Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Fractal approximation of chaos game representations using recurrent iterated function systems

Applied Math Department, University of Waterloo, Waterloo, Ontario, Canada

Special Issues: Applied and Industrial Mathematics in Canada and Worldwide

We demonstrate that chaos game representations of Cannabis sativa may be approximated by the chaos game approximation of a recurrent iterated function system attractor. Via numerical experiments, we then study the fractal scaling properties of both objects and apply a wavelet decomposition in order to investigate scale-invariant patterns. We show that the attractor of a recurrent iterated function system scales similarly to the chaos game representation and has a similar wavelet multiresolution analysis profile.
  Figure/Table
  Supplementary
  Article Metrics

References

1. J. S. Almeida, J. A. Carrico, A. Maretzek, et al. Analysis of genomic sequences by Chaos Game Representation, Bioinformatics, 17 (2001), 429-437.    

2. M. F. Barnsley, Superfractals, 1st edition, Cambridge University Press, Cambridge, 2006.

3. M. F. Barnsley, J. H. Elton and D. P. Hardin, Recurrent iterated function systems, Constr. Approx., 5 (1989), 3-31.    

4. M. F. Barnsley and S. Demko, Iterated function systems and the global construction of fractals, Proceedings of the Royal Society of London A, 399 (1985), 243-275.    

5. P. J. Deschavanne, A. Giron, J. Vilain, et al. Genomic signature: characterization and classification of species assessed by chaos game representation of sequences, Mol. Biol. Evol., 16 (1999), 1391-1399.    

6. A. Fiser, G. E. Tusnady, I. Simon, Chaos game representation of protein structures, J. Mol. Graph. Model., 12 (1994), 302-304.    

7. J. M. Gutierrez, M. A. Rodriguez, G. Abramson, Multifractal analysis of DNA sequences using a novel chaos-game representation, Physica A: Statistical Mechanics and its Applications, 300 (2001), 271-284.    

8. J. C. Hart, Fractal Image Compression and Recurrent Iterated Function Systems, IEEE Comput. Graph., 16 (1996), 25-33.    

9. H. J. Jeffrey, Chaos game representation of gene structure, Nucleic Acids Research, 18 (1990), 2163-2170.    

10. H. Jia-Jing and F. Wei-Juan, Wavelet-based multifractal analysis of DNA sequences by using chaosgame representation, Chinese Phys. B, 19 (2010), 10205.

11. L. Kari, K. A. Hill, A. S. Sayem, et al. Mapping the space of genomic signatures, PLOS ONE, 10 (2015), 119815.

12. S. G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE transactions on pattern analysis and machine intelligence, 11 (1989), 674-693.    

13. P. Mayukha, B. Satish, K. Srinivas, et al. Multifractal detrended cross-correlation analysis of coding and non-coding DNA sequences through chaos-game representation, Physica A: Statistical Mechanics and its Applications, 436 (2015), 596-603.    

14. H. Oh, B. Seo, S. Lee, et al. Two complete chloroplast genome sequences of Cannabis sativa varieties, Mitochondrial DNA Part A: DNA mapping, sequencing, and analysis, 27 (2016), 2835-2837.

15. D. Vergara, K. H. White, K. G. Keepers, et al. The complete chloroplast genomes of Cannabis sativa and Humulus lupulus, Mitochondrial DNA Part A: DNA mapping, sequencing, and analysis, 27 (2016), 3793-3794.

16. Y. Wang, K. Hill, S. Singh, et al. The spectrum of genomic signatures: from dinucleotides to chaos game representation, Gene, 346 (2005), 173-185.    

17. J-Y. Yang, Z-L. Peng, Y. Zu-Guo, et al. Prediction of protein structural classes by recurrence quantification analysis based on chaos game representation, J. Theor. Biol., 257 (2009), 618-626.    

18. Y. Zu-Guo, V. Anh, K-S. Lau, Chaos game representation of protein sequences based on the detailed HP model and their multifractal and correlation analyses, J. Theor. Biol., 226 (2004), 341-348.    

19. Y. Zu-Guo, X. Qian-Jun, S. Long, et al. Chaos game representation of functional protein sequences, and simulation and multifractal analysis of induced measures, Chinese Phys. B, 19 (2010), 68701.

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved