Parameter | Value | Parameter | Value | Parameter | Value |
0.9 | 0.1 | 0.6 | |||
0.8 | 0.05 | 0.3 | |||
0.6 | 0.2 | 0.35 | |||
0.23 | 0.05 | 0.05 | |||
1 | 1 | 4 | |||
3 | 8 | 5 |
This paper aims to propose a new decision-making approach retaining the fascinating traits of the conventional VIKOR method in the context of the enrich multidimensional complex Fermatean fuzzy N-soft set. The VIKOR technique is contemplated as the most reliable decision-making approach among others which employs a strategy to identify the compromise solution with advantageous distance from the positive ideal solution possesses maximum majority utility and minimum individual regret. At the same time, the paramount characteristic of the complex Fermatean fuzzy N-soft set considers the proclivity to capture two-dimensional uncertain and imprecise information along with the multi-valued parameters. This article expands the literature to handle the multi-attribute group decision-making strategy by introducing a technique, namely, the complex Fermatean fuzzy N-soft VIKOR method that amalgamates the unconventional traits of complex Fermatean fuzzy N-soft with the capability of the VIKOR method. The proposed technique permits the assignment of the N-soft grades to the decision-makers, alternatives, and attributes based on their performances. Firstly, we unify these individual opinions of all decision-makers about the alternatives by employing the complex Fermatean fuzzy N-soft weighted average operator. After that, all entities of the aggregated decision matrix are converted into crisp data by utilizing the score function. Furthermore, we calculate the ranking measures of the group utility and the individual regret by assigning the weight of strategy belongs to the interval [0,1]. To find the compromise solution, we arrange the ranking measures in ascending order, and the alternative that possesses the conditions of compromise solution is selected. We demonstrate the presented multi-attribute group decision-making technique by selecting the best location for a nuclear power plant. We conduct the comparative analysis of the presented technique with Fermatean fuzzy TOPSIS to endorse the veracity and accuracy of our method. Finally, we explain the merits and limitations of our strategy and give some concluding remarks.
Citation: Muhammad Akram, G. Muhiuddin, Gustavo Santos-García. An enhanced VIKOR method for multi-criteria group decision-making with complex Fermatean fuzzy sets[J]. Mathematical Biosciences and Engineering, 2022, 19(7): 7201-7231. doi: 10.3934/mbe.2022340
[1] | Ekaterina Kldiashvili, Archil Burduli, Gocha Ghortlishvili . Application of Digital Imaging for Cytopathology under Conditions of Georgia. AIMS Medical Science, 2015, 2(3): 186-199. doi: 10.3934/medsci.2015.3.186 |
[2] | Anuj A. Shukla, Shreya Podder, Sana R. Chaudry, Bryan S. Benn, Jonathan S. Kurman . Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. AIMS Medical Science, 2022, 9(2): 348-361. doi: 10.3934/medsci.2022016 |
[3] | Nicole Lavender, David W. Hein, Guy Brock, La Creis R. Kidd . Evaluation of Oxidative Stress Response Related Genetic Variants, Pro-oxidants, Antioxidants and Prostate Cancer. AIMS Medical Science, 2015, 2(4): 271-294. doi: 10.3934/medsci.2015.4.271 |
[4] | Masahiro Yasunaga, Shino Manabe, Masaru Furuta, Koretsugu Ogata, Yoshikatsu Koga, Hiroki Takashima, Toshirou Nishida, Yasuhiro Matsumura . Mass spectrometry imaging for early discovery and development of cancer drugs. AIMS Medical Science, 2018, 5(2): 162-180. doi: 10.3934/medsci.2018.2.162 |
[5] | Sherven Sharma, Pournima Kadam, Ram P Singh, Michael Davoodi, Maie St John, Jay M Lee . CCL21-DC tumor antigen vaccine augments anti-PD-1 therapy in lung cancer. AIMS Medical Science, 2021, 8(4): 269-275. doi: 10.3934/medsci.2021022 |
[6] | Ayomide Abe, Mpumelelo Nyathi, Akintunde Okunade . Lung cancer diagnosis from computed tomography scans using convolutional neural network architecture with Mavage pooling technique. AIMS Medical Science, 2025, 12(1): 13-27. doi: 10.3934/medsci.2025002 |
[7] | Timothy Hamerly, Margaret H. Butler, Steve T. Fisher, Jonathan K. Hilmer, Garth A. James, Brian Bothner . Mass Spectrometry Imaging of Chlorhexidine and Bacteria in a Model Wound. AIMS Medical Science, 2015, 2(3): 150-161. doi: 10.3934/medsci.2015.3.150 |
[8] | Prarthana Shrestha, Rik Kneepkens, Gijs van Elswijk, Jeroen Vrijnsen, Roxana Ion, Dirk Verhagen, Esther Abels, Dirk Vossen, and Bas Hulsken . Objective and Subjective Assessment of Digital Pathology Image Quality. AIMS Medical Science, 2015, 2(1): 65-78. doi: 10.3934/medsci.2015.1.65 |
[9] | Anne A. Adeyanju, Wonderful B. Adebagbo, Olorunfemi R. Molehin, Omolola R. Oyenihi . Exploring the multi-drug resistance (MDR) inhibition property of Sildenafil: phosphodiesterase 5 as a therapeutic target and a potential player in reversing MDR for a successful breast cancer treatment. AIMS Medical Science, 2025, 12(2): 145-170. doi: 10.3934/medsci.2025010 |
[10] | Salma M. AlDallal . Quick glance at Fanconi anemia and BRCA2/FANCD1. AIMS Medical Science, 2019, 6(4): 326-336. doi: 10.3934/medsci.2019.4.326 |
This paper aims to propose a new decision-making approach retaining the fascinating traits of the conventional VIKOR method in the context of the enrich multidimensional complex Fermatean fuzzy N-soft set. The VIKOR technique is contemplated as the most reliable decision-making approach among others which employs a strategy to identify the compromise solution with advantageous distance from the positive ideal solution possesses maximum majority utility and minimum individual regret. At the same time, the paramount characteristic of the complex Fermatean fuzzy N-soft set considers the proclivity to capture two-dimensional uncertain and imprecise information along with the multi-valued parameters. This article expands the literature to handle the multi-attribute group decision-making strategy by introducing a technique, namely, the complex Fermatean fuzzy N-soft VIKOR method that amalgamates the unconventional traits of complex Fermatean fuzzy N-soft with the capability of the VIKOR method. The proposed technique permits the assignment of the N-soft grades to the decision-makers, alternatives, and attributes based on their performances. Firstly, we unify these individual opinions of all decision-makers about the alternatives by employing the complex Fermatean fuzzy N-soft weighted average operator. After that, all entities of the aggregated decision matrix are converted into crisp data by utilizing the score function. Furthermore, we calculate the ranking measures of the group utility and the individual regret by assigning the weight of strategy belongs to the interval [0,1]. To find the compromise solution, we arrange the ranking measures in ascending order, and the alternative that possesses the conditions of compromise solution is selected. We demonstrate the presented multi-attribute group decision-making technique by selecting the best location for a nuclear power plant. We conduct the comparative analysis of the presented technique with Fermatean fuzzy TOPSIS to endorse the veracity and accuracy of our method. Finally, we explain the merits and limitations of our strategy and give some concluding remarks.
In mathematical modelling, the term diffusion is used to describe the motion of species from one region to another. Influenced by various natural factors, such as geographic, hydrological or climatic conditions and human activities, migrations occur between patches, which affects the population dynamics, for example the persistence and extinction of species [1,2,3,4,5,6,7,8]. The growth of species population is also affected by competition caused by disputing food, resources, territories and spouses, including intraspecific and interspecific competitions among populations. To see the effects of the diffusion and competition on population dynamics, we propose the following mathematical model with
dxi(t)=xi(t)[ri−aiixi(t)−n∑j=1,j≠iaijxj(t)+n∑j=1,j≠iDijxj(t)−n∑j=1,j≠iDijαijxi(t)]dt, | (1) |
where
Recently, time delays have been widely used in biological and ecological models in order to get more realistic mathematical models, for example [9,10,11,12,13,14,15,16]. In this paper, we also consider the time delay, which is accounted for the diffusion. For example, birds cannot migrate immediately after they were born, so the time delay here is the time it takes for them to learn to fly before they can migrate, and death can also occur in the process. Then, from (1) we have the model with time delays as follows
dxi(t)=xi(t)[ri−aiixi(t)−n∑j=1,j≠iaijxj(t)+n∑j=1,j≠iDije−djτijxj(t−τij)−n∑j=1,j≠iDijαijxi(t)]dt,i,j=1,2,…,n, | (2) |
where
x(θ)=(x1(θ),…,xn(θ))T=(ϕ1(θ),…,ϕn(θ))T=ϕ(θ)∈C([−τ,0];Rn+). | (3) |
Reference [17] suggests that the growth rate of organisms is generally affected by environmental fluctuations accounted for the disturbance of ecological environment in nature, consequently parameters in biologic models will exhibit random perturbations [18]. Thus, the deterministic models, like (2) are not applicable to capture the essential characters. In the past years, researchers have suggested the use of white noises to capture the main characters of these stochastic fluctuations, see [18,19,20,21,22,23,24,25,26,27] for example. Denote by
ri→ri+σidBi(t), |
with which the model (2) reads
dxi(t)=xi(t)[ri−aiixi(t)−n∑j=1,j≠iaijxj(t)+n∑j=1,j≠iDije−djτijxj(t−τij)−n∑j=1,j≠iDijαijxi(t)]dt+σixi(t)dBi(t),i,j=1,2,…,n. | (4) |
We further consider the optimal harvesting problem of model (4). The research on the optimal harvesting of the population is of great significance to the utilization and development of resources, and can also help mankind to get the optimal strategy of harvesting in order to obtain the most long-term benefits [28,29,30,31,32,33,34,35]. Then, we reach the following model accounted for harvesting:
dxi(t)=xi(t)[ri−aiixi(t)−n∑j=1,j≠iaijxj(t)+n∑j=1,j≠iDije−djτijxj(t−τij)−n∑j=1,j≠iDijαijxi(t)]dt−hixi(t)dt+σixi(t)dBi(t),i,j=1,2,…,n, | (5) |
where
In the rest of the paper, we will devote ourselves to explore the dynamics and the optimal harvesting strategy of model (5). More precisely, in Section 2, we establish necessary conditions for persistence of species in mean and extinction of the species. In Section 3, we investigate conditions of stability, and prove asymptotic stability in distribution of the model, namely, there is a unique probability measure
For the convenience of the following discussion, we define some notations as follows
bi=ri−hi−0.5σ2i,qij=aii+n∑j=1,j≠iDijαij,ci=bi−n∑j=1,j≠iaijqjibj,i,j=1,…,n, |
and assume that
Following the same argument as in [37], we can prove the existence of the positive solution.
Lemma 2.1. Given initial value (3), model (5) admits a unique global positive solution
lim supt→+∞E|x(t)|p≤K. | (6) |
To show our main result of this section, we consider the following auxiliary equations
dΦi(t)=Φi(t)(ri−hi−aiiΦi(t)−n∑j=1,j≠iDijαijΦi(t))dt+σiΦi(t)dBi(t), | (7) |
dΨi(t)=Ψi(t)(ri−hi−aiiΨi(t)−n∑j=1,j≠iaijΦj(t)+n∑j=1,j≠iDije−djτijΦj(t−τij)−n∑j=1,j≠iDijαijΨi(t))dt+σiΨi(t)dBi(t), | (8) |
with initial value
Φi(θ)=Ψi(θ)=xi(θ),θ∈[−τ,0],i=1,2,…,n. |
By [38,Stochastic Comparison Theorem], we know that for
Ψi(θ)≤xi(θ)≤Φi(θ)a.s.,i=1,2,…,n. | (9) |
Remark 1. It is easy to see from [39] that the explicit solution of (7) is
Φi(t)=exp{bit+σiBi(t)}Φ−1i(0)+(aii+n∑j=1,j≠iDijαij)∫t0exp{bis+σiBi(s)}ds,i=1,2,…,n. | (10) |
Similar calculation gives
Ψi(t)=exp{bit−n∑j=1,j≠iaij∫t0Φj(s)ds+n∑j=1,j≠iDije−djτij∫t0Φj(s−τij)ds+σidBi(t)}×{Ψ−1i(0)+(aii+n∑j=1,j≠iDijαij)∫t0exp{bis−n∑j=1,j≠iaij∫s0Φj(u)du+n∑j=1,j≠iDije−djτij∫s0Φj(u−τij)du+σiBi(s)}ds}−1,i=1,2,…,n. | (11) |
Then, by using [40], we obtain the following.
Lemma 2.2. Let
limt→+∞t−1lnΦi(t)=0,limt→+∞t−1∫t0Φi(s)ds=biqij,a.s.,i=1,2,…,n. | (12) |
Based on Lemma 2, we assume:
Assumption 2.1.
Remark 2. A result due to Golpalsamy [10] and Assumption 2.1 imply that there exists a unique positive solution
{(a11+n∑j=2D1jα1j)x1+(a12−D12e−d2τ12)x2+…+(a1n−D1ne−dnτ1n)xn=b1≜r1−h1−12σ21,(a21−D21e−d1τ21)x1+(a22+n∑j=1,j≠2D2jα2j)x2+…+(a2n−D2ne−dnτ2n)xn=b2≜r2−h2−12σ22,…………………………………………………………………………,(an1−Dn1e−d1τn1)x1+(an2−Dn2e−d2τn2)x2+…+(ann+n−1∑j=1Dnjαnj)xn=bn≜rn−hn−12σ2n, | (13) |
in which
A=(a11+∑nj=2D1jα1ja12−D12e−d2τ12⋯a1n−D1ne−dnτ1na21−D21e−d1τ21a22+n∑j=1,j≠2D2jα2j⋯a2n−D2ne−dnτ2n⋮⋮⋱⋮an1−Dn1e−d1τn1an2−Dn2e−d2τn2⋯ann+∑n−1j=1Dnjαnj) |
and
Now we are in the position to show our main results.
Theorem 2.1. All species in system (5) are persistent in mean
limt→+∞t−1∫t0xi(s)ds=det(Ai)/det(A)>0a.s.,i=1,2,…,n. | (14) |
when Assumption 2.1 is satisfied.
Proof. Let
limt→+∞t−1∫tt−τijΦj(s)ds=limt→+∞(t−1∫t0Φj(s)ds−t−1∫t−τij0Φj(s)ds)=0, | (15) |
which together with (9) yields
limt→+∞t−1∫tt−τijxj(s)ds=0,i,j=1,2,…,n,j≠i. | (16) |
By using Itô's formula to (5), one can see that
t−1lnxi(t)−t−1lnxi(0)=bi−aiit−1∫t0xi(s)ds−n∑j=1,j≠iaijt−1∫t0xj(s)ds+n∑j=1,j≠iDije−djτijt−1∫t0xj(s−τij)ds−n∑j=1,j≠iDijαijt−1∫t0xj(s)ds+σit−1Bi(t)=bi−[aiit−1∫t0xi(s)ds+n∑j=1,j≠iaijt−1∫t0xj(s)ds−n∑j=1,j≠iDije−djτijt−1∫t0xj(s)ds+n∑j=1,j≠iDijαijt−1∫t0xi(s)ds]+n∑j=1,j≠iDije−djτijt−1[∫0−τijxj(s)ds −∫tt−τijxj(s)ds]+σit−1Bi(t),i,j=1,2…,n,i≠j. | (17) |
According to (16) together with the property of Brownian motion, we obtain
limt→+∞t−1[∫0−τijxj(s)ds−∫tt−τijxj(s)ds]=0, |
limt→+∞t−1Bi(t)=0,limt→+∞t−1lnxi(0)=0,a.s. |
We next to show that
limt→+∞t−1lnxi(t)=0,i=1,2,…,n. |
In view of (9) and (12), we have
lim inft→+∞t−1lnΨi(t)≤lim inft→+∞t−1lnxi(t)≤lim supt→+∞t−1lnxi(t)≤lim supt→+∞t−1lnΦi(t)=0. |
Therefore we obtain
lim inft→+∞t−1lnΨi(t)≥0a.s.,i=1,2,…,n. | (18) |
From (15) and (12), we get
limt→+∞t−1∫t0Φj(s−τij)ds=limt→+∞t−1(∫t0Φj(s)ds−∫tt−τijΦj(s)ds+∫0τijΦj(s)ds)=bjqji,a.s.,i,j=1,2…,n,i≠j. |
By using
bj/qji−ε≤t−1∫t0Φj(s−τij)ds≤bj/qji+ε,−ε≤t−1σiBi(t)≤ε. |
Applying these inequalities to (11), we have
1Ψi(t)=exp{−bit+n∑j=1,j≠iaij∫t0Φj(s)ds−n∑j=1,j≠iDije−djτij∫t0Φj(s−τij)ds−σiBi(t)}×{Ψ−1i(0)+(aii+n∑j=1,j≠iDijαij)∫t0exp{bis−n∑j=1,j≠iaij∫s0Φj(u)du+n∑j=1,j≠iDije−djτij∫s0Φj(u−τij)du+σiBi(s)}ds}=exp{−bit+n∑j=1,j≠iaij∫t0Φj(s)ds−n∑j=1,j≠iDije−djτij∫t0Φj(s−τij)ds−σiBi(t)}×{Ψ−1i(0)+(aii+n∑j=1,j≠iDijαij)∫T0exp{bis−n∑j=1,j≠iaij∫s0Φj(u)du+n∑j=1,j≠iDije−djτij∫s0Φj(u−τij)du+σiBi(s)}ds+(aii+n∑j=1,j≠iDijαij)∫tTexp{bis−n∑j=1,j≠iaij∫s0Φj(u)du+n∑j=1,j≠iDije−djτij∫s0Φj(u−τij)du+σiBi(s)}ds}≤exp{t[−bi+n∑j=1,j≠iaij(bjqji+ε)−n∑j=1,j≠iDije−djτij(bjqji−ε)+ε]}×{Ψ−1i(0)+Mij+(aii+n∑j=1,j≠iDijαij)∫tTexp{s[bi−n∑j=1,j≠iaij(bjqji−ε)+n∑j=1,j≠iDije−djτij(bjqji+ε)+ε]}ds},i,j=1,…,n, |
in which
Ψ−1i(0)+Mij≤(aii+n∑j=1,j≠iDijαij)∫tTexp{s[bi−n∑j=1,j≠iaij(bjqji−ε)+n∑j=1,j≠iDije−djτij(bjqji+ε)+ε]}ds. |
Hence for sufficiently large
1Ψi(t)≤exp{t[−bi+n∑j=1,j≠iaij(bjqji+ε)−n∑j=1,j≠iDije−djτij(bjqji−ε)+ε]}×2(aii+n∑j=1,j≠iDijαij)∫tTexp{s[bi−n∑j=1,j≠iaij(bjqji−ε)+n∑j=1,j≠iDije−djτij(bjqji+ε)+ε]}ds=2(aii+∑nj=1,j≠iDijαij)bi−∑nj=1,j≠iaij(bjqji−ε)+∑nj=1,j≠iDije−djτij(bjqji+ε)+ε×exp{t[−bi+n∑j=1,j≠iaij(bjqji+ε)−n∑j=1,j≠iDije−djτij(bjqji−ε)+ε]}×exp{[bi−n∑j=1,j≠iaij(bjqji−ε)+n∑j=1,j≠iDije−djτij(bjqji+ε)+ε](t−T)}. |
Rearranging this inequality shows that
t−1lnΨi(t)≥t−1lnbi−∑nj=1,j≠iaij(bjqji−ε)+∑nj=1,j≠iDije−djτij(bjqji+ε)+ε2(aii+∑nj=1,j≠iDijαij)−2ε(n∑j=1,j≠iaij+n∑j=1,j≠iDije−djτij+1)+[bi−n∑j=1,j≠iaij(bjqji−ε)+n∑j=1,j≠iDije−djτij(bjqji+ε)+ε]Tt. |
Since
Corollary 2.1. If there is a
In this section, we study the stability of the model. To this end, we suppose the following holds:
Assumption 3.1.
Then, we can prove the following.
Theorem 3.1. The system (5) is asymptotically stable in distribution if Assumption 3.1 holds.
Proof. Given two initial values
V(t)=n∑i=1|lnxϕii(t)−lnxψii(t)|+n∑i=1n∑j=1,j≠iDije−djτij∫tt−τij|xϕjj(s)−xψjj(s)|ds. |
Applying Itô's formula yields
d+V(t)=n∑i=1sgn(xϕii(t)−xψii(t))d(lnxϕii(t)−lnxψii(t))+n∑i=1n∑j=1,j≠iDije−djτij|xϕjj(t)−xψjj(t)|dt−n∑i=1n∑j=1,j≠iDije−djτij|xϕjj(t−τij)−xψjj(t−τij)|dt=n∑i=1sgn(xϕii(t)−xψii(t))[−aii(xϕii(t)−xψii(t))−n∑j=1,j≠iaij(xϕjj(t)−xψjj(t))+n∑j=1,j≠iDije−djτij(xϕjj(t−τij)−xψjj(t−τij))−n∑j=1,j≠iDijαij(xϕii(t)−xψii(t))]dt+n∑i=1n∑j=1,j≠iDije−djτij|xϕjj(t)−xψjj(t)|dt−n∑i=1n∑j=1,j≠iDije−djτij|xϕjj(t−τij)−xψjj(t−τij)|dt≤−n∑i=1aii|xϕii(t)−xψii(t)|dt+n∑i=1n∑j=1,j≠iaij|xϕjj(t)−xψjj(t)|dt+n∑i=1n∑j=1,j≠iDije−djτij|xϕjj(t−τij)−xψjj(t−τij)|dt+n∑i=1n∑j=1,j≠iDijαij|xϕii(t)−xψii(t)|dt+n∑i=1n∑j=1,j≠iDije−djτij|xϕjj(t)−xψjj(t)|dt−n∑i=1n∑j=1,j≠iDije−djτij|xϕjj(t−τij)−xψjj(t−τij)|dt=−n∑i=1(aii−n∑j=1,j≠iaji+n∑j=1,j≠iDijαij−n∑j=1,j≠iDjie−diτji)|xϕii(t)−xψii(t)|dt. |
Therefore
E(V(t))≤V(0)−n∑i=1(aii−n∑j=1,j≠iaji+n∑j=1,j≠iDijαij−n∑j=1,j≠iDjie−diτji)∫t0E|xϕii(s)−xψii(s)|ds. |
Together with
n∑i=1(aii−n∑j=1,j≠iaji+n∑j=1,j≠iDijαij−n∑j=1,j≠iDjie−diτji)∫t0E|xϕii(s)−xψii(s)|ds≤V(0)<∞. |
Hence we have
E(xi(t))=xi(0)+∫t0[E(xi(s))(ri−hi)−aiiE(xi(s))2−n∑j=1,j≠iaijE(xi(s)xj(s))+n∑j=1,j≠iDije−djτijE(xi(s)xj(s−τij))−n∑j=1,j≠iDijαijE(xi(s))2]ds=xi(0)+∫t0[E(xi(s))(ri−hi)−aiiE(xi(s))2−n∑j=1,j≠iaijE(xi(s)xj(s))−n∑j=1,j≠iDijαijE(xi(s))2]ds+n∑j=1,j≠iDije−djτij[∫0−τijE(xi(s)xj(s))ds+∫t0E(xi(s)xj(s))ds−∫tt−τijE(xi(s)xj(s))ds]≤xi(0)+∫t0[Exi(s)(ri−hi)−aiiE(xi(s))2−n∑j=1,j≠iaijE(xi(s)xj(s))−n∑j=1,j≠iDijαijE(xi(s))2]ds+n∑j=1,j≠iDije−djτij[∫0−τijE(xi(s)xj(s))ds+∫t0E(xi(s)xj(s))ds]. |
That is to say
dE(xi(t))dt≤E(xi(t))(ri−hi)−(aii+n∑j=1,j≠iDijαij)E(xi(t))2−n∑j=1,j≠iaijE(xi(t)xj(t))+n∑j=1,j≠iDije−djτijE(xi(t)xj(t))≤E(xi(t))ri≤riK, |
in which
limt→+∞E|xϕii(t)−xψii(t)|=0,a.s.,i=1,2,…,n. | (19) |
Denote
dL(P1,P2)=supv∈L|∫Rn+v(x)P1(dx)−∫Rn+v(x)P2(dx)|, |
where
L={v:C([−τ,0];R3+)→R:||v(x)−v(y)||≤∥x−y∥,|v(⋅)|≤1}. |
Since
supv∈L|Ev(x(t+s))−Ev(x(t))|≤ε. |
Therefore
limt→∞dL(p(t,ϕ,⋅),p(t,ξ,⋅))=0. |
Consequently,
limt→∞dL(p(t,ϕ,⋅),κ(⋅))≤limt→∞dL(p(t,ϕ,⋅),p(t,ξ,⋅))+limt→∞dL(p(t,ξ,⋅),κ(⋅))=0. |
This completes the proof of Theorem 3.1.
In this section, we consider the optimal harvesting problem of system (5). Our purpose is to find the optimal harvesting effort
(ⅰ)
(ⅱ) Every
Before we give our main results, we define
Θ=(θ1,θ2,…,θn)T=[A(A−1)T+I]−1G, | (20) |
in which
Assumption 4.1.
Theorem 4.1. Suppose Assumptions 3.1 and 4.1 hold, and If these following inequalities
θi≥0,bi∣hi=θi>0,ci∣hm=θm,m=1,2,…,n>0,i=1,⋯,n | (21) |
are satisfied. Then, for system (5) the optimal harvesting effort is
H∗=Θ=[A(A−1)T+I]−1G |
and the maximum of ESY is
Y∗=ΘTA−1(G−Θ). | (22) |
Proof. Denote
limt→+∞t−1∫t0HTx(s)ds=n∑i=1hilimt→+∞t−1∫t0xi(s)ds=HTA−1(G−H). | (23) |
Applying Theorem 4.1, there is a unique invariant measure
limt→+∞t−1∫t0HTx(s)ds=∫Rn+HTxρ(dx). | (24) |
Let
Y(H)=limt→+∞n∑i=1E(hixi(t))=limt→+∞E(HTx(t))=∫Rn+HTxμ(x)dx. | (25) |
Since the invariant measure of model (9) is unique, one has
∫Rn+HTxμ(x)dx=∫Rn+HTxρ(dx). | (26) |
In other words,
Y(H)=HTA−1(G−H). | (27) |
Assume that
dY(H)dH=dHTdHA−1(G−H)+ddH[(G−H)T(A−1)T]H=A−1G−[A−1+(A−1)T]H=0. | (28) |
Thus,
ddHT[dY(H)dH]=(ddH[(dY(H)dH)T])T=(ddH[GT(A−1)T−HT[A−1+(A−1)T]])T=−A−1−(A−1)T |
is negative defined, then
To see our analytical results more clearly, we shall give some numerical simulations in this section. Without loss of generality, we consider the following system
{dx1(t)=x1(t)[r1−h1−a11x1(t)−a12x2(t)+D12e−d2τ12x2(t−τ12)−D12α12x1(t)]dt+σ1x1(t)dB1(t),dx2(t)=x2(t)[r2−h2−a22x2(t)−a21x1(t)+D21e−d1τ21x1(t−τ21)−D21α21x2(t)]dt+σ2x2(t)dB2(t), | (29) |
which is the case when
x(θ)=ϕ(θ)∈C([−τ,0];R2+),τ=max{τ1,τ2}, |
where
Firstly, we discuss the persistence in mean of
Parameter | Value | Parameter | Value | Parameter | Value |
0.9 | 0.1 | 0.6 | |||
0.8 | 0.05 | 0.3 | |||
0.6 | 0.2 | 0.35 | |||
0.23 | 0.05 | 0.05 | |||
1 | 1 | 4 | |||
3 | 8 | 5 |
The initial values are
limt→+∞t−1∫t0x1(s)ds=det(A1)/det(A)=0.2268>0a.s., |
limt→+∞t−1∫t0x2(s)ds=det(A2)/det(A)=0.5964>0a.s.. |
Applying the Milstein numerical method in [47], we then obtained the numerical solution of system (29), see Figure 1. It shows that
Lastly, we consider the optimal harvesting strategy of system (29). It is easy to see that the Assumption 2.1 and Assumption 3.1 are satisfied. Furthermore, we have
Θ=(θ1,θ2)T=[A(A−1)T+I]−1(r1−0.5σ21,r2−0.5σ22)T=(0.4817,0.3820)T, |
in which
H∗=Θ=(θ1,θ2)T=[A(A−1)T+I]−1(r1−0.5σ21,r2−0.5σ22)T=(0.4817,0.3820)T, |
on the other hand, the maximum of ESY is
Y∗=ΘTA−1(r1−0.5σ21−θ1,r2−0.5σ22−θ2)T=0.1789. |
By using the Monte Carlo method (see [48]) and the parameters in Table 1, we can obtain Figure 3, showing our results in Theorem 4.1.
Parameter | Value | Parameter | Value | Parameter | Value |
| 2 | | 0.4452 | | 0.8 |
| 1.12 | | 0.3307 | | 0.67 |
| 0.6 | | 0.3307 | | 0.56 |
| 0.8 | | 0.6 | | 0.77 |
| 0.18 | | 0.35 | | 0.3 |
| 0.45 | | 0.22 | | 0.6 |
| 0.4 | | 0.3 | | 0.2 |
| 0.05 | | 0.05 | | 0.05 |
| 0.39 | | 0.57 | | 0.37 |
| 3 | | 3 | | 5 |
| 5 | | 4 | | 5.5 |
| 4 | | 5 | | 2.4 |
| 4 | | 2 | | 2.5 |
Next, we consider a case of three species.
{dx1(t)=x1(t)[r1−h1−a11x1(t)−(a12x2(t)+a13x3(t))+(D12e−d2τ12x2(t−τ12)+D13e−d3τ13x3(t−τ13))−(D12α12x1(t)+D13α13x1(t))]dt+σ1x1(t)dB1(t),dx2(t)=x2(t)[r2−h2−a22x2(t)−(a21x1(t)+a23x3(t))+(D21e−d1τ21x1(t−τ21)+D23e−d3τ23x3(t−τ23))−(D21α21x2(t)+D23α23x2(t))]dt+σ2x2(t)dB2(t),dx3(t)=x3(t)[r3−h3−a33x3(t)−(a31x1(t)+a32x2(t))+(D31e−d1τ31x1(t−τ31)+D32e−d2τ32x2(t−τ32))−(D31α31x3(t)+D32α32x3(t))]dt+σ3x3(t)dB3(t). | (30) |
We use the following parameter values:
The initial values are
limt→+∞t−1∫t0x1(s)ds=det(A1)/det(A)=0.2543>0a.s., |
limt→+∞t−1∫t0x2(s)ds=det(A2)/det(A)=0.1601>0a.s., |
limt→+∞t−1∫t0x3(s)ds=det(A3)/det(A)=0.0730>0a.s.. |
The numerical results of Theorem 2.1 when
The stable distribution for
To numerical illustrate the optimal harvesting effort of (30), we set
\Theta = (\theta_{1}, \theta_{2}, \theta_{3})^{T} = [A(A^{-1})^{T}+I]^{-1}(r_{1}-0.5\sigma_{1}^{2}, r_{2} -0.5\sigma_{2}^{2}, r_{3}-0.5\sigma_{3}^{2})^{T} = (1.1052, 0.5537, 0.1663)^{T}, |
which yield
In this paper, a stochastic n-species competitive model with delayed diffusions and harvesting has been considered. We studied the persistence in mean of every population, which is biologically significant because it shows that all populations can coexist in the community. Since the model (5) does not have a positive equilibrium point and its solution can not approach a positive value, we considered its asymptotically stable distribution. By using ergodic method, we obtained the optimal harvesting policy and the maximum harvesting yield of system (5). We have also done some numerical simulations of the situations for
Our studies showed some interesting results
(a) Both environmental disturbance and diffused time delay can effect the persistence and optimal harvesting effort of system (5)..
(b) Environmental noises have no effect on asymptotic stability in distribution of system (5), but the time delays have.
There are other meaningful aspects that can be studied further since our paper only consider the effects of white noises on population growth rate. In future, for example, we can consider the situation when white noises also have influences over harvesting (see [45]) and non-autonomous system (see [46]); the time delay will also be reflected in competition (see [49]). Furthermore, we can consider something more complex models such as the ones with regime-switching (see [50,51]) or Lévy jumps (see [14,42]).
This work was supported by the Research Fund for the Taishan Scholar Project of Shandong Province of China, and the SDUST Research Fund (2014TDJH102).
The authors declare that there is no conflict of interest regarding the publication of this paper.
[1] | S. Opricovic, Multicriteria optimization of civil engineering systems, Faculty of Civil Engineering, Belgrade, 2(1998), 5–21. |
[2] | C. L. Hwang, K. Yoon, Methods for multiple attribute decision making, in: Multiple attribute decision making, Lect. Notes Econ. Math. Syst., 186, Springer: Berlin, Germany, 1981. https://doi.org/10.1007/978-3-642-48318-9_3 |
[3] |
T. L. Saaty, Axiomatic foundation of the analytic hierarchy process, Manage. Sci., 32(1986), 841–855. https://doi.org/10.1287/mnsc.32.7.841 doi: 10.1287/mnsc.32.7.841
![]() |
[4] |
J. P. Brans, P. Vincke, B. Mareschal, How to select and how to rank projects: The PROMETHEE method, Eur. J. Oper. Res., 24 (1986), 228–238. https://doi.org/10.1016/0377-2217(86)90044-5 doi: 10.1016/0377-2217(86)90044-5
![]() |
[5] |
P. L. Yu, A class of solutions for group decision problems, Manage. Sci., 19(1973), 936–946. https://doi.org/10.1287/mnsc.19.8.936 doi: 10.1287/mnsc.19.8.936
![]() |
[6] | M. Zeleny, Multiple Criteria Decision Making, McGraw-Hill, New York, 1982. |
[7] | S. Opricovic, G.H. Tzeng, Extended VIKOR method in comparison with outranking methods, Eur. J. Oper. Res., 178(2007), 514–529. |
[8] | S. Opricovic, G. H. Tzeng, Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS, Eur. J. Oper. Res., 156 (2004), 445–455. |
[9] |
A. A. Bazzazi, M. Osanloo, B. Karimi, Deriving preference order of open pit mines equipment through MADM methods: Application of modified VIKOR method, Expert Syst. Appl., 38 (2011), 2550–2556. https://doi.org/10.1016/j.eswa.2010.08.043 doi: 10.1016/j.eswa.2010.08.043
![]() |
[10] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8(1965), 338–353. |
[11] |
R. E. Bellman, L. A. Zadeh, Decision-making in a fuzzy environment, Manage. Sci., 17(1970), 141–164. https://doi.org/10.1287/mnsc.17.4.B141 doi: 10.1287/mnsc.17.4.B141
![]() |
[12] | T. C. Wang, T. H. Chang, Fuzzy VIKOR as a resolution for multicriteria group decision-making, in: The 11th International Conference on Industrial Engineering and Engineering Management, (2005), 352–356. |
[13] |
T. H. Chang, Fuzzy VIKOR method: A case study of the hospital service evaluation in Taiwan, Inf. Sci., 271(2014), 196–212. https://doi.org/10.1016/j.ins.2014.02.118 doi: 10.1016/j.ins.2014.02.118
![]() |
[14] | S. Mishra, C. Samantra, S. Datta, S. S. Mahapatra, Multiattribute group decision-making (MAGDM) for supplier selection using fuzzy linguistic modelling integrated with VIKOR method, Int. J. Serv. Oper. Manag., 12(2012), 67–89. |
[15] |
A. Sanayei, S. F. Mousavi, A. Yazdankhah, Group decision making process for supplier selection with VIKOR under fuzzy environment, Expert Syst. Appl., 37(2010), 24–30. https://doi.org/10.1016/j.eswa.2009.04.063 doi: 10.1016/j.eswa.2009.04.063
![]() |
[16] | A. Shemshadi, H. Shirazi, M. Toreihi, M. J. Tarokh, A fuzzy VIKOR method for supplier selection based on entropy measure for objective weighting, Expert Syst. Appl., 38(10)(2011), 12160–12167. https://doi.org/10.1016/j.eswa.2011.03.027 |
[17] |
S. Opricovic, Fuzzy VIKOR with an application to water resources planning, Expert Syst. Appl., 38(2011), 12983–12990. https://doi.org/10.1016/j.eswa.2011.04.097 doi: 10.1016/j.eswa.2011.04.097
![]() |
[18] |
Y. Ju, A. Wang, Extension of VIKOR method for multicriteria group decision making problem with linguistic information, Appl. Math. Model., 37(2013), 3112–3125. https://doi.org/10.1016/j.apm.2012.07.035 doi: 10.1016/j.apm.2012.07.035
![]() |
[19] |
R. Rostamzadeh, K. Govindan, A. Esmaeili, M. Sabaghi, Application of fuzzy VIKOR for evaluation of green supply chain management practices, Ecol. Indic., 49(2015), 188–203. https://doi.org/10.1016/j.ecolind.2014.09.045 doi: 10.1016/j.ecolind.2014.09.045
![]() |
[20] | T. C. Wang, J. L. Liang, C. Y. Ho, Multi-criteria decision analysis by using fuzzy VIKOR, in: 2006 International Conference on Service Systems and Service Management, 2(2006), 901–906. |
[21] |
G. Büyüközkan, D. Ruan, O. Feyzioglu, Evaluating e-learning web site quality in a fuzzy environment, Int. J. Intell. Syst., 22(2007), 567–586. https://doi.org/10.1002/int.20214 doi: 10.1002/int.20214
![]() |
[22] |
O. Taylan, R. Alamoudi, M. Kabli, A. AlJifri, F. Ramzi, E. Herrera-Viedma, Assessment of energy systems using extended fuzzy AHP, fuzzy VIKOR, and TOPSIS approaches to manage non-cooperative opinions, Sustainability, 12(2020), 2745. https://doi.org/10.3390/su12072745 doi: 10.3390/su12072745
![]() |
[23] | K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20(1986), 87–96. https://doi.org/10.1007/978-3-7908-1870-3_1 |
[24] |
P. Gupta, M. K. Mehlawat N. Grover, Intuitionistic fuzzy multi-attribute group decision-making with an application to plant location selection based on a new extended VIKOR method, Inf. Sci., 370(2016), 184–203. https://doi.org/10.1016/j.ins.2016.07.058 doi: 10.1016/j.ins.2016.07.058
![]() |
[25] |
J. Hu, X. Zhang, Y. Yang, Y. Liu, X. Chen, New doctors ranking system based on VIKOR method, Int. Trans. Oper. Res., 27(2020), 1236–1261. https://doi.org/10.1111/itor.12569 doi: 10.1111/itor.12569
![]() |
[26] |
S. M. Mousavi, B. Vahdani, S. S. Behzadi, Designing a model of intuitionistic fuzzy VIKOR in multi-attribute group decision-making problems, Iran. J. Fuzzy Syst., 13(2016), 45–65. https://doi.org/10.22111/IJFS.2016.2286 doi: 10.22111/IJFS.2016.2286
![]() |
[27] |
S. P. Wan, Q. Y. Wang, J. Y. Dong, The extended VIKOR method for multi-attribute group decision making with triangular intuitionistic fuzzy numbers, Knowl. Based. Syst., 52(2013), 65–77. https://doi.org/10.1016/j.knosys.2013.06.019 doi: 10.1016/j.knosys.2013.06.019
![]() |
[28] | R. R. Yager, Pythagorean fuzzy subsets, in: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), (2013), 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375 |
[29] |
R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE Trans. Fuzzy Syst., 22(2013), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
![]() |
[30] |
F. B. Cui, X. Y. You, H. Shi, H. C. Liu, Optimal siting of electric vehicle charging stations using Pythagorean fuzzy VIKOR approach, Math. Probl. Eng., 2018(2018), Article ID 9262067. https://doi.org/10.1155/2018/9262067 doi: 10.1155/2018/9262067
![]() |
[31] |
M. Gul, M. F. Ak, A. F. Guneri, Pythagorean fuzzy VIKOR-based approach for safety risk assessment in mine industry, J. Saf. Res., 69(2019), 135–153. https://doi.org/10.1016/j.jsr.2019.03.005 doi: 10.1016/j.jsr.2019.03.005
![]() |
[32] |
R. R. Yager, Generalized orthopair fuzzy sets, IEEE Trans. Fuzzy Syst., 25(2016), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
![]() |
[33] | T. Senapati, R. R. Yager, Fermatean fuzzy sets, J. Ambient. Intell. Humaniz. Comput., 11(2020), 663–674. https://doi.org/10.1007/s12652-019-01377-0 |
[34] |
M. K. Ghorabaee, M. Amiri, M. H. Tabatabaei, E. K. Zavadskas, A. Kaklauskas, A new decision-making approach based on Fermatean fuzzy sets and WASPAS for green construction supplier evaluation, Mathematics, 8(2020), 2202. https://doi.org/10.3390/math8122202 doi: 10.3390/math8122202
![]() |
[35] |
D. Liu, Y. Liu, X. Chen, Fermatean fuzzy linguistic set and its application in multicriteria decision making, Int. J. Intell. Syst., 34(2019), 878–894. https://doi.org/10.1002/int.22079 doi: 10.1002/int.22079
![]() |
[36] |
H. Garg, G. Shahzadi, M. Akram, Decision-making analysis based on Fermatean fuzzy Yager aggregation operators with application in COVID-19 testing facility, Math. Probl. Eng., 2020(2020), Article ID 7279027. https://doi.org/10.1155/2020/7279027 doi: 10.1155/2020/7279027
![]() |
[37] |
T. Y. Chen, The likelihood-based optimization ordering model for multiple criteria group decision making with Pythagorean fuzzy uncertainty, Neural Comput. Appl., 33 (2021), 4865–4900. https://doi.org/10.1007/s00521-020-05278-8 doi: 10.1007/s00521-020-05278-8
![]() |
[38] |
P. A. Ejegwa, Modified Zhang and Xu's distance measure for Pythagorean fuzzy sets and its application to pattern recognition problems, Neural Comput. Appl., 32(2020), 10199-10208. https://doi.org/10.1007/s00521-019-04554-6 doi: 10.1007/s00521-019-04554-6
![]() |
[39] |
F. Feng, H. Fujita, M.T. Ali, R.R. Yager, X. Liu, Another view on generalized intuitionistic fuzzy soft sets and related multiattribute decision making methods, IEEE Trans. Fuzzy Syst., 27(2019), 474–488. https://doi.org/10.1109/TFUZZ.2018.2860967. doi: 10.1109/TFUZZ.2018.2860967
![]() |
[40] |
Y. Han, Y. Deng, Z. Cao, C.T. Lin, An interval-valued Pythagorean prioritized operator-based game theoretical framework with its applications in multicriteria group decision making, Neural Comput. Appl., 32(2020), 7641–7659. https://doi.org/10.1007/s00521-019-04014-1 doi: 10.1007/s00521-019-04014-1
![]() |
[41] |
R. Krishankumar, K. S. Ravichandran, V. Shyam, S. V. Sneha, S. Kar, H. Garg, Multi-attribute group decision-making using double hierarchy hesitant fuzzy linguistic preference information, Neural Comput. Appl., 32(2020), 14031–14045. https://doi.org/10.1007/s00521-020-04802-0 doi: 10.1007/s00521-020-04802-0
![]() |
[42] | F. Zhou, T. Y. Chen, An extended Pythagorean fuzzy VIKOR method with risk preference and a novel generalized distance measure for multicriteria decision-making problems, Neural Comput. Appl., (2021), 1–24. https://doi.org/10.1007/s00521-021-05829-7 |
[43] | C. N. Wang, C. C. Su, V.T. Nguyen, Nuclear power plant location selection in Vietnam under fuzzy environment conditions, Symmetry, 10(11)(2018), 548. https://doi.org/10.3390/sym10110548 |
[44] |
Shumaiza, M. Akram, A. N. Al-Kenani, J. C. R. Alcantud, Group decision-making based on the VIKOR method with Trapezoidal bipolar fuzzy information, Symmetry, 11(2019), 1313. https://doi.org/10.3390/sym11101313 doi: 10.3390/sym11101313
![]() |
[45] | D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE Trans. Fuzzy Syst., 10(2002), 171–186. https://doi.org/10.1109/91.995119 |
[46] |
D. E. Tamir, L. Jin, A. Kandel, A new interpretation of complex membership grade, Int. J. Intell. Syst., 26(2011), 285–312. https://doi.org/10.1002/int.20454 doi: 10.1002/int.20454
![]() |
[47] | A. M. Alkouri, A. R. Salleh, Complex intuitionistic fuzzy sets, AIP Conference Proceedings, 1482(2012), 464–470. https://doi.org/10.1063/1.4757515 |
[48] |
K. Ullah, T. Mahmood, Z. Ali, N. Jan, On some distance measures of complex Pythagorean fuzzy sets and their applications in pattern recognition, Complex Intell. Syst., 6(2020), 15–27. https://doi.org/10.1007/s40747-019-0103-6 doi: 10.1007/s40747-019-0103-6
![]() |
[49] |
X. Ma, M. Akram, K. Zahid, J. C. R. Alcantud, Group decision-making framework using complex Pythagorean fuzzy information, Neural Comput. Appl., 33(2021), 2085–2105. https://doi.org/10.1007/s00521-020-05100-5 doi: 10.1007/s00521-020-05100-5
![]() |
[50] |
M. Akram, C. Kahraman, K. Zahid, Group decision-making based on complex spherical fuzzy VIKOR approach, Knowl. Based. Syst., 216(2021), 106793. https://doi.org/10.1016/j.knosys.2021.106793 doi: 10.1016/j.knosys.2021.106793
![]() |
[51] | Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci., 11(1982), 341–356. https://doi.org/10.1007/BF01001956 |
[52] |
D.A. Molodtsov, Soft set theory - First results, Comput. Math. Appl., 37(1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
![]() |
[53] | D. A. Molodtsov, The theory of soft sets, URSS Publishers Moscow (in Russian), 2004. |
[54] | P. K. Maji, R. Biswas, A. R. Roy, Intuitionistic fuzzy soft sets, J. Fuzzy Math., 9(2001), 677–692. |
[55] | X. Peng, Y. Yang, J. Song, Pythagorean fuzzy soft set and its application, Computer Engineering, 41(2015), 224–229. |
[56] |
G. Shahzadi, M. Akram, Group decision-making for the selection of an antivirus mask under Fermatean fuzzy soft information, J. Intell. Fuzzy Syst., 40(2020), 1–6. https://doi.org/10.3233/JIFS-201760 doi: 10.3233/JIFS-201760
![]() |
[57] | V. Salsabeela, S. J. John, TOPSIS techniques on Fermatean fuzzy soft sets, AIP Conference Proceedings, 2336(2021), 040022. https://doi.org/10.1063/5.0045914 |
[58] | P. Thirunavukarasu, R. Suresh, V. Ashokkumar, Theory of complex fuzzy soft set and its applications, Int. J. Eng. Sci. Tech., 3(2017), 13–18. |
[59] |
T. Kumar, R. K. Bajaj, On complex intuitionistic fuzzy soft sets with distance measures and entropies, J. Math., 2014(2014), Article ID 972198. https://doi.org/10.1155/2014/972198 doi: 10.1155/2014/972198
![]() |
[60] |
J. C. R. Alcantud, F. Feng, R. R. Yager, An N-soft set approach to rough sets, IEEE Trans. Fuzzy Syst., 28(2020), 2996–3007. https://doi.org/10.1109/TFUZZ.2019.2946526. doi: 10.1109/TFUZZ.2019.2946526
![]() |
[61] | F. Fatimah, D. Rosadi, R. B. F. Hakim, J. C. R. Alcantud, N-soft sets and their decision making algorithms, Soft Comput., 22(4)(2018), 3829–3842. https://doi.org/10.1007/s00500-017-2838-6 |
[62] |
M. Akram, A. Adeel, J.C.R. Alcantud, Fuzzy N-soft sets: A novel model with applications, J. Intell. Fuzzy Syst., 35 (2018), 4757–4771. https://doi.org/10.3233/JIFS-18244 doi: 10.3233/JIFS-18244
![]() |
[63] |
M. Akram, A. Adeel, J. C. R. Alcantud, Group decision making methods based on hesitant N-soft sets, Expert Syst. Appl., 115(2019), 95–105. https://doi.org/10.1016/j.eswa.2018.07.060 doi: 10.1016/j.eswa.2018.07.060
![]() |
[64] |
M. Akram, A. Adeel, J. C. R. Alcantud, Hesitant fuzzy N-soft sets: A new model with applications in decision-making, J. Intell. Fuzzy Syst., 36(2019), 6113–6127. https://doi.org/10.3233/JIFS-181972 doi: 10.3233/JIFS-181972
![]() |
[65] |
M. Akram, G. Ali, J. C. R. Alcantud, New decision-making hybrid model: Intuitionistic fuzzy N-soft rough sets, Soft Comput., 23(2019), 9853–9868. https://doi.org/10.1007/s00500-019-03903-w doi: 10.1007/s00500-019-03903-w
![]() |
[66] |
H. Zhang, D. Jia-hua, C. Yan, Multi-attribute group decision-making methods based on Pythagorean fuzzy N-soft sets, IEEE Access, 8(2020), 62298–62309. https://doi.org/10.1109/ACCESS.2020.2984583. doi: 10.1109/ACCESS.2020.2984583
![]() |
[67] |
M. Akram, F. Wasim, A. N. Al-Kenani, A hybrid decision-making approach under complex Pythagorean fuzzy N-soft sets, Int. J. Comput. Intell. Syst., 14(2021), 1263–1291. https://doi.org/10.2991/ijcis.d.210331.002 doi: 10.2991/ijcis.d.210331.002
![]() |
[68] |
M. Akram, M. Shabir, A. N. Al-Kenani, J. C. R. Alcantud, Hybrid decision-making frameworks under complex spherical fuzzy N-soft sets, J. Math., 2021(2021), Article ID 5563215. https://doi.org/10.1155/2021/5563215 doi: 10.1155/2021/5563215
![]() |
[69] | M. Akram, U. Amjad, J. C. R. Alcantud, G. Santos-García, Complex Fermatean fuzzy N-soft sets: A new hybrid model with applications, J. Ambient. Intell. Humaniz. Comput. (2022). https://doi.org/10.1007/s12652-021-03629-4 |
[70] | F. Fatimah, J. C. R. Alcantud, The multi-fuzzy N-soft set and its applications to decision-making, Neural Comput. Appl., (2021), 1–10. https://doi.org/10.1007/s00521-020-05647-3 |
[71] |
J. Zhang, G. Kou, Y. Peng, Y. Zhang, Estimating priorities from relative deviations in pairwise comparison matrices, Inf. Sci., 552(2021), 310–327. https://doi.org/10.1016/j.ins.2020.12.008 doi: 10.1016/j.ins.2020.12.008
![]() |
[72] |
G. Li, G. Kou, Y. Peng, A group decision making model for integrating heterogeneous information, IEEE Trans. Syst. Man Cybern. Syst., 48(2016), 982–992. https://doi.org/10.1109/TSMC.2016.2627050 doi: 10.1109/TSMC.2016.2627050
![]() |
[73] |
H. Zhang, G. Kou, Y. Peng, Soft consensus cost models for group decision making and economic interpretations, Eur. J. Oper. Res., 277(2019), 964–980. https://doi.org/10.1016/j.ejor.2019.03.009 doi: 10.1016/j.ejor.2019.03.009
![]() |
[74] |
G. Kou, Ö. Olgu Akdeniz, H. Dinçer and S. Y\ddot{u}ksel, Fintech investments in European banks: A hybrid IT2 fuzzy multidimensional decision-making approach, Financial Innov., 7(2021), 1–28. https://doi.org/10.1186/s40854-021-00256-y doi: 10.1186/s40854-021-00256-y
![]() |
[75] |
S. Gül, Fermatean fuzzy set extensions of SAW, ARAS, and VIKOR with applications in COVID-19 testing laboratory selection problem, Expert Syst., 38(2021), e12769. https://doi.org/10.1111/exsy.12769 doi: 10.1111/exsy.12769
![]() |
Parameter | Value | Parameter | Value | Parameter | Value |
| 2 | | 0.4452 | | 0.8 |
| 1.12 | | 0.3307 | | 0.67 |
| 0.6 | | 0.3307 | | 0.56 |
| 0.8 | | 0.6 | | 0.77 |
| 0.18 | | 0.35 | | 0.3 |
| 0.45 | | 0.22 | | 0.6 |
| 0.4 | | 0.3 | | 0.2 |
| 0.05 | | 0.05 | | 0.05 |
| 0.39 | | 0.57 | | 0.37 |
| 3 | | 3 | | 5 |
| 5 | | 4 | | 5.5 |
| 4 | | 5 | | 2.4 |
| 4 | | 2 | | 2.5 |
Parameter | Value | Parameter | Value | Parameter | Value |
0.9 | 0.1 | 0.6 | |||
0.8 | 0.05 | 0.3 | |||
0.6 | 0.2 | 0.35 | |||
0.23 | 0.05 | 0.05 | |||
1 | 1 | 4 | |||
3 | 8 | 5 |
Parameter | Value | Parameter | Value | Parameter | Value |
| 2 | | 0.4452 | | 0.8 |
| 1.12 | | 0.3307 | | 0.67 |
| 0.6 | | 0.3307 | | 0.56 |
| 0.8 | | 0.6 | | 0.77 |
| 0.18 | | 0.35 | | 0.3 |
| 0.45 | | 0.22 | | 0.6 |
| 0.4 | | 0.3 | | 0.2 |
| 0.05 | | 0.05 | | 0.05 |
| 0.39 | | 0.57 | | 0.37 |
| 3 | | 3 | | 5 |
| 5 | | 4 | | 5.5 |
| 4 | | 5 | | 2.4 |
| 4 | | 2 | | 2.5 |