aleph_{1}(S, V_{2})}\\ & +\aleph_{3}(S_{2}, I_{2})\frac{\aleph_{3}(S, I)\aleph_{1}(S_{2}, V_{2} )}{\aleph_{3}(S_{2}, I_{2})\aleph_{1}(S, V_{2})}-\aleph_{2}(S_{2}, L_{2} )\frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{2})}-\frac{\aleph_{1} (S_{2}, V_{2})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H} }_{1}(\theta)\\ & \times \frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J}_{1}(L_{2} )}{\aleph_{1}(S_{2}, V_{2})\mathcal{J}_{1}(L)}d\theta-\frac{\aleph_{2} (S_{2}, L_{2})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H} }_{1}(\theta)\frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J}_{1}(L_{2} )}{\aleph_{2}(S_{2}, L_{2})\mathcal{J}_{1}(L)}d\theta \\ & -\frac{\aleph_{3}(S_{2}, I_{2})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\frac{\aleph_{3}(S(t-\theta), I(t-\theta ))\mathcal{J}_{1}(L_{2})}{\aleph_{3}(S_{2}, I_{2})\mathcal{J}_{1}(L)} d\theta+\aleph_{1}(S_{2}, V_{2})+\aleph_{2}(S_{2}, L_{2})+\aleph_{3}(S_{2} , I_{2})\\ & -\aleph_{3}(S_{2}, I_{2})\frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{2} )}-\frac{\aleph_{1}(S_{2}, V_{2})+\aleph_{3}(S_{2}, I_{2})}{\mathcal{H}_{2}} \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\frac{\mathcal{J} _{1}(L(t-\theta))\mathcal{J}_{2}(I_{2})}{\mathcal{J}_{1}(L_{2})\mathcal{J} _{2}(I)}d\theta+\aleph_{1}(S_{2}, V_{2})\\ & +\aleph_{3}(S_{2}, I_{2})-\aleph_{1}(S_{2}, V_{2})\frac{\mathcal{J}_{3} (V)}{\mathcal{J}_{3}(V_{2})}-\frac{\aleph_{1}(S_{2}, V_{2})}{\mathcal{H}_{3} }\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\frac{\mathcal{J} _{2}(I(t-\theta))\mathcal{J}_{3}(V_{2})}{\mathcal{J}_{2}(I_{2})\mathcal{J} _{3}(V)}d\theta+\aleph_{1}(S_{2}, V_{2})\\ & +\frac{\varpi \aleph_{1}(S_{2}, V_{2})}{\varepsilon \mathcal{J}_{3}(V_{2} )}\mathcal{J}_{5}(A)\mathcal{J}_{3}(V_{2})-\frac{\varpi \zeta \aleph_{1} (S_{2}, V_{2})}{\tau \varepsilon \mathcal{J}_{3}(V_{2})}\mathcal{J}_{5} (A)+\frac{\aleph_{1}(S_{2}, V_{2})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))}{\aleph _{1}(S, V)}\right) d\theta+\frac{\aleph_{2}(S_{2}, L_{2})}{\mathcal{H}_{1}} \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))}{\aleph_{2}(S, L)}\right) d\theta \\ & +\frac{\aleph_{3}(S_{2}, I_{2})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{3}(S(t-\theta ), I(t-\theta))}{\aleph_{3}(S, I)}\right) d\theta+\frac{\aleph_{1}(S_{2} , V_{2})+\aleph_{3}(S_{2}, I_{2})}{\mathcal{H}_{2}}\int \limits_{0}^{\kappa_{2} }\mathcal{\bar{H}}_{2}(\theta)\\ & \times \ln \left( \frac{\mathcal{J}_{1}(L(t-\theta))}{\mathcal{J}_{1} (L)}\right) d\theta+\frac{\aleph_{1}(S_{2}, V_{2})}{\mathcal{H}_{3}} \int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\ln \left( \frac{\mathcal{J}_{2}(I(t-\theta))}{\mathcal{J}_{2}(I)}\right) d\theta. \end{align*}

    Considering the equalities given by (5.6) in case of n = 2 and after some calculations we get

    \begin{align*} \frac{d\Phi_{2}}{dt} & = \left( \yen (S)-\yen (S_{2})\right) \left( 1-\frac{\aleph_{1}(S_{2}, V_{2})}{\aleph_{1}(S, V_{2})}\right) -\left( \aleph_{1}(S_{2}, V_{2})+\aleph_{2}(S_{2}, L_{2})+\aleph_{3}(S_{2}, I_{2})\right) \\ & \times \left[ \frac{\aleph_{1}(S_{2}, V_{2})}{\aleph_{1}(S, V_{2})} -1-\ln \left( \frac{\aleph_{1}(S_{2}, V_{2})}{\aleph_{1}(S, V_{2})}\right) \right] -\frac{\aleph_{1}(S_{2}, V_{2})}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \left[ \frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J} _{1}(L_{2})}{\aleph_{1}(S_{2}, V_{2})\mathcal{J}_{1}(L)}-1-\ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J}_{1}(L_{2})}{\aleph _{1}(S_{2}, V_{2})\mathcal{J}_{1}(L)}\right) \right] d\theta \\ & -\frac{\aleph_{2}(S_{2}, L_{2})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac{\aleph_{2}(S(t-\theta ), L(t-\theta))\mathcal{J}_{1}(L_{2})}{\aleph_{2}(S_{2}, L_{2})\mathcal{J} _{1}(L)}-1\right. \\ & \left. -\ln \left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J} _{1}(L_{2})}{\aleph_{2}(S_{2}, L_{2})\mathcal{J}_{1}(L)}\right) \right] d\theta-\frac{\aleph_{3}(S_{2}, I_{2})}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \left[ \frac{\aleph_{3}(S(t-\theta), I(t-\theta))\mathcal{J} _{1}(L_{2})}{\aleph_{3}(S_{2}, I_{2})\mathcal{J}_{1}(L)}-1-\ln \left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta))\mathcal{J}_{1}(L_{2})}{\aleph _{3}(S_{2}, I_{2})\mathcal{J}_{1}(L)}\right) \right] d\theta \\ & -\frac{\aleph_{1}(S_{2}, V_{2})+\aleph_{3}(S_{2}, I_{2})}{\mathcal{H}_{2} }\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\left[ \frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2}(I_{2})}{\mathcal{J} _{1}(L_{2})\mathcal{J}_{2}(I)}-1\right. \\ & \left. -\ln \left( \frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2} (I_{2})}{\mathcal{J}_{1}(L_{2})\mathcal{J}_{2}(I)}\right) \right] d\theta-\frac{\aleph_{1}(S_{2}, V_{2})}{\mathcal{H}_{3}}\int \limits_{0} ^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\\ & \times \left[ \frac{\mathcal{J}_{2}(I(t-\theta))\mathcal{J}_{3}(V_{2} )}{\mathcal{J}_{2}(I_{2})\mathcal{J}_{3}(V)}-1-\ln \left( \frac{\mathcal{J} _{2}(I(t-\theta))\mathcal{J}_{3}(V_{2})}{\mathcal{J}_{2}(I_{2})\mathcal{J} _{3}(V)}\right) \right] d\theta \\ & -\aleph_{1}(S_{2}, V_{2})\left[ \frac{\aleph_{1}(S, V_{2})\mathcal{J} _{3}(V)}{\aleph_{1}(S, V)\mathcal{J}_{3}(V_{2})}-1-\ln \left( \frac{\aleph _{1}(S, V_{2})\mathcal{J}_{3}(V)}{\aleph_{1}(S, V)\mathcal{J}_{3}(V_{2} )}\right) \right] \\ & -\aleph_{2}(S_{2}, L_{2})\left[ \frac{\aleph_{1}(S, V_{2})\aleph_{2} (S_{2}, L_{2})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{2}, V_{2})\aleph_{2} (S, L)\mathcal{J}_{1}(L_{2})}-1-\ln \left( \frac{\aleph_{1}(S, V_{2})\aleph _{2}(S_{2}, L_{2})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{2}, V_{2})\aleph _{2}(S, L)\mathcal{J}_{1}(L_{2})}\right) \right] \\ & -\aleph_{3}(S_{2}, I_{2})\left[ \frac{\aleph_{1}(S, V_{2})\aleph_{3} (S_{2}, I_{2})\mathcal{J}_{2}(I)}{\aleph_{1}(S_{2}, V_{2})\aleph_{3} (S, I)\mathcal{J}_{2}(I_{2})}-1-\ln \left( \frac{\aleph_{1}(S, V_{2})\aleph _{3}(S_{2}, I_{2})\mathcal{J}_{2}(I)}{\aleph_{1}(S_{2}, V_{2})\aleph _{3}(S, I)\mathcal{J}_{2}(I_{2})}\right) \right] \\ & +\aleph_{1}(S_{2}, V_{2})\left[ \frac{\aleph_{1}(S, V)}{\aleph_{1}(S, V_{2} )}-\frac{\mathcal{J}_{3}(V)}{\mathcal{J}_{3}(V_{2})}-1+\frac{\aleph _{1}(S, V_{2})\mathcal{J}_{3}(V)}{\aleph_{1}(S, V)\mathcal{J}_{3}(V_{2})}\right] \\ & +\aleph_{2}(S_{2}, L_{2})\left[ \frac{\aleph_{2}(S, L)\aleph_{1}(S_{2} , V_{2})}{\aleph_{2}(S_{2}, L_{2})\aleph_{1}(S, V_{2})}-\frac{\mathcal{J}_{1} (L)}{\mathcal{J}_{1}(L_{2})}-1+\frac{\aleph_{1}(S, V_{2})\aleph_{2}(S_{2} , L_{2})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{2}, V_{2})\aleph_{2}(S, L)\mathcal{J} _{1}(L_{2})}\right] \\ & +\aleph_{3}(S_{2}, I_{2})\left[ \frac{\aleph_{3}(S, I)\aleph_{1}(S_{2} , V_{2})}{\aleph_{3}(S_{2}, I_{2})\aleph_{1}(S, V_{2})}-\frac{\mathcal{J}_{2} (I)}{\mathcal{J}_{2}(I_{2})}-1+\frac{\aleph_{1}(S, V_{2})\aleph_{3}(S_{2} , I_{2})\mathcal{J}_{2}(I)}{\aleph_{1}(S_{2}, V_{2})\aleph_{3}(S, I)\mathcal{J} _{2}(I_{2})}\right] \\ & +\frac{\varpi \aleph_{1}(S_{2}, V_{2})}{\varepsilon \mathcal{J}_{3}(V_{2} )}\left( \mathcal{J}_{3}(V_{2})-\frac{\zeta}{\tau}\right) \mathcal{J} _{5}(A). \end{align*}

    Using the definition of \mathcal{G}_{2}^{U}(S, U) given in (5.4), we obtain

    \begin{align*} & \frac{\aleph_{2}(S, L)\aleph_{1}(S_{2}, V_{2})}{\aleph_{2}(S_{2}, L_{2} )\aleph_{1}(S, V_{2})}-\frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{2} )}-1+\frac{\aleph_{1}(S, V_{2})\aleph_{2}(S_{2}, L_{2})\mathcal{J}_{1} (L)}{\aleph_{1}(S_{2}, V_{2})\aleph_{2}(S, L)\mathcal{J}_{1}(L_{2})}\\ & = \frac{\mathcal{G}_{2}^{L}(S, L)}{\mathcal{G}_{2}^{L}(S_{2}, L_{2})} -\frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{2})}-1+\frac{\mathcal{J} _{1}(L)\mathcal{G}_{2}^{L}(S_{2}, L_{2})}{\mathcal{J}_{1}(L_{2})\mathcal{G} _{2}^{L}(S, L)}, \end{align*}

    and

    \begin{align*} & \frac{\aleph_{3}(S, I)\aleph_{1}(S_{2}, V_{2})}{\aleph_{3}(S_{2}, I_{2} )\aleph_{1}(S, V_{2})}-\frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{2} )}-1+\frac{\aleph_{1}(S, V_{2})\aleph_{3}(S_{2}, I_{2})\mathcal{J}_{2} (I)}{\aleph_{1}(S_{2}, V_{2})\aleph_{3}(S, I)\mathcal{J}_{2}(I_{2})}\\ & = \frac{\mathcal{G}_{2}^{I}(S, I)}{\mathcal{G}_{2}^{I}(S_{2}, I_{2})} -\frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{2})}-1+\frac{\mathcal{J} _{2}(I)\mathcal{G}_{2}^{I}(S_{2}, I_{2})}{\mathcal{J}_{2}(I_{2})\mathcal{G} _{2}^{I}(S, I)}. \end{align*}

    Then,

    \begin{align} \frac{d\Phi_{2}}{dt} & = \left( \yen (S)-\yen (S_{2})\right) \left( 1-\frac{\aleph_{1}(S_{2}, V_{2})}{\aleph_{1}(S, V_{2})}\right) -\frac {\aleph_{1}(S_{2}, V_{2})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1} }\mathcal{\bar{H}}_{1}(\theta)\left[ \mathcal{K}\left( \frac{\aleph _{1}(S_{2}, V_{2})}{\aleph_{1}(S, V_{2})}\right) \right. \\ & \left. +\mathcal{K}\left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta ))\mathcal{J}_{1}(L_{2})}{\aleph_{1}(S_{2}, V_{2})\mathcal{J}_{1}(L)}\right) +\mathcal{K}\left( \frac{\aleph_{1}(S, V_{2})\mathcal{J}_{3}(V)}{\aleph _{1}(S, V)\mathcal{J}_{3}(V_{2})}\right) \right] d\theta \\ & -\frac{\aleph_{2}(S_{2}, L_{2})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \mathcal{K}\left( \frac{\aleph _{1}(S_{2}, V_{2})}{\aleph_{1}(S, V_{2})}\right) +\mathcal{K}\left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J}_{1}(L_{2})}{\aleph _{2}(S_{2}, L_{2})\mathcal{J}_{1}(L)}\right) \right. \\ & \left. +\mathcal{K}\left( \frac{\aleph_{1}(S, V_{2})\aleph_{2}(S_{2} , L_{2})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{2}, V_{2})\aleph_{2}(S, L)\mathcal{J} _{1}(L_{2})}\right) \right] d\theta-\frac{\aleph_{3}(S_{2}, I_{2} )}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta)\left[ \mathcal{K}\left( \frac{\aleph_{1}(S_{2}, V_{2})}{\aleph _{1}(S, V_{2})}\right) \right. \\ & \left. +\mathcal{K}\left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta ))\mathcal{J}_{1}(L_{2})}{\aleph_{3}(S_{2}, I_{2})\mathcal{J}_{1}(L)}\right) +\mathcal{K}\left( \frac{\aleph_{1}(S, V_{2})\aleph_{3}(S_{2}, I_{2} )\mathcal{J}_{2}(I)}{\aleph_{1}(S_{2}, V_{2})\aleph_{3}(S, I)\mathcal{J} _{2}(I_{2})}\right) \right] d\theta \\ & -\frac{\aleph_{1}(S_{2}, V_{2})+\aleph_{3}(S_{2}, I_{2})}{\mathcal{H}_{2} }\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\mathcal{K}\left( \frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2}(I_{2})}{\mathcal{J} _{1}(L_{2})\mathcal{J}_{2}(I)}\right) d\theta-\frac{\aleph_{1}(S_{2}, V_{2} )}{\mathcal{H}_{3}}\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3} (\theta) \\ & \times \mathcal{K}\left( \frac{\mathcal{J}_{2}(I(t-\theta))\mathcal{J} _{3}(V_{2})}{\mathcal{J}_{2}(I_{2})\mathcal{J}_{3}(V)}\right) d\theta +\aleph_{1}(S_{2}, V_{2})\left( 1-\frac{\aleph_{1}(S, V_{2})}{\aleph_{1} (S, V)}\right) \left( \frac{\aleph_{1}(S, V)}{\aleph_{1}(S, V_{2})} -\frac{\mathcal{J}_{3}(V)}{\mathcal{J}_{3}(V_{2})}\right) \\ & +\aleph_{2}(S_{2}, L_{2})\left( 1-\frac{\mathcal{G}_{2}^{L}(S_{2}, L_{2} )}{\mathcal{G}_{2}^{L}(S, L)}\right) \left( \frac{\mathcal{G}_{2}^{L} (S, L)}{\mathcal{G}_{2}^{L}(S_{2}, L_{2})}-\frac{\mathcal{J}_{1}(L)} {\mathcal{J}_{1}(L_{2})}\right) +\aleph_{3}(S_{2}, I_{2})\left( 1-\frac{\mathcal{G}_{2}^{I}(S_{2}, I_{2})}{\mathcal{G}_{2}^{I}(S, I)}\right) \\ & \times \left( \frac{\mathcal{G}_{2}^{I}(S, I)}{\mathcal{G}_{2}^{I} (S_{2}, I_{2})}-\frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{2})}\right) +\frac{\varpi \aleph_{1}(S_{2}, V_{2})}{\varepsilon \mathcal{J}_{3}(V_{2} )}\left( \mathcal{J}_{3}(V_{2})-\mathcal{J}_{3}(V_{4})\right) \mathcal{J} _{5}(A). \end{align} (8.10)

    Hence, if \Re_{4}\leq1 , then Ð _{4} does not exists since A_{4} = \mathcal{J}_{5}^{-1}\left(\dfrac{\varepsilon}{\varpi}\left(\Re _{4}-1\right) \right) \leq0 . This implies that, \dot{A}(t) = \tau \left(\mathcal{J}_{3}(V(t))-\frac{\zeta}{\tau}\right) \mathcal{J}_{5} (A(t)) = \tau \left(\mathcal{J}_{3}(V(t))-\mathcal{J}_{3}(V_{4})\right) \mathcal{J}_{5}(A(t))\leq0 for all A > 0 , which ensures the inequality \mathcal{J}_{3}(V_{2})\leq \mathcal{J}_{3}(V_{4}) . Hence, if \Re_{1} > 1 , then \frac{d\Phi_{2}}{dt}\leq0 for all S, L, I, V, C, A > 0 and \frac{d\Phi_{2} }{dt} = 0 when S = S_{2}, L(t) = L_{2}, I(t) = I_{2} , V(t) = V_{2} and A = 0. Define \Upsilon_{2} = \left \{ (S, L, I, V, C, A):\frac{d\Phi_{2}}{dt} = 0\right \} and \Upsilon_{2}^{^{\prime}} is the largest invariant subset of \Upsilon_{2} . The solutions of system (2.1) converge to \Upsilon _{2}^{^{\prime}} which contains elements with L(t) = L_{2} and I(t) = I_{2} . Hence, \dot{I}(t) = 0 and from the third equation of system (2.1), we have 0 = \dot{I}(t) = \lambda \mathcal{H}_{2}\mathcal{J}_{1}(L_{2})-a\mathcal{J} _{2}(I_{2})-\mu \mathcal{J}_{4}(C(t))\mathcal{J}_{2}(I_{2}) , which gives C(t) = C_{2} for all t. Therefore, \Upsilon_{2}^{^{\prime}} = \left \{ \text{ $Ð_{2}$ }\right \} . Applying LaSalle's invariance principle we get that Ð _{2} is G.A.S.

    Proof of Theorem 4. Define a function \Phi_{3}(S, L, I, V, C, A) as:

    \begin{align*} \Phi_{3} & = S-S_{3}-\int_{S_{3}}^{S}\frac{\aleph_{1}(S_{3}, V_{3})} {\aleph_{1}(\varkappa, V_{3})}d\varkappa+\frac{1}{\mathcal{H}_{1}}\left( L-L_{3}-\int_{L_{3}}^{L}\frac{\mathcal{J}_{1}(L_{3})}{\mathcal{J} _{1}(\varkappa)}d\varkappa \right) \\ & +\frac{b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3})\aleph_{1}(S_{3} , V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3}(S_{3}, I_{3})}{a\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{2}(I_{3})\mathcal{J} _{3}(V_{3})}\left( I-I_{3}-\int_{I_{3}}^{I}\frac{\mathcal{J}_{2}(I_{3} )}{\mathcal{J}_{2}(\varkappa)}d\varkappa \right) \\ & +\frac{\aleph_{1}(S_{3}, V_{3})}{\left( \varepsilon+\varpi \mathcal{J} _{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})}\left( V-V_{3}-\int_{V_{3}} ^{V}\frac{\mathcal{J}_{3}(V_{3})}{\mathcal{J}_{3}(\varkappa)}d\varkappa \right) \\ & +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3})\aleph_{1} (S_{3}, V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3}(S_{3}, I_{3})\right] }{\sigma a\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{2} (I_{3})\mathcal{J}_{3}(V_{3})}C\\ & +\frac{\varpi \aleph_{1}(S_{3}, V_{3})}{\tau \left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})}\left( A-A_{3}-\int_{A_{3}}^{A}\frac{\mathcal{J}_{5}(A_{3})}{\mathcal{J} _{5}(\varkappa)}d\varkappa \right) +\frac{\aleph_{1}(S_{3}, V_{3})} {\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\aleph _{1}(S(\varkappa), V(\varkappa))}{\aleph_{1}(S_{3}, V_{3})}\right) d\varkappa d\theta+\frac{\aleph_{2}(S_{3}, L_{3})}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\int \limits_{t-\theta} ^{t}\mathcal{K}\left( \frac{\aleph_{2}(S(\varkappa), L(\varkappa))}{\aleph _{2}(S_{3}, L_{3})}\right) d\varkappa d\theta \\ & +\frac{\aleph_{3}(S_{3}, I_{3})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\aleph_{3}(S(\varkappa), I(\varkappa))}{\aleph_{3}(S_{3}, I_{3})}\right) d\varkappa d\theta \\ & +\frac{\lambda \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3})\aleph _{1}(S_{3}, V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3}(S_{3}, I_{3})\right] \mathcal{J}_{1}(L_{3} )}{a\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J} _{2}(I_{3})\mathcal{J}_{3}(V_{3})}\int \limits_{0}^{\kappa_{2}}\mathcal{\bar {H}}_{2}(\theta)\\ & \times \int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\mathcal{J} _{1}(L(\varkappa))}{\mathcal{J}_{1}(L_{3})}\right) d\varkappa d\theta +\frac{b\aleph_{1}(S_{3}, V_{3})\mathcal{J}_{2}(I_{3})}{\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})}\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\int \limits_{t-\theta }^{t}\mathcal{K}\left( \frac{\mathcal{J}_{2}(I(\varkappa))}{\mathcal{J} _{2}(I_{3})}\right) d\varkappa d\theta. \end{align*}

    Calculating \frac{d\Phi_{3}}{dt} as:

    \begin{align} \frac{d\Phi_{3}}{dt} & = \left( 1-\frac{\aleph_{1}(S_{3}, V_{3})}{\aleph _{1}(S, V_{3})}\right) \left( \yen (S)-\aleph_{1}(S, V)-\aleph_{2} (S, L)-\aleph_{3}(S, I)\right) +\frac{1}{\mathcal{H}_{1}}\left( 1-\frac {\mathcal{J}_{1}(L_{3})}{\mathcal{J}_{1}(L)}\right) \\ & \times \left[ \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta)\left \{ \aleph_{1}(S(t-\theta), V(t-\theta))+\aleph_{2}(S(t-\theta ), L(t-\theta))+\aleph_{3}(S(t-\theta), I(t-\theta))\right \} d\theta \right. \\ & \left. -\left( \lambda+\gamma \right) \mathcal{J}_{1}(L)\right] +\frac{b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3})\aleph_{1}(S_{3}, V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3} )\aleph_{3}(S_{3}, I_{3})}{a\left( \varepsilon+\varpi \mathcal{J}_{5} (A_{3})\right) \mathcal{J}_{2}(I_{3})\mathcal{J}_{3}(V_{3})} \\ & \times \left( 1-\frac{\mathcal{J}_{2}(I_{3})}{\mathcal{J}_{2}(I)}\right) \left[ \lambda \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2} (\theta)\mathcal{J}_{1}(L(t-\theta))d\theta-a\mathcal{J}_{2}(I)-\mu \mathcal{J}_{4}(C)\mathcal{J}_{2}(I)\right] \\ & +\frac{\aleph_{1}(S_{3}, V_{3})}{\left( \varepsilon+\varpi \mathcal{J} _{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})}\left( 1-\frac{\mathcal{J} _{3}(V_{3})}{\mathcal{J}_{3}(V)}\right) \left[ b\int \limits_{0}^{\kappa_{3} }\mathcal{\bar{H}}_{3}(\theta)\mathcal{J}_{2}(I(t-\theta))d\theta -\varepsilon \mathcal{J}_{3}(V)\right. \\ & \left. -\varpi \mathcal{J}_{5}(A)\mathcal{J}_{3}(V)\right] +\frac {\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3})\aleph_{1}(S_{3} , V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3}(S_{3}, I_{3})\right] }{\sigma a\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{2} (I_{3})\mathcal{J}_{3}(V_{3})} \\ & \times \left( \sigma \mathcal{J}_{4}(C)\mathcal{J}_{2}(I)-\pi \mathcal{J} _{4}(C)\right) +\frac{\varpi \aleph_{1}(S_{3}, V_{3})}{\tau \left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3} )}\left( 1-\frac{\mathcal{J}_{5}(A_{3})}{\mathcal{J}_{5}(A)}\right) \\ & \times \left( \tau \mathcal{J}_{5}(A)\mathcal{J}_{3}(V)-\zeta \mathcal{J} _{5}(A)\right) +\frac{\aleph_{1}(S_{3}, V_{3})}{\mathcal{H}_{1}} \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac {\aleph_{1}(S, V)}{\aleph_{1}(S_{3}, V_{3})}\right. \\ & \left. -\frac{\aleph_{1}(S(t-\theta), V(t-\theta))}{\aleph_{1}(S_{3} , V_{3})}+\ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))}{\aleph _{1}(S, V)}\right) \right] d\theta+\frac{\aleph_{2}(S_{3}, L_{3})} {\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta) \\ & \times \left[ \frac{\aleph_{2}(S, L)}{\aleph_{2}(S_{3}, L_{3})}-\frac {\aleph_{2}(S(t-\theta), L(t-\theta))}{\aleph_{2}(S_{3}, L_{3})}+\ln \left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))}{\aleph_{2}(S, L)}\right) \right] d\theta+\frac{\aleph_{3}(S_{3}, I_{3})}{\mathcal{H}_{1}} \\ & \times \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac{\aleph_{3}(S, I)}{\aleph_{3}(S_{3}, I_{3})}-\frac{\aleph_{3} (S(t-\theta), I(t-\theta))}{\aleph_{3}(S_{3}, I_{3})}+\ln \left( \frac {\aleph_{3}(S(t-\theta), I(t-\theta))}{\aleph_{3}(S, I)}\right) \right] d\theta \\ & +\frac{\lambda \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3})\aleph _{1}(S_{3}, V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3}(S_{3}, I_{3})\right] \mathcal{J}_{1}(L_{3} )}{a\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J} _{2}(I_{3})\mathcal{J}_{3}(V_{3})} \\ & \times \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\left[ \frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{3})}-\frac{\mathcal{J} _{1}(L(t-\theta))}{\mathcal{J}_{1}(L_{3})}+\ln \left( \frac{\mathcal{J} _{1}(L(t-\theta))}{\mathcal{J}_{1}(L)}\right) \right] d\theta \\ & +\frac{b\aleph_{1}(S_{3}, V_{3})\mathcal{J}_{2}(I_{3})}{\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})} \int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\left[ \frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{3})}-\frac{\mathcal{J} _{2}(I(t-\theta))}{\mathcal{J}_{2}(I_{3})}+\ln \left( \frac{\mathcal{J} _{2}(I(t-\theta))}{\mathcal{J}_{2}(I)}\right) \right] d\theta. \end{align} (8.11)

    Collecting terms of Eq. (8.11), we derive

    \begin{align*} \frac{d\Phi_{3}}{dt} & = \yen (S)\left( 1-\frac{\aleph_{1}(S_{3}, V_{3} )}{\aleph_{1}(S, V_{3})}\right) +\aleph_{1}(S, V)\frac{\aleph_{1}(S_{3}, V_{3} )}{\aleph_{1}(S, V_{3})}+\aleph_{2}(S, L)\frac{\aleph_{1}(S_{3}, V_{3})} {\aleph_{1}(S, V_{3})}\\ & +\aleph_{3}(S, I)\frac{\aleph_{1}(S_{3}, V_{3})}{\aleph_{1}(S, V_{3})} -\frac{\lambda+\gamma}{\mathcal{H}_{1}}\mathcal{J}_{1}(L)-\frac{1} {\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta)\frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J}_{1}(L_{3} )}{\mathcal{J}_{1}(L)}d\theta \\ & -\frac{1}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}} _{1}(\theta)\frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J}_{1}(L_{3} )}{\mathcal{J}_{1}(L)}d\theta-\frac{1}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \frac{\aleph_{3}(S(t-\theta), I(t-\theta))\mathcal{J}_{1}(L_{3} )}{\mathcal{J}_{1}(L)}d\theta+\frac{\lambda+\gamma}{\mathcal{H}_{1} }\mathcal{J}_{1}(L_{3})-\aleph_{3}(S_{3}, I_{3})\frac{\mathcal{J}_{2} (I)}{\mathcal{J}_{2}(I_{3})}\\ & -\frac{\lambda \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3})\aleph _{1}(S_{3}, V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3}(S_{3}, I_{3})\right] }{a\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{2} (I_{3})\mathcal{J}_{3}(V_{3})}\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H} }_{2}(\theta)\frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2}(I_{3} )}{\mathcal{J}_{2}(I)}d\theta \\ & +\frac{b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3})\aleph_{1}(S_{3} , V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3}(S_{3}, I_{3})}{\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{2}(I_{3})\mathcal{J} _{3}(V_{3})}\mathcal{J}_{2}(I_{3})\\ & +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3})\aleph_{1} (S_{3}, V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3}(S_{3}, I_{3})\right] }{a\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{2} (I_{3})\mathcal{J}_{3}(V_{3})}\mathcal{J}_{4}(C)\mathcal{J}_{2}(I_{3})\\ & -\frac{\varepsilon \aleph_{1}(S_{3}, V_{3})}{\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})}\mathcal{J} _{3}(V)-\frac{b\aleph_{1}(S_{3}, V_{3})}{\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})}\int \limits_{0} ^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\frac{\mathcal{J}_{2}(I(t-\theta ))\mathcal{J}_{3}(V_{3})}{\mathcal{J}_{3}(V)}d\theta \\ & +\frac{\varepsilon \aleph_{1}(S_{3}, V_{3})}{\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})}\mathcal{J} _{3}(V_{3})+\frac{\varpi \aleph_{1}(S_{3}, V_{3})}{\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})}\mathcal{J} _{5}(A)\mathcal{J}_{3}(V_{3})\\ & -\frac{\mu \pi \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3})\aleph_{1} (S_{3}, V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3}(S_{3}, I_{3})\right] }{\sigma a\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{2} (I_{3})\mathcal{J}_{3}(V_{3})}\mathcal{J}_{4}(C)\\ & -\frac{\varpi \zeta \aleph_{1}(S_{3}, V_{3})}{\tau \left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})}\mathcal{J} _{5}(A)-\frac{\varpi \aleph_{1}(S_{3}, V_{3})}{\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})}\mathcal{J} _{5}(A_{3})\mathcal{J}_{3}(V)\\ & +\frac{\varpi \zeta \aleph_{1}(S_{3}, V_{3})}{\tau \left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})}\mathcal{J} _{5}(A_{3})+\frac{\aleph_{1}(S_{3}, V_{3})}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph _{1}(S(t-\theta), V(t-\theta))}{\aleph_{1}(S, V)}\right) d\theta \\ & +\frac{\aleph_{2}(S_{3}, L_{3})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{2}(S(t-\theta ), L(t-\theta))}{\aleph_{2}(S, L)}\right) d\theta+\frac{\aleph_{3}(S_{3} , I_{3})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}} _{1}(\theta)\\ & \times \ln \left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta))}{\aleph _{3}(S, I)}\right) d\theta+\frac{\lambda \mathcal{H}_{2}\left[ b\mathcal{H} _{3}\mathcal{J}_{2}(I_{3})\aleph_{1}(S_{3}, V_{3})+\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3} (S_{3}, I_{3})\right] }{a\left( \varepsilon+\varpi \mathcal{J}_{5} (A_{3})\right) \mathcal{J}_{2}(I_{3})\mathcal{J}_{3}(V_{3})}\\ & \times \mathcal{J}_{1}(L)+\frac{\lambda \left[ b\mathcal{H}_{3} \mathcal{J}_{2}(I_{3})\aleph_{1}(S_{3}, V_{3})+\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3} (S_{3}, I_{3})\right] \mathcal{J}_{1}(L_{3})}{a\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{2}(I_{3})\mathcal{J} _{3}(V_{3})}\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\\ & \times \ln \left( \frac{\mathcal{J}_{1}(L(t-\theta))}{\mathcal{J}_{1} (L)}\right) d\theta+\frac{b\aleph_{1}(S_{3}, V_{3})\mathcal{J}_{2}(I_{3} )}{\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J} _{3}(V_{3})}\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta )\ln \left( \frac{\mathcal{J}_{2}(I(t-\theta))}{\mathcal{J}_{2}(I)}\right) d\theta. \end{align*}

    Using the equilibrium conditions for Ð _{3} , we get

    \begin{align*} & \left. \yen (S_{3}) = \aleph_{1}(S_{3}, V_{3})+\aleph_{2}(S_{3}, L_{3} )+\aleph_{3}(S_{3}, I_{3}) = \frac{\lambda+\gamma}{\mathcal{H}_{1}} \mathcal{J}_{1}(L_{3}), \right. \\ & \left. \frac{\lambda \mathcal{H}_{2}\mathcal{J}_{1}(L_{3})}{a} = \mathcal{J}_{2}(I_{3}), \ \ \ \ \ \mathcal{J}_{3}(V_{3}) = \frac{\zeta} {\tau}, \ \ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3}) = \left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3} (V_{3}).\right. \end{align*}

    In addition,

    \begin{align*} \aleph_{1}(S_{3}, V_{3})+\aleph_{3}(S_{3}, I_{3}) & = \frac{b\mathcal{H} _{3}\mathcal{J}_{2}(I_{3})\aleph_{1}(S_{3}, V_{3})+\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3} (S_{3}, I_{3})}{\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{2}(I_{3})\mathcal{J}_{3}(V_{3})}\mathcal{J}_{2}(I_{3})\\ & = \frac{\lambda \mathcal{H}_{2}\left[ b\mathcal{H}_{3}\mathcal{J}_{2} (I_{3})\aleph_{1}(S_{3}, V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5} (A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3}(S_{3}, I_{3})\right] }{a\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J} _{2}(I_{3})\mathcal{J}_{3}(V_{3})}\mathcal{J}_{1}(L_{3}). \end{align*}

    Then, we obtain

    \begin{align*} \frac{d\Phi_{3}}{dt} & = \left( \yen (S)-\yen (S_{3})\right) \left( 1-\frac{\aleph_{1}(S_{3}, V_{3})}{\aleph_{1}(S, V_{3})}\right) +\left( \aleph_{1}(S_{3}, V_{3})+\aleph_{2}(S_{3}, L_{3})+\aleph_{3}(S_{3}, I_{3})\right) \\ & \times \left( 1-\frac{\aleph_{1}(S_{3}, V_{3})}{\aleph_{1}(S, V_{3})}\right) +\aleph_{1}(S_{3}, V_{3})\frac{\aleph_{1}(S, V)}{\aleph_{1}(S, V_{3})}+\aleph _{2}(S_{3}, L_{3})\frac{\aleph_{2}(S, L)\aleph_{1}(S_{3}, V_{3})}{\aleph _{2}(S_{3}, L_{3})\aleph_{1}(S, V_{3})}\\ & +\aleph_{3}(S_{3}, I_{3})\frac{\aleph_{3}(S, I)\aleph_{1}(S_{3}, V_{3} )}{\aleph_{3}(S_{3}, I_{3})\aleph_{1}(S, V_{3})}-\aleph_{2}(S_{3}, L_{3} )\frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{3})}-\frac{\aleph_{1} (S_{3}, V_{3})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H} }_{1}(\theta)\\ & \times \frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J}_{1}(L_{3} )}{\aleph_{1}(S_{3}, V_{3})\mathcal{J}_{1}(L)}d\theta-\frac{\aleph_{2} (S_{3}, L_{3})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H} }_{1}(\theta)\\ & \times \frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J}_{1}(L_{3} )}{\aleph_{2}(S_{3}, L_{3})\mathcal{J}_{1}(L)}d\theta-\frac{\aleph_{3} (S_{3}, I_{3})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H} }_{1}(\theta)\frac{\aleph_{3}(S(t-\theta), I(t-\theta))\mathcal{J}_{1}(L_{3} )}{\aleph_{3}(S_{3}, I_{3})\mathcal{J}_{1}(L)}d\theta \\ & +\aleph_{1}(S_{3}, V_{3})+\aleph_{2}(S_{3}, L_{3})+\aleph_{3}(S_{3} , I_{3})-\aleph_{3}(S_{3}, I_{3})\frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2} (I_{3})}-\frac{\aleph_{1}(S_{3}, V_{3})+\aleph_{3}(S_{3}, I_{3})}{\mathcal{H} _{2}}\\ & \times \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta )\frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2}(I_{3})}{\mathcal{J} _{1}(L_{3})\mathcal{J}_{2}(I)}d\theta+\aleph_{1}(S_{3}, V_{3})+\aleph_{3} (S_{3}, I_{3})-\aleph_{1}(S_{3}, V_{3})\frac{\mathcal{J}_{3}(V)}{\mathcal{J} _{3}(V_{3})}\\ & -\frac{\aleph_{1}(S_{3}, V_{3})}{\mathcal{H}_{3}}\int \limits_{0}^{\kappa _{3}}\mathcal{\bar{H}}_{3}(\theta)\frac{\mathcal{J}_{2}(I(t-\theta ))\mathcal{J}_{3}(V_{3})}{\mathcal{J}_{2}(I_{3})\mathcal{J}_{3}(V)} d\theta+\aleph_{1}(S_{3}, V_{3})+\frac{\aleph_{1}(S_{3}, V_{3})}{\mathcal{H} _{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))}{\aleph _{1}(S, V)}\right) d\theta+\frac{\aleph_{2}(S_{3}, L_{3})}{\mathcal{H}_{1}} \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))}{\aleph_{2}(S, L)}\right) d\theta \\ & +\frac{\aleph_{3}(S_{3}, I_{3})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{3}(S(t-\theta ), I(t-\theta))}{\aleph_{3}(S, I)}\right) d\theta+\frac{\aleph_{1}(S_{3} , V_{3})+\aleph_{3}(S_{3}, I_{3})}{\mathcal{H}_{2}}\\ & \times \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\ln \left( \frac{\mathcal{J}_{1}(L(t-\theta))}{\mathcal{J}_{1}(L)}\right) d\theta +\frac{\aleph_{1}(S_{3}, V_{3})}{\mathcal{H}_{3}}\int \limits_{0}^{\kappa_{3} }\mathcal{\bar{H}}_{3}(\theta)\ln \left( \frac{\mathcal{J}_{2}(I(t-\theta ))}{\mathcal{J}_{2}(I)}\right) d\theta \\ & +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3})\aleph_{1} (S_{3}, V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3}(S_{3}, I_{3})\right] }{a\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{2} (I_{3})\mathcal{J}_{3}(V_{3})}\left( \mathcal{J}_{2}(I_{3})-\frac{\pi} {\sigma}\right) \mathcal{J}_{4}(C). \end{align*}

    Considering the equalities given by (5.6) in case of n = 3 and after some calculations we get

    \begin{align*} \frac{d\Phi_{3}}{dt} & = \left( \yen (S)-\yen (S_{3})\right) \left( 1-\frac{\aleph_{1}(S_{3}, V_{3})}{\aleph_{1}(S, V_{3})}\right) -\left( \aleph_{1}(S_{3}, V_{3})+\aleph_{2}(S_{3}, L_{3})+\aleph_{3}(S_{3}, I_{3})\right) \\ & \times \left[ \frac{\aleph_{1}(S_{3}, V_{3})}{\aleph_{1}(S, V_{3})} -1-\ln \left( \frac{\aleph_{1}(S_{3}, V_{3})}{\aleph_{1}(S, V_{3})}\right) \right] -\frac{\aleph_{1}(S_{3}, V_{3})}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \left[ \frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J} _{1}(L_{3})}{\aleph_{1}(S_{3}, V_{3})\mathcal{J}_{1}(L)}-1-\ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J}_{1}(L_{3})}{\aleph _{1}(S_{3}, V_{3})\mathcal{J}_{1}(L)}\right) \right] d\theta \\ & -\frac{\aleph_{2}(S_{3}, L_{3})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac{\aleph_{2}(S(t-\theta ), L(t-\theta))\mathcal{J}_{1}(L_{3})}{\aleph_{2}(S_{3}, L_{3})\mathcal{J} _{1}(L)}-1\right. \\ & \left. -\ln \left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J} _{1}(L_{3})}{\aleph_{2}(S_{3}, L_{3})\mathcal{J}_{1}(L)}\right) \right] d\theta-\frac{\aleph_{3}(S_{3}, I_{3})}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \left[ \frac{\aleph_{3}(S(t-\theta), I(t-\theta))\mathcal{J} _{1}(L_{3})}{\aleph_{3}(S_{3}, I_{3})\mathcal{J}_{1}(L)}-1-\ln \left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta))\mathcal{J}_{1}(L_{3})}{\aleph _{3}(S_{3}, I_{3})\mathcal{J}_{1}(L)}\right) \right] d\theta \\ & -\frac{\aleph_{1}(S_{3}, V_{3})+\aleph_{3}(S_{3}, I_{3})}{\mathcal{H}_{2} }\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\left[ \frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2}(I_{3})}{\mathcal{J} _{1}(L_{3})\mathcal{J}_{2}(I)}-1\right. \\ & \left. -\ln \left( \frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2} (I_{3})}{\mathcal{J}_{1}(L_{3})\mathcal{J}_{2}(I)}\right) \right] d\theta-\frac{\aleph_{1}(S_{3}, V_{3})}{\mathcal{H}_{3}}\int \limits_{0} ^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\\ & \times \left[ \frac{\mathcal{J}_{2}(I(t-\theta))\mathcal{J}_{3}(V_{3} )}{\mathcal{J}_{2}(I_{3})\mathcal{J}_{3}(V)}-1-\ln \left( \frac{\mathcal{J} _{2}(I(t-\theta))\mathcal{J}_{3}(V_{3})}{\mathcal{J}_{2}(I_{3})\mathcal{J} _{3}(V)}\right) \right] d\theta \\ & -\aleph_{1}(S_{3}, V_{3})\left[ \frac{\aleph_{1}(S, V_{3})\mathcal{J} _{3}(V)}{\aleph_{1}(S, V)\mathcal{J}_{3}(V_{3})}-1-\ln \left( \frac{\aleph _{1}(S, V_{3})\mathcal{J}_{3}(V)}{\aleph_{1}(S, V)\mathcal{J}_{3}(V_{3} )}\right) \right] \\ & -\aleph_{2}(S_{3}, L_{3})\left[ \frac{\aleph_{1}(S, V_{3})\aleph_{2} (S_{3}, L_{3})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{3}, V_{3})\aleph_{2} (S, L)\mathcal{J}_{1}(L_{3})}-1-\ln \left( \frac{\aleph_{1}(S, V_{3})\aleph _{2}(S_{3}, L_{3})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{3}, V_{3})\aleph _{2}(S, L)\mathcal{J}_{1}(L_{3})}\right) \right] \\ & -\aleph_{3}(S_{3}, I_{3})\left[ \frac{\aleph_{1}(S, V_{3})\aleph_{3} (S_{3}, I_{3})\mathcal{J}_{2}(I)}{\aleph_{1}(S_{3}, V_{3})\aleph_{3} (S, I)\mathcal{J}_{2}(I_{3})}-1-\ln \left( \frac{\aleph_{1}(S, V_{3})\aleph _{3}(S_{3}, I_{3})\mathcal{J}_{2}(I)}{\aleph_{1}(S_{3}, V_{3})\aleph _{3}(S, I)\mathcal{J}_{2}(I_{3})}\right) \right] \\ & +\aleph_{1}(S_{3}, V_{3})\left[ \frac{\aleph_{1}(S, V)}{\aleph_{1}(S, V_{3} )}-\frac{\mathcal{J}_{3}(V)}{\mathcal{J}_{3}(V_{3})}-1+\frac{\aleph _{1}(S, V_{3})\mathcal{J}_{3}(V)}{\aleph_{1}(S, V)\mathcal{J}_{3}(V_{3})}\right] \\ & +\aleph_{2}(S_{3}, L_{3})\left[ \frac{\aleph_{2}(S, L)\aleph_{1}(S_{3} , V_{3})}{\aleph_{2}(S_{3}, L_{3})\aleph_{1}(S, V_{3})}-\frac{\mathcal{J}_{1} (L)}{\mathcal{J}_{1}(L_{3})}-1+\frac{\aleph_{1}(S, V_{3})\aleph_{2}(S_{3} , L_{3})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{3}, V_{3})\aleph_{2}(S, L)\mathcal{J} _{1}(L_{3})}\right] \\ & +\aleph_{3}(S_{3}, I_{3})\left[ \frac{\aleph_{3}(S, I)\aleph_{1}(S_{3} , V_{3})}{\aleph_{3}(S_{3}, I_{3})\aleph_{1}(S, V_{3})}-\frac{\mathcal{J}_{2} (I)}{\mathcal{J}_{2}(I_{3})}-1+\frac{\aleph_{1}(S, V_{3})\aleph_{3}(S_{3} , I_{3})\mathcal{J}_{2}(I)}{\aleph_{1}(S_{3}, V_{3})\aleph_{3}(S, I)\mathcal{J} _{2}(I_{3})}\right] \\ & +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3})\aleph_{1} (S_{3}, V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3}(S_{3}, I_{3})\right] }{a\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{2} (I_{3})\mathcal{J}_{3}(V_{3})}\left( \mathcal{J}_{2}(I_{3})-\mathcal{J} _{2}(I_{4})\right) \mathcal{J}_{4}(C). \end{align*}

    Using the definition of \mathcal{G}_{3}^{U}(S, U) given in (5.4), we obtain

    \begin{align*} & \frac{\aleph_{2}(S, L)\aleph_{1}(S_{3}, V_{3})}{\aleph_{2}(S_{3}, L_{3} )\aleph_{1}(S, V_{3})}-\frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{3} )}-1+\frac{\aleph_{1}(S, V_{3})\aleph_{2}(S_{3}, L_{3})\mathcal{J}_{1} (L)}{\aleph_{1}(S_{3}, V_{3})\aleph_{2}(S, L)\mathcal{J}_{1}(L_{3})}\\ & = \frac{\mathcal{G}_{3}^{L}(S, L)}{\mathcal{G}_{3}^{L}(S_{3}, L_{3})} -\frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{3})}-1+\frac{\mathcal{J} _{1}(L)\mathcal{G}_{3}^{L}(S_{3}, L_{3})}{\mathcal{J}_{1}(L_{3})\mathcal{G} _{3}^{L}(S, L)}, \end{align*}

    and

    \begin{align*} & \frac{\aleph_{3}(S, I)\aleph_{1}(S_{3}, V_{3})}{\aleph_{3}(S_{3}, I_{3} )\aleph_{1}(S, V_{3})}-\frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{3} )}-1+\frac{\aleph_{1}(S, V_{3})\aleph_{3}(S_{3}, I_{3})\mathcal{J}_{2} (I)}{\aleph_{1}(S_{3}, V_{3})\aleph_{3}(S, I)\mathcal{J}_{2}(I_{3})}\\ & = \frac{\mathcal{G}_{3}^{I}(S, I)}{\mathcal{G}_{3}^{I}(S_{3}, I_{3})} -\frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{3})}-1+\frac{\mathcal{J} _{2}(I)\mathcal{G}_{3}^{I}(S_{3}, I_{3})}{\mathcal{J}_{2}(I_{3})\mathcal{G} _{3}^{I}(S, I)}. \end{align*}

    Then,

    \begin{align*} \frac{d\Phi_{3}}{dt} & = \left( \yen (S)-\yen (S_{3})\right) \left( 1-\frac{\aleph_{1}(S_{3}, V_{3})}{\aleph_{1}(S, V_{3})}\right) -\frac {\aleph_{1}(S_{3}, V_{3})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1} }\mathcal{\bar{H}}_{1}(\theta)\left[ \mathcal{K}\left( \frac{\aleph _{1}(S_{3}, V_{3})}{\aleph_{1}(S, V_{3})}\right) \right. \\ & \left. +\mathcal{K}\left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta ))\mathcal{J}_{1}(L_{3})}{\aleph_{1}(S_{3}, V_{3})\mathcal{J}_{1}(L)}\right) +\mathcal{K}\left( \frac{\aleph_{1}(S, V_{3})\mathcal{J}_{3}(V)}{\aleph _{1}(S, V)\mathcal{J}_{3}(V_{3})}\right) \right] d\theta \\ & -\frac{\aleph_{2}(S_{3}, L_{3})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \mathcal{K}\left( \frac{\aleph _{1}(S_{3}, V_{3})}{\aleph_{1}(S, V_{3})}\right) +\mathcal{K}\left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J}_{1}(L_{3})}{\aleph _{2}(S_{3}, L_{3})\mathcal{J}_{1}(L)}\right) \right. \\ & \left. +\mathcal{K}\left( \frac{\aleph_{1}(S, V_{3})\aleph_{2}(S_{3} , L_{3})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{3}, V_{3})\aleph_{2}(S, L)\mathcal{J} _{1}(L_{3})}\right) \right] d\theta-\frac{\aleph_{3}(S_{3}, I_{3} )}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta)\left[ \mathcal{K}\left( \frac{\aleph_{1}(S_{3}, V_{3})}{\aleph _{1}(S, V_{3})}\right) \right. \\ & \left. +\mathcal{K}\left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta ))\mathcal{J}_{1}(L_{3})}{\aleph_{3}(S_{3}, I_{3})\mathcal{J}_{1}(L)}\right) +\mathcal{K}\left( \frac{\aleph_{1}(S, V_{3})\aleph_{3}(S_{3}, I_{3} )\mathcal{J}_{2}(I)}{\aleph_{1}(S_{3}, V_{3})\aleph_{3}(S, I)\mathcal{J} _{2}(I_{3})}\right) \right] d\theta \\ & -\frac{\aleph_{1}(S_{3}, V_{3})+\aleph_{3}(S_{3}, I_{3})}{\mathcal{H}_{2} }\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\mathcal{K}\left( \frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2}(I_{3})}{\mathcal{J} _{1}(L_{3})\mathcal{J}_{2}(I)}\right) d\theta \\ & -\frac{\aleph_{1}(S_{3}, V_{3})}{\mathcal{H}_{3}}\int \limits_{0}^{\kappa _{3}}\mathcal{\bar{H}}_{3}(\theta)\mathcal{K}\left( \frac{\mathcal{J} _{2}(I(t-\theta))\mathcal{J}_{3}(V_{3})}{\mathcal{J}_{2}(I_{3})\mathcal{J} _{3}(V)}\right) d\theta \\ & +\aleph_{1}(S_{3}, V_{3})\left( 1-\frac{\aleph_{1}(S, V_{3})}{\aleph _{1}(S, V)}\right) \left( \frac{\aleph_{1}(S, V)}{\aleph_{1}(S, V_{3})} -\frac{\mathcal{J}_{3}(V)}{\mathcal{J}_{3}(V_{3})}\right) \\ & +\aleph_{2}(S_{3}, L_{3})\left( 1-\frac{\mathcal{G}_{3}^{L}(S_{3}, L_{3} )}{\mathcal{G}_{3}^{L}(S, L)}\right) \left( \frac{\mathcal{G}_{3}^{L} (S, L)}{\mathcal{G}_{3}^{L}(S_{3}, L_{3})}-\frac{\mathcal{J}_{1}(L)} {\mathcal{J}_{1}(L_{3})}\right) \\ & +\aleph_{3}(S_{3}, I_{3})\left( 1-\frac{\mathcal{G}_{3}^{I}(S_{3}, I_{3} )}{\mathcal{G}_{3}^{I}(S, I)}\right) \left( \frac{\mathcal{G}_{3}^{I} (S, I)}{\mathcal{G}_{3}^{I}(S_{3}, I_{3})}-\frac{\mathcal{J}_{2}(I)} {\mathcal{J}_{2}(I_{3})}\right) \\ & +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3})\aleph_{1} (S_{3}, V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3}(S_{3}, I_{3})\right] }{a\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{2} (I_{3})\mathcal{J}_{3}(V_{3})}\left( \mathcal{J}_{2}(I_{3})-\mathcal{J} _{2}(I_{4})\right) \mathcal{J}_{4}(C). \end{align*}

    We have C_{4} = \mathcal{J}_{4}^{-1}\left(\frac{a}{\mu}\left(\Re _{3}-1\right) \right) \leq0 when \Re_{3}\leq1 . It follows that \dot {C}(t) = \sigma \left(\mathcal{J}_{2}(I(t))-\frac{\pi}{\sigma}\right) \mathcal{J}_{4}(C(t)) = \sigma \left(\mathcal{J}_{2}(I(t))-\mathcal{J} _{2}(I_{4})\right) \mathcal{J}_{4}(C(t))\leq0 for all C > 0 , which implies that \mathcal{J}_{2}(I_{3})\leq \mathcal{J}_{2}(I_{4}) . Hence, \frac {d\Phi_{3}}{dt}\leq0 for all S, L, I, V, C, A > 0 and \frac{d\Phi_{3}}{dt} = 0 when S = S_{3}, L = L_{3}, I = I_{3}, V = V_{3} and C = 0 . Let \Upsilon _{3}^{\prime} be the largest invariant subset of \Upsilon_{3} = \left \{ (S, L, I, V, C, A):\frac{d\Phi_{3}}{dt} = 0\right \} . The solutions of system (2.1) converge to \Upsilon_{3}^{^{\prime}} which contains elements with I(t) = I_{3} and V(t) = V_{3} . Then \dot{V}(t) = 0 and from the fourth equation of system (2.1) we have 0 = \dot{V}(t) = b\mathcal{H} _{3}\mathcal{J}_{2}(I_{3})-\varepsilon \mathcal{J}_{3}(V_{3})-\varpi \mathcal{J}_{5}(A(t))\mathcal{J}_{3}(V_{3}) , which gives A(t) = A_{3} for all t. Then, \Upsilon_{3}^{\prime} = \left \{ \text{ Ð_{3} }\right \} and utilizing LaSalle's invariance principle we can say that Ð _{3} $ is G.A.S.

    Proof of Theorem 5. Define \Phi_{4}(S, L, I, V, C, A) as:

    \begin{align*} \Phi_{4} & = S-S_{4}-\int_{S_{4}}^{S}\frac{\aleph_{1}(S_{4}, V_{4})} {\aleph_{1}(\varkappa, V_{4})}d\varkappa+\frac{1}{\mathcal{H}_{1}}\left( L-L_{4}-\int_{L_{4}}^{L}\frac{\mathcal{J}_{1}(L_{4})}{\mathcal{J} _{1}(\varkappa)}d\varkappa \right) \\ & +\frac{b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})\aleph_{1}(S_{4} , V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3}(S_{4}, I_{4})}{\left( a+\mu \mathcal{J} _{4}(C_{4})\right) \left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J}_{3}(V_{4})}\left( I-I_{4}-\int_{I_{4}} ^{I}\frac{\mathcal{J}_{2}(I_{4})}{\mathcal{J}_{2}(\varkappa)}d\varkappa \right) \\ & +\frac{\aleph_{1}(S_{4}, V_{4})}{\left( \varepsilon+\varpi \mathcal{J} _{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})}\left( V-V_{4}-\int_{V_{4}} ^{V}\frac{\mathcal{J}_{3}(V_{4})}{\mathcal{J}_{3}(\varkappa)}d\varkappa \right) \\ & +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})\aleph_{1} (S_{4}, V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3}(S_{4}, I_{4})\right] }{\sigma \left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon+\varpi \mathcal{J} _{5}(A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J}_{3}(V_{4})}\\ & \times \left( C-C_{4}-\int_{C_{4}}^{C}\frac{\mathcal{J}_{4}(C_{4} )}{\mathcal{J}_{4}(\varkappa)}d\varkappa \right) +\frac{\varpi \aleph_{1} (S_{4}, V_{4})}{\tau \left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})}\left( A-A_{4}-\int_{A_{4}}^{A}\frac{\mathcal{J} _{5}(A_{4})}{\mathcal{J}_{5}(\varkappa)}d\varkappa \right) \\ & +\frac{\aleph_{1}(S_{4}, V_{4})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\aleph_{1}(S(\varkappa), V(\varkappa))}{\aleph_{1}(S_{4}, V_{4})}\right) d\varkappa d\theta+\frac{\aleph_{2}(S_{4}, L_{4})}{\mathcal{H}_{1}} \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\aleph _{2}(S(\varkappa), L(\varkappa))}{\aleph_{2}(S_{4}, L_{4})}\right) d\varkappa d\theta+\frac{\aleph_{3}(S_{4}, I_{4})}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\int \limits_{t-\theta} ^{t}\mathcal{K}\left( \frac{\aleph_{3}(S(\varkappa), I(\varkappa))}{\aleph _{3}(S_{4}, I_{4})}\right) d\varkappa d\theta \\ & +\frac{\lambda \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})\aleph _{1}(S_{4}, V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3}(S_{4}, I_{4})\right] \mathcal{J}_{1}(L_{4} )}{\left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J} _{3}(V_{4})}\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\\ & \times \int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\mathcal{J} _{1}(L(\varkappa))}{\mathcal{J}_{1}(L_{4})}\right) d\varkappa d\theta +\frac{b\aleph_{1}(S_{4}, V_{4})\mathcal{J}_{2}(I_{4})}{\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})}\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\int \limits_{t-\theta }^{t}\mathcal{K}\left( \frac{\mathcal{J}_{2}(I(\varkappa))}{\mathcal{J} _{2}(I_{4})}\right) d\varkappa d\theta. \end{align*}

    We calculate \frac{d\Phi_{4}}{dt} as:

    \begin{align} \frac{d\Phi_{4}}{dt} & = \left( 1-\frac{\aleph_{1}(S_{4}, V_{4})}{\aleph _{1}(S, V_{4})}\right) \left( \yen (S)-\aleph_{1}(S, V)-\aleph_{2} (S, L)-\aleph_{3}(S, I)\right) +\frac{1}{\mathcal{H}_{1}}\left( 1-\frac {\mathcal{J}_{1}(L_{4})}{\mathcal{J}_{1}(L)}\right) \\ & \times \left[ \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta)\left \{ \aleph_{1}(S(t-\theta), V(t-\theta))+\aleph_{2}(S(t-\theta ), L(t-\theta))+\aleph_{3}(S(t-\theta), I(t-\theta))\right \} d\theta \right. \\ & \left. -\left( \lambda+\gamma \right) \mathcal{J}_{1}(L)\right] +\frac{b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})\aleph_{1}(S_{4}, V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4} )\aleph_{3}(S_{4}, I_{4})}{\left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{2} (I_{4})\mathcal{J}_{3}(V_{4})} \\ & \left( 1-\frac{\mathcal{J}_{2}(I_{4})}{\mathcal{J}_{2}(I)}\right) \left[ \lambda \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\mathcal{J} _{1}(L(t-\theta))d\theta-a\mathcal{J}_{2}(I)-\mu \mathcal{J}_{4}(C)\mathcal{J} _{2}(I)\right] \\ & +\frac{\aleph_{1}(S_{4}, V_{4})}{\left( \varepsilon+\varpi \mathcal{J} _{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})}\left( 1-\frac{\mathcal{J} _{3}(V_{4})}{\mathcal{J}_{3}(V)}\right) \left[ b\int \limits_{0}^{\kappa_{3} }\mathcal{\bar{H}}_{3}(\theta)\mathcal{J}_{2}(I(t-\theta))d\theta -\varepsilon \mathcal{J}_{3}(V)\right. \\ & \left. -\varpi \mathcal{J}_{5}(A)\mathcal{J}_{3}(V)\right] +\frac {\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})\aleph_{1}(S_{4} , V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3}(S_{4}, I_{4})\right] }{\sigma \left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon+\varpi \mathcal{J} _{5}(A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J}_{3}(V_{4})} \\ & \times \left( 1-\frac{\mathcal{J}_{4}(C_{4})}{\mathcal{J}_{4}(C)}\right) \left( \sigma \mathcal{J}_{4}(C)\mathcal{J}_{2}(I)-\pi \mathcal{J} _{4}(C)\right) +\frac{\varpi \aleph_{1}(S_{4}, V_{4})}{\tau \left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4} )}\left( 1-\frac{\mathcal{J}_{5}(A_{4})}{\mathcal{J}_{5}(A)}\right) \\ & \times \left( \tau \mathcal{J}_{5}(A)\mathcal{J}_{3}(V)-\zeta \mathcal{J} _{5}(A)\right) +\frac{\aleph_{1}(S_{4}, V_{4})}{\mathcal{H}_{1}} \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac {\aleph_{1}(S, V)}{\aleph_{1}(S_{4}, V_{4})}\right. \\ & \left. -\frac{\aleph_{1}(S(t-\theta), V(t-\theta))}{\aleph_{1}(S_{4} , V_{4})}+\ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))}{\aleph _{1}(S, V)}\right) \right] d\theta+\frac{\aleph_{2}(S_{4}, L_{4})} {\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta) \\ & \times \left[ \frac{\aleph_{2}(S, L)}{\aleph_{2}(S_{4}, L_{4})}-\frac {\aleph_{2}(S(t-\theta), L(t-\theta))}{\aleph_{2}(S_{4}, L_{4})}+\ln \left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))}{\aleph_{2}(S, L)}\right) \right] d\theta+\frac{\aleph_{3}(S_{4}, I_{4})}{\mathcal{H}_{1}} \\ & \times \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac{\aleph_{3}(S, I)}{\aleph_{3}(S_{4}, I_{4})}-\frac{\aleph_{3} (S(t-\theta), I(t-\theta))}{\aleph_{3}(S_{4}, I_{4})}+\ln \left( \frac {\aleph_{3}(S(t-\theta), I(t-\theta))}{\aleph_{3}(S, I)}\right) \right] d\theta \\ & +\frac{\lambda \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})\aleph _{1}(S_{4}, V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3}(S_{4}, I_{4})\right] \mathcal{J}_{1}(L_{4} )}{\left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J} _{3}(V_{4})} \\ & \times \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\left[ \frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{4})}-\frac{\mathcal{J} _{1}(L(t-\theta))}{\mathcal{J}_{1}(L_{4})}+\ln \left( \frac{\mathcal{J} _{1}(L(t-\theta))}{\mathcal{J}_{1}(L)}\right) \right] d\theta \\ & +\frac{b\aleph_{1}(S_{4}, V_{4})\mathcal{J}_{2}(I_{4})}{\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})} \int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\left[ \frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{4})}-\frac{\mathcal{J} _{2}(I(t-\theta))}{\mathcal{J}_{2}(I_{4})}+\ln \left( \frac{\mathcal{J} _{2}(I(t-\theta))}{\mathcal{J}_{2}(I)}\right) \right] d\theta. \end{align} (8.12)

    Collecting terms of Eq. (8.12), we derive

    \frac{d\Phi_{4}}{dt} =\yen (S)\left( 1-\frac{\aleph_{1}(S_{4},V_{4} )}{\aleph_{1}(S,V_{4})}\right) +\aleph_{1}(S,V)\frac{\aleph_{1}(S_{4},V_{4} )}{\aleph_{1}(S,V_{4})}+\aleph_{2}(S,L)\frac{\aleph_{1}(S_{4},V_{4})} {\aleph_{1}(S,V_{4})}\\ +\aleph_{3}(S,I)\frac{\aleph_{1}(S_{4},V_{4})}{\aleph_{1}(S,V_{4})} -\frac{\lambda+\gamma}{\mathcal{H}_{1}}\mathcal{J}_{1}(L)-\frac{1} {\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta)\frac{\aleph_{1}(S(t-\theta),V(t-\theta))\mathcal{J}_{1}(L_{4} )}{\mathcal{J}_{1}(L)}d\theta \\
    -\frac{1}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}} _{1}(\theta)\frac{\aleph_{2}(S(t-\theta),L(t-\theta))\mathcal{J}_{1}(L_{4} )}{\mathcal{J}_{1}(L)}d\theta-\frac{1}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\frac{\aleph_{3}(S(t-\theta ),I(t-\theta))\mathcal{J}_{1}(L_{4})}{\mathcal{J}_{1}(L)}d\theta \\ +\frac{\lambda+\gamma}{\mathcal{H}_{1}}\mathcal{J}_{1}(L_{4})-\frac {a\left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})\aleph_{1}(S_{4} ,V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3}(S_{4},I_{4})\right] }{\left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon+\varpi \mathcal{J}_{5} (A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J}_{3}(V_{4})}\mathcal{J} _{2}(I)\\
    -\frac{\lambda \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})\aleph _{1}(S_{4},V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3}(S_{4},I_{4})\right] }{\left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon+\varpi \mathcal{J}_{5} (A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J}_{4}(V_{4})}\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\frac{\mathcal{J} _{1}(L(t-\theta))\mathcal{J}_{2}(I_{4})}{\mathcal{J}_{2}(I)}d\theta \\ +\frac{a\left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})\aleph_{1} (S_{4},V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3}(S_{4},I_{4})\right] }{\left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon+\varpi \mathcal{J}_{5} (A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J}_{3}(V_{4})}\mathcal{J} _{2}(I_{4})\\ +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})\aleph_{1} (S_{4},V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3}(S_{4},I_{4})\right] }{\left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon+\varpi \mathcal{J}_{5} (A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J}_{3}(V_{4})}\mathcal{J} _{4}(C)\mathcal{J}_{2}(I_{4})\\ -\frac{\varepsilon \aleph_{1}(S_{4},V_{4})}{\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})}\mathcal{J} _{3}(V)-\frac{b\aleph_{1}(S_{4},V_{4})}{\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})}\int \limits_{0} ^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\frac{\mathcal{J}_{2}(I(t-\theta ))\mathcal{J}_{3}(V_{4})}{\mathcal{J}_{3}(V)}d\theta \\ +\frac{\varepsilon \aleph_{1}(S_{4},V_{4})}{\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})}\mathcal{J} _{3}(V_{4})+\frac{\varpi \aleph_{1}(S_{4},V_{4})}{\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})}\mathcal{J} _{5}(A)\mathcal{J}_{3}(V_{4})\\ -\frac{\mu \pi \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})\aleph_{1} (S_{4},V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3}(S_{4},I_{4})\right] }{\sigma \left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon+\varpi \mathcal{J} _{5}(A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J}_{3}(V_{4})} \mathcal{J}_{4}(C)\\ -\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})\aleph_{1} (S_{4},V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3}(S_{4},I_{4})\right] }{\left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon+\varpi \mathcal{J}_{5} (A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J}_{3}(V_{4})}\mathcal{J} _{2}(I)\mathcal{J}_{4}(C_{4})\\
    +\frac{\mu \pi \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})\aleph_{1} (S_{4},V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3}(S_{4},I_{4})\right] }{\sigma \left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon+\varpi \mathcal{J} _{5}(A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J}_{3}(V_{4})} \mathcal{J}_{4}(C_{4})\\ -\frac{\varpi \zeta \aleph_{1}(S_{4},V_{4})}{\tau \left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})}\mathcal{J} _{5}(A)-\frac{\varpi \aleph_{1}(S_{4},V_{4})}{\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})}\mathcal{J} _{5}(A_{4})\mathcal{J}_{3}(V)\\
    +\frac{\varpi \zeta \aleph_{1}(S_{4},V_{4})}{\tau \left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})}\mathcal{J} _{5}(A_{4})+\frac{\aleph_{1}(S_{4},V_{4})}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph _{1}(S(t-\theta),V(t-\theta))}{\aleph_{1}(S,V)}\right) d\theta \\ +\frac{\aleph_{2}(S_{4},L_{4})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{2}(S(t-\theta ),L(t-\theta))}{\aleph_{2}(S,L)}\right) d\theta+\frac{\aleph_{3}(S_{4} ,I_{4})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}} _{1}(\theta)\\ \times \ln \left( \frac{\aleph_{3}(S(t-\theta),I(t-\theta))}{\aleph _{3}(S,I)}\right) d\theta+\frac{\lambda \mathcal{H}_{2}\left[ b\mathcal{H} _{3}\mathcal{J}_{2}(I_{4})\aleph_{1}(S_{4},V_{4})+\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3} (S_{4},I_{4})\right] }{\left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{2} (I_{4})\mathcal{J}_{3}(V_{4})}\\ \times \mathcal{J}_{1}(L)+\frac{\lambda \left[ b\mathcal{H}_{3} \mathcal{J}_{2}(I_{4})\aleph_{1}(S_{4},V_{4})+\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3} (S_{4},I_{4})\right] \mathcal{J}_{1}(L_{4})}{\left( a+\mu \mathcal{J} _{4}(C_{4})\right) \left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J}_{3}(V_{4})}\\ \times \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\ln \left( \frac{\mathcal{J}_{1}(L(t-\theta))}{\mathcal{J}_{1}(L)}\right) d\theta +\frac{b\mathcal{H}_{3}\aleph_{1}(S_{4},V_{4})}{\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})}\mathcal{J} _{2}(I)\\ +\frac{b\aleph_{1}(S_{4},V_{4})\mathcal{J}_{2}(I_{4})}{\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})} \int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\ln \left( \frac{\mathcal{J}_{2}(I(t-\theta))}{\mathcal{J}_{2}(I)}\right) d\theta.

    Using the equilibrium conditions for Ð _{4} , we get

    \begin{align*} & \left. \yen (S_{4}) = \aleph_{1}(S_{4}, V_{4})+\aleph_{2}(S_{4}, L_{4} )+\aleph_{3}(S_{4}, I_{4}) = \frac{\lambda+\gamma}{\mathcal{H}_{1}} \mathcal{J}_{1}(L_{4}), \right. \\ & \left. \lambda \mathcal{H}_{2}\mathcal{J}_{1}(L_{4}) = \left( a+\mu \mathcal{J}_{4}(C_{4})\right) \mathcal{J}_{2}(I_{4}), \ \ \ \ \ \ \ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4}) = \left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\right. \\ & \left. \mathcal{J}_{2}(I_{4}) = \frac{\pi}{\sigma}, \ \ \ \ \ \ \ \mathcal{J}_{3}(V_{4}) = \frac{\zeta}{\tau}.\right. \end{align*}

    In addition,

    \begin{align*} \aleph_{1}(S_{4}, V_{4})+\aleph_{3}(S_{4}, I_{4}) & = \frac{b\mathcal{H} _{3}\mathcal{J}_{2}(I_{4})\aleph_{1}(S_{4}, V_{4})+\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3} (S_{4}, I_{4})}{\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J}_{3}(V_{4})}\mathcal{J}_{2}(I_{4})\\ & = \frac{\lambda \mathcal{H}_{2}\left[ b\mathcal{H}_{3}\mathcal{J}_{2} (I_{4})\aleph_{1}(S_{4}, V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5} (A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3}(S_{4}, I_{4})\right] }{\left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J} _{3}(V_{4})}\mathcal{J}_{1}(L_{4}). \end{align*}

    Then, we obtain

    \begin{align*} \frac{d\Phi_{4}}{dt} & = \left( \yen (S)-\yen (S_{4})\right) \left( 1-\frac{\aleph_{1}(S_{4}, V_{4})}{\aleph_{1}(S, V_{4})}\right) +\left( \aleph_{1}(S_{4}, V_{4})+\aleph_{2}(S_{4}, L_{4})+\aleph_{3}(S_{4}, I_{4})\right) \\ & \times \left( 1-\frac{\aleph_{1}(S_{4}, V_{4})}{\aleph_{1}(S, V_{4})}\right) +\aleph_{1}(S_{4}, V_{4})\frac{\aleph_{1}(S, V)}{\aleph_{1}(S, V_{4})}+\aleph _{2}(S_{4}, L_{4})\frac{\aleph_{2}(S, L)\aleph_{1}(S_{4}, V_{4})}{\aleph _{2}(S_{4}, L_{4})\aleph_{1}(S, V_{4})}\\ & +\aleph_{3}(S_{4}, I_{4})\frac{\aleph_{3}(S, I)\aleph_{1}(S_{4}, V_{4} )}{\aleph_{3}(S_{4}, I_{4})\aleph_{1}(S, V_{4})}-\aleph_{2}(S_{4}, L_{4} )\frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{4})}-\frac{\aleph_{1} (S_{4}, V_{4})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H} }_{1}(\theta)\\ & \times \frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J}_{1}(L_{4} )}{\aleph_{1}(S_{4}, V_{4})\mathcal{J}_{1}(L)}d\theta-\frac{\aleph_{2} (S_{4}, L_{4})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H} }_{1}(\theta)\\ & \times \frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J}_{1}(L_{4} )}{\aleph_{2}(S_{4}, L_{4})\mathcal{J}_{1}(L)}d\theta-\frac{\aleph_{3} (S_{4}, I_{4})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H} }_{1}(\theta)\frac{\aleph_{3}(S(t-\theta), I(t-\theta))\mathcal{J}_{1}(L_{4} )}{\aleph_{3}(S_{4}, I_{4})\mathcal{J}_{1}(L)}d\theta \\ & +\aleph_{1}(S_{4}, V_{4})+\aleph_{2}(S_{4}, L_{4})+\aleph_{3}(S_{4} , I_{4})-\aleph_{3}(S_{4}, I_{4})\frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2} (I_{4})}-\frac{\aleph_{1}(S_{4}, V_{4})+\aleph_{3}(S_{4}, I_{4})}{\mathcal{H} _{2}}\\ & \times \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta )\frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2}(I_{4})}{\mathcal{J} _{1}(L_{4})\mathcal{J}_{2}(I)}d\theta+\aleph_{1}(S_{4}, V_{4})+\aleph_{3} (S_{4}, I_{4})-\aleph_{1}(S_{4}, V_{4})\frac{\mathcal{J}_{3}(V)}{\mathcal{J} _{3}(V_{4})}\\ & -\frac{\aleph_{1}(S_{4}, V_{4})}{\mathcal{H}_{3}}\int \limits_{0}^{\kappa _{3}}\mathcal{\bar{H}}_{3}(\theta)\frac{\mathcal{J}_{2}(I(t-\theta ))\mathcal{J}_{3}(V_{4})}{\mathcal{J}_{2}(I_{4})\mathcal{J}_{3}(V)} d\theta+\aleph_{1}(S_{4}, V_{4})+\frac{\aleph_{1}(S_{4}, V_{4})}{\mathcal{H} _{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))}{\aleph _{1}(S, V)}\right) d\theta+\frac{\aleph_{2}(S_{4}, L_{4})}{\mathcal{H}_{1}} \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))}{\aleph_{2}(S, L)}\right) d\theta \\ & +\frac{\aleph_{3}(S_{4}, I_{4})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{3}(S(t-\theta ), I(t-\theta))}{\aleph_{3}(S, I)}\right) d\theta+\frac{\aleph_{1}(S_{4} , V_{4})+\aleph_{3}(S_{4}, I_{4})}{\mathcal{H}_{2}}\\ & \times \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\ln \left( \frac{\mathcal{J}_{1}(L(t-\theta))}{\mathcal{J}_{1}(L)}\right) d\theta +\frac{\aleph_{1}(S_{4}, V_{4})}{\mathcal{H}_{3}}\int \limits_{0}^{\kappa_{3} }\mathcal{\bar{H}}_{3}(\theta)\ln \left( \frac{\mathcal{J}_{2}(I(t-\theta ))}{\mathcal{J}_{2}(I)}\right) d\theta. \end{align*}

    Considering the equalities given by (5.6) in case of n = 4 and after some calculations we get

    \begin{align*} \frac{d\Phi_{4}}{dt} & = \left( \yen (S)-\yen (S_{4})\right) \left( 1-\frac{\aleph_{1}(S_{4}, V_{4})}{\aleph_{1}(S, V_{4})}\right) -\left( \aleph_{1}(S_{4}, V_{4})+\aleph_{2}(S_{4}, L_{4})+\aleph_{3}(S_{4}, I_{4})\right) \\ & \times \left[ \frac{\aleph_{1}(S_{4}, V_{4})}{\aleph_{1}(S, V_{4})} -1-\ln \left( \frac{\aleph_{1}(S_{4}, V_{4})}{\aleph_{1}(S, V_{4})}\right) \right] -\frac{\aleph_{1}(S_{4}, V_{4})}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \left[ \frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J} _{1}(L_{4})}{\aleph_{1}(S_{4}, V_{4})\mathcal{J}_{1}(L)}-1-\ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J}_{1}(L_{4})}{\aleph _{1}(S_{4}, V_{4})\mathcal{J}_{1}(L)}\right) \right] d\theta \\ & -\frac{\aleph_{2}(S_{4}, L_{4})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac{\aleph_{2}(S(t-\theta ), L(t-\theta))\mathcal{J}_{1}(L_{4})}{\aleph_{2}(S_{4}, L_{4})\mathcal{J} _{1}(L)}-1\right. \\ & \left. -\ln \left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J} _{1}(L_{4})}{\aleph_{2}(S_{4}, L_{4})\mathcal{J}_{1}(L)}\right) \right] d\theta-\frac{\aleph_{3}(S_{4}, I_{4})}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \left[ \frac{\aleph_{3}(S(t-\theta), I(t-\theta))\mathcal{J} _{1}(L_{4})}{\aleph_{3}(S_{4}, I_{4})\mathcal{J}_{1}(L)}-1-\ln \left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta))\mathcal{J}_{1}(L_{4})}{\aleph _{3}(S_{4}, I_{4})\mathcal{J}_{1}(L)}\right) \right] d\theta \\ & -\frac{\aleph_{1}(S_{4}, V_{4})+\aleph_{3}(S_{4}, I_{4})}{\mathcal{H}_{2} }\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\left[ \frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2}(I_{4})}{\mathcal{J} _{1}(L_{4})\mathcal{J}_{2}(I)}-1\right. \\ & \left. -\ln \left( \frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2} (I_{4})}{\mathcal{J}_{1}(L_{4})\mathcal{J}_{2}(I)}\right) \right] d\theta-\frac{\aleph_{1}(S_{4}, V_{4})}{\mathcal{H}_{3}}\int \limits_{0} ^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\\ & \times \left[ \frac{\mathcal{J}_{2}(I(t-\theta))\mathcal{J}_{3}(V_{4} )}{\mathcal{J}_{2}(I_{4})\mathcal{J}_{3}(V)}-1-\ln \left( \frac{\mathcal{J} _{2}(I(t-\theta))\mathcal{J}_{3}(V_{4})}{\mathcal{J}_{2}(I_{4})\mathcal{J} _{3}(V)}\right) \right] d\theta \\ & -\aleph_{1}(S_{4}, V_{4})\left[ \frac{\aleph_{1}(S, V_{4})\mathcal{J} _{3}(V)}{\aleph_{1}(S, V)\mathcal{J}_{3}(V_{4})}-1-\ln \left( \frac{\aleph _{1}(S, V_{4})\mathcal{J}_{3}(V)}{\aleph_{1}(S, V)\mathcal{J}_{3}(V_{4} )}\right) \right] \\ & -\aleph_{2}(S_{4}, L_{4})\left[ \frac{\aleph_{1}(S, V_{4})\aleph_{2} (S_{4}, L_{4})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{4}, V_{4})\aleph_{2} (S, L)\mathcal{J}_{1}(L_{4})}-1-\ln \left( \frac{\aleph_{1}(S, V_{4})\aleph _{2}(S_{4}, L_{4})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{4}, V_{4})\aleph _{2}(S, L)\mathcal{J}_{1}(L_{4})}\right) \right] \\ & -\aleph_{3}(S_{4}, I_{4})\left[ \frac{\aleph_{1}(S, V_{4})\aleph_{3} (S_{4}, I_{4})\mathcal{J}_{2}(I)}{\aleph_{1}(S_{4}, V_{4})\aleph_{3} (S, I)\mathcal{J}_{2}(I_{4})}-1-\ln \left( \frac{\aleph_{1}(S, V_{4})\aleph _{3}(S_{4}, I_{4})\mathcal{J}_{2}(I)}{\aleph_{1}(S_{4}, V_{4})\aleph _{3}(S, I)\mathcal{J}_{2}(I_{4})}\right) \right] \\ & +\aleph_{1}(S_{4}, V_{4})\left[ \frac{\aleph_{1}(S, V)}{\aleph_{1}(S, V_{4} )}-\frac{\mathcal{J}_{3}(V)}{\mathcal{J}_{3}(V_{4})}-1+\frac{\aleph _{1}(S, V_{4})\mathcal{J}_{3}(V)}{\aleph_{1}(S, V)\mathcal{J}_{3}(V_{4})}\right] \\ & +\aleph_{2}(S_{4}, L_{4})\left[ \frac{\aleph_{2}(S, L)\aleph_{1}(S_{4} , V_{4})}{\aleph_{2}(S_{4}, L_{4})\aleph_{1}(S, V_{4})}-\frac{\mathcal{J}_{1} (L)}{\mathcal{J}_{1}(L_{4})}-1+\frac{\aleph_{1}(S, V_{4})\aleph_{2}(S_{4} , L_{4})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{4}, V_{4})\aleph_{2}(S, L)\mathcal{J} _{1}(L_{4})}\right] \\ & +\aleph_{3}(S_{4}, I_{4})\left[ \frac{\aleph_{3}(S, I)\aleph_{1}(S_{4} , V_{4})}{\aleph_{3}(S_{4}, I_{4})\aleph_{1}(S, V_{4})}-\frac{\mathcal{J}_{2} (I)}{\mathcal{J}_{2}(I_{4})}-1+\frac{\aleph_{1}(S, V_{4})\aleph_{3}(S_{4} , I_{4})\mathcal{J}_{2}(I)}{\aleph_{1}(S_{4}, V_{4})\aleph_{3}(S, I)\mathcal{J} _{2}(I_{4})}\right] . \end{align*}

    Using the definition of \mathcal{G}_{4}^{U}(S, U) given in (5.4), we obtain

    \begin{align*} & \frac{\aleph_{2}(S, L)\aleph_{1}(S_{4}, V_{4})}{\aleph_{2}(S_{4}, L_{4} )\aleph_{1}(S, V_{4})}-\frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{4} )}-1+\frac{\aleph_{1}(S, V_{4})\aleph_{2}(S_{4}, L_{4})\mathcal{J}_{1} (L)}{\aleph_{1}(S_{4}, V_{4})\aleph_{2}(S, L)\mathcal{J}_{1}(L_{4})}\\ & = \frac{\mathcal{G}_{4}^{L}(S, L)}{\mathcal{G}_{4}^{L}(S_{4}, L_{4})} -\frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{4})}-1+\frac{\mathcal{J} _{1}(L)\mathcal{G}_{4}^{L}(S_{4}, L_{4})}{\mathcal{J}_{1}(L_{4})\mathcal{G} _{4}^{L}(S, L)}, \end{align*}

    and

    \begin{align*} & \frac{\aleph_{3}(S, I)\aleph_{1}(S_{4}, V_{4})}{\aleph_{3}(S_{4}, I_{4} )\aleph_{1}(S, V_{4})}-\frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{4} )}-1+\frac{\aleph_{1}(S, V_{4})\aleph_{3}(S_{4}, I_{4})\mathcal{J}_{2} (I)}{\aleph_{1}(S_{4}, V_{4})\aleph_{3}(S, I)\mathcal{J}_{2}(I_{4})}\\ & = \frac{\mathcal{G}_{4}^{I}(S, I)}{\mathcal{G}_{4}^{I}(S_{4}, I_{4})} -\frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{4})}-1+\frac{\mathcal{J} _{2}(I)\mathcal{G}_{4}^{I}(S_{4}, I_{4})}{\mathcal{J}_{2}(I_{4})\mathcal{G} _{4}^{I}(S, I)}. \end{align*}

    Then,

    \begin{align*} \frac{d\Phi_{4}}{dt} & = \left( \yen (S)-\yen (S_{4})\right) \left( 1-\frac{\aleph_{1}(S_{4}, V_{4})}{\aleph_{1}(S, V_{4})}\right) -\frac {\aleph_{1}(S_{4}, V_{4})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1} }\mathcal{\bar{H}}_{1}(\theta)\left[ \mathcal{K}\left( \frac{\aleph _{1}(S_{4}, V_{4})}{\aleph_{1}(S, V_{4})}\right) \right. \\ & \left. +\mathcal{K}\left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta ))\mathcal{J}_{1}(L_{4})}{\aleph_{1}(S_{4}, V_{4})\mathcal{J}_{1}(L)}\right) +\mathcal{K}\left( \frac{\aleph_{1}(S, V_{4})\mathcal{J}_{3}(V)}{\aleph _{1}(S, V)\mathcal{J}_{3}(V_{4})}\right) \right] d\theta \\ & -\frac{\aleph_{2}(S_{4}, L_{4})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \mathcal{K}\left( \frac{\aleph _{1}(S_{4}, V_{4})}{\aleph_{1}(S, V_{4})}\right) +\mathcal{K}\left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J}_{1}(L_{4})}{\aleph _{2}(S_{4}, L_{4})\mathcal{J}_{1}(L)}\right) \right. \\ & \left. +\mathcal{K}\left( \frac{\aleph_{1}(S, V_{4})\aleph_{2}(S_{4} , L_{4})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{4}, V_{4})\aleph_{2}(S, L)\mathcal{J} _{1}(L_{4})}\right) \right] d\theta-\frac{\aleph_{3}(S_{4}, I_{4} )}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta)\left[ \mathcal{K}\left( \frac{\aleph_{1}(S_{4}, V_{4})}{\aleph _{1}(S, V_{4})}\right) \right. \\ & \left. +\mathcal{K}\left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta ))\mathcal{J}_{1}(L_{4})}{\aleph_{3}(S_{4}, I_{4})\mathcal{J}_{1}(L)}\right) +\mathcal{K}\left( \frac{\aleph_{1}(S, V_{4})\aleph_{3}(S_{4}, I_{4} )\mathcal{J}_{2}(I)}{\aleph_{1}(S_{4}, V_{4})\aleph_{3}(S, I)\mathcal{J} _{2}(I_{4})}\right) \right] d\theta \\ & -\frac{\aleph_{1}(S_{4}, V_{4})+\aleph_{3}(S_{4}, I_{4})}{\mathcal{H}_{2} }\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\mathcal{K}\left( \frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2}(I_{4})}{\mathcal{J} _{1}(L_{4})\mathcal{J}_{2}(I)}\right) d\theta \\ & -\frac{\aleph_{1}(S_{4}, V_{4})}{\mathcal{H}_{3}}\int \limits_{0}^{\kappa _{3}}\mathcal{\bar{H}}_{3}(\theta)\mathcal{K}\left( \frac{\mathcal{J} _{2}(I(t-\theta))\mathcal{J}_{3}(V_{4})}{\mathcal{J}_{2}(I_{4})\mathcal{J} _{3}(V)}\right) d\theta+\aleph_{1}(S_{4}, V_{4})\left( 1-\frac{\aleph _{1}(S, V_{4})}{\aleph_{1}(S, V)}\right) \\ & \times \left( \frac{\aleph_{1}(S, V)}{\aleph_{1}(S, V_{4})}-\frac {\mathcal{J}_{3}(V)}{\mathcal{J}_{3}(V_{4})}\right) +\aleph_{2}(S_{4} , L_{4})\left( 1-\frac{\mathcal{G}_{4}^{L}(S_{4}, L_{4})}{\mathcal{G}_{4} ^{L}(S, L)}\right) \left( \frac{\mathcal{G}_{4}^{L}(S, L)}{\mathcal{G}_{4} ^{L}(S_{4}, L_{4})}-\frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{4})}\right) \\ & +\aleph_{3}(S_{4}, I_{4})\left( 1-\frac{\mathcal{G}_{4}^{I}(S_{4}, I_{4} )}{\mathcal{G}_{4}^{I}(S, I)}\right) \left( \frac{\mathcal{G}_{4}^{I} (S, I)}{\mathcal{G}_{4}^{I}(S_{4}, I_{4})}-\frac{\mathcal{J}_{2}(I)} {\mathcal{J}_{2}(I_{4})}\right) . \end{align*}

    Hence, if \Re_{3} > 1 and \Re_{4} > 1 , then \frac{d\Phi_{4}}{dt}\leq0 for all S, L, I, V, C, A > 0 . Moreover, \frac{d\Phi_{4}}{dt} = 0 when S = S_{4} , L = L_{4}, I = I_{4} and V = V_{4}. Let \Upsilon_{4}^{\prime} be the largest invariant subset of \Upsilon_{4} = \left \{ (S, L, I, V, C, A):\frac{d\Phi_{4}} {dt} = 0\right \} . The solutions of system (2.1) converge to \Upsilon_{4}^{^{\prime}} which contains elements with L(t) = L_{4}, I(t) = I_{4} , V(t) = V_{4} , then \dot{I}(t) = \dot{V}(t) = 0 and from the third and fourth equations of system (2.1) we have 0 = \dot{I}(t) = \lambda \mathcal{H}_{2}\mathcal{J}_{1}(L_{4})-a\mathcal{J}_{2}(I_{4})-\mu \mathcal{J}_{4}(C(t))\mathcal{J}_{2}(I_{4}) and 0 = \dot{V}(t) = b\mathcal{H} _{3}\mathcal{J}_{2}(I_{4})-\varepsilon \mathcal{J}_{3}(V_{4})-\varpi \mathcal{J}_{5}(A(t))\mathcal{J}_{3}(V_{4}) . This implies that C(t) = C_{4} , A(t) = A_{4} for all t. Then, \Upsilon_{4}^{\prime} = \left \{ \text{ $Ð_{4}$ }\right \} and utilizing LaSalle's invariance principle ensures that Ð _{4} is G.A.S.



    [1] F. K. Bu, J. He, H. R. Li, Q. Fu, Interval-valued intuitionistic fuzzy MADM method based on TOPSIS and grey correlation analysis, Math. Biosci. Eng., 17 (2020), 5584-5603. doi: 10.3934/mbe.2020300
  • This article has been cited by:

    1. A. M. Elaiw, N. H. Alshamrani, E. Dahy, A. A. Abdellatif, Stability of within host HTLV-I/HIV-1 co-infection in the presence of macrophages, 2023, 16, 1793-5245, 10.1142/S1793524522500668
    2. Jinhu Xu, Guokun Huang, Zahir Shah, Threshold Dynamics for a Time-Periodic Viral Infection Model with Cell-to-Cell Transmission and Drug Treatments, 2022, 2022, 1563-5147, 1, 10.1155/2022/2289138
    3. Elsayed Dahy, Ahmed M. Elaiw, Aeshah A. Raezah, Hamdy Z. Zidan, Abd Elsattar A. Abdellatif, Global Properties of Cytokine-Enhanced HIV-1 Dynamics Model with Adaptive Immunity and Distributed Delays, 2023, 11, 2079-3197, 217, 10.3390/computation11110217
    4. Noura H. AlShamrani, Reham H. Halawani, Wafa Shammakh, Ahmed M. Elaiw, Global Properties of HIV-1 Dynamics Models with CTL Immune Impairment and Latent Cell-to-Cell Spread, 2023, 11, 2227-7390, 3743, 10.3390/math11173743
    5. Mouhcine Naim, Zakaria Yaagoub, Anwar Zeb, Marya Sadki, Karam Allali, Global analysis of a fractional-order viral model with lytic and non-lytic adaptive immunity, 2024, 10, 2363-6203, 1749, 10.1007/s40808-023-01866-4
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3442) PDF downloads(65) Cited by(5)

Figures and Tables

Figures(2)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog