Research article Special Issues

Utilizing the Box-Behnken method on modeling of ternary-Casson nanofluid with variable density and heat sink across a vertical jet

  • Published: 28 April 2025
  • In this paper, the thermal performance of Casson fluid is discussed with variable density while the vertical jet is taken out. The correlation of tri-hybrid nanofluid was utilized whereas base fluid was addressed as ethylene glycol, and suspension of $ CuO, GO $ and aluminum oxide were considered because of their superior heat transfer capabilities, such as electronic cooling and heat exchangers. For increased energy efficiency, these nanofluids were also utilized in industrial cooling systems, solar collectors, and automobile radiators. Darcy's law was used with heat sink and viscous dissipation. The development of the mathematical model was visualized in terms of PDEs. The finite element method was used for numerical procedures. The novel aspect included using the Box-Behnken design for optimization and the finite element method to analyze tri-hybrid nanofluid flow over a vertical jet with Darcy-Forchheimer effects, heat source, and viscous dissipation. It was claimed that highly novelty work is discussed. The Box Behnken design was employed for calculating Nusselt number and divergent velocity. We concluded that the motion of nanofluid is enhanced when Forchiermer number and $ B $ are enhanced. The temperature profile is boosted when heat sink and Eckert number, $ D $, and the power law index number are enhanced. Ternary hybrid nano-fluid has remarkable achievement in heat transfer rate and divergent velocity than hybrid nanofluid and nanofluid.

    Citation: Umar Nazir, Abdelaziz Nasr. Utilizing the Box-Behnken method on modeling of ternary-Casson nanofluid with variable density and heat sink across a vertical jet[J]. AIMS Mathematics, 2025, 10(4): 10093-10123. doi: 10.3934/math.2025460

    Related Papers:

  • In this paper, the thermal performance of Casson fluid is discussed with variable density while the vertical jet is taken out. The correlation of tri-hybrid nanofluid was utilized whereas base fluid was addressed as ethylene glycol, and suspension of $ CuO, GO $ and aluminum oxide were considered because of their superior heat transfer capabilities, such as electronic cooling and heat exchangers. For increased energy efficiency, these nanofluids were also utilized in industrial cooling systems, solar collectors, and automobile radiators. Darcy's law was used with heat sink and viscous dissipation. The development of the mathematical model was visualized in terms of PDEs. The finite element method was used for numerical procedures. The novel aspect included using the Box-Behnken design for optimization and the finite element method to analyze tri-hybrid nanofluid flow over a vertical jet with Darcy-Forchheimer effects, heat source, and viscous dissipation. It was claimed that highly novelty work is discussed. The Box Behnken design was employed for calculating Nusselt number and divergent velocity. We concluded that the motion of nanofluid is enhanced when Forchiermer number and $ B $ are enhanced. The temperature profile is boosted when heat sink and Eckert number, $ D $, and the power law index number are enhanced. Ternary hybrid nano-fluid has remarkable achievement in heat transfer rate and divergent velocity than hybrid nanofluid and nanofluid.



    加载中


    [1] M. Sohail, U. Nazir, A. Singh, A. Tulu, M. J. Khan, Finite element analysis of cross fluid model over a vertical disk suspended to a tetra hybrid nanoparticles mixture, Sci. Rep. , 14 (2024), 1520. https://doi.org/10.1038/s41598-024-51262-w doi: 10.1038/s41598-024-51262-w
    [2] M. D. Shamshuddin, N. Akkurt, A. Saeed, P. Kumam, Radiation mechanism on dissipative ternary hybrid nanoliquid flow through rotating disk encountered by Hall currents: HAM solution, Alex. Eng. J. , 65 (2023), 543–559. https://doi.org/10.1016/j.aej.2022.10.021 doi: 10.1016/j.aej.2022.10.021
    [3] M. D. Shamshuddin, Z. Raizah, N. Akkurt, V. S. Patil, S. M. Eldin, Case study of thermal and solutal aspects on non-Newtonian Prandtl hybrid nanofluid flowing via stretchable sheet: Multiple slip solution, Case Stud. Therm. Eng. , 49 (2023), 103186. https://doi.org/10.1016/j.csite.2023.103186 doi: 10.1016/j.csite.2023.103186
    [4] M. D. Shamshuddin, S. O. Salawu, S. Panda, S. R. Mishra, A. Alanazy, M. R. Eid, Thermal case exploration of electromagnetic radiative tri-hybrid nanofluid flow in Bi-directional stretching device in absorbent medium: SQLM analysis, Case Stud. Therm. Eng. , 60 (2024), 104734. https://doi.org/10.1016/j.csite.2024.104734 doi: 10.1016/j.csite.2024.104734
    [5] A. Ali, Z. Khan, M. Sun, T. Muhammad, K. A. M. Alharbi, Numerical investigation of heat and mass transfer in micropolar nanofluid flows over an inclined surface with stochastic numerical approach, Eur. Phys. J. Plus, 139 (2024), 957. https://doi.org/10.1140/epjp/s13360-024-05676-0 doi: 10.1140/epjp/s13360-024-05676-0
    [6] Z. Khan, W. F. Alfwzan, A. Ali, N. Innab, S. Zuhra, S. Islam, Intelligent computing for electromagnetohydrodynamic bioconvection flow of micropolar nanofluid with thermal radiation and stratification: Levenberg–Marquardt backpropagation algorithm, AIP Adv. , 14 (2024), 035101. https://doi.org/10.1063/5.0187124 doi: 10.1063/5.0187124
    [7] A. M. Alqahtani, M. Bilal, F. A. A. Elsebaee, S. M. Eldin, T. R. Alsenani, A. Ali, Energy transmission through carreau yasuda fluid influenced by ethylene glycol with activation energy and ternary hybrid nanocomposites by using a mathematical model, Heliyon, 9 (2023), e15074. https://doi.org/10.1016/j.heliyon.2023.e14740 doi: 10.1016/j.heliyon.2023.e14740
    [8] K. U. Rahman, Z. Mahmood, S. U. Khan, A. Ali, Z. Li, I. Tlili, Enhanced thermal study in hybrid nanofluid flow in a channel motivated by graphene/Fe3O4 and Newtonian heating, Results Eng. , 21 (2024), 101772. https://doi.org/10.1016/j.rineng.2024.101772 doi: 10.1016/j.rineng.2024.101772
    [9] A. Jan, M. Mushtaq, M. Hussain, Heat transfer enhancement of forced convection magnetized cross model ternary hybrid nanofluid flow over a stretching cylinder: non-similar analysis, Int. J. Heat Fluid Flow, 106 (2024), 109302. https://doi.org/10.1016/j.ijheatfluidflow.2024.109302
    [10] M. Rahman, H. Waheed, M. Turkyilmazoglu, M. S. Siddiqui, Darcy–Brinkman porous medium for dusty fluid flow with steady boundary layer flow in the presence of slip effect, Int. J. Mod. Phys. B, 38 (2024), 2450152. https://doi.org/10.1142/S0217979224501522 doi: 10.1142/S0217979224501522
    [11] A. Rehman, M. S. Al-Buriahi, H. E. Ali, R. Jan, I. A. Khan, Analytical simulation of Darcy–Forchheimer nanofluid flow over a curved expanding permeable surface, Fluid Dyn. Res. , 56 (2024), 065503. https://doi.org/10.1088/1873-7005/ad8b67 doi: 10.1088/1873-7005/ad8b67
    [12] I. Khan, R. Zulkifli, T. Chinyoka, Z. Ling, M. A. Shah, Numerical analysis of radiative MHD gravity-driven thin film third-grade fluid flow with exothermic reaction and modified Darcy's law on an inclined plane, Mech. Time-Depend. Mater. , 29 (2025), 12. https://doi.org/10.1007/s11043-024-09744-x doi: 10.1007/s11043-024-09744-x
    [13] T. Hayat, M. Shafique, A. Tanveer, A. Alsaedi, Magnetohydrodynamic effects on peristaltic flow of hyperbolic tangent nanofluid with slip conditions and Joule heating in an inclined channel, Int. J. Heat Mass Transf. , 102 (2016), 54–63. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.105 doi: 10.1016/j.ijheatmasstransfer.2016.05.105
    [14] H. Adun, M. Abid, D. Kavaz, Y. Hu, J. H. Zaini, Optimizing the thermophysical behavior of a novel ternary hybrid nanofluid for energy applications through experimental research, Heliyon, 10 (2024), e32728. https://doi.org/10.1016/j.heliyon.2024.e32728 doi: 10.1016/j.heliyon.2024.e32728
    [15] S. A. Lone, Z. Raizah, H. Alrabaiah, S. Shahab, A. Saeed, A. Khan, Exploring convective conditions in three-dimensional rotating ternary hybrid nanofluid flow over an extending sheet: A numerical analysis, J. Therm. Anal. Calorim., 2024. https://doi.org/10.1007/s10973-024-13070-2
    [16] I. Khan, M. W. Ahmed Khan, Artificial neural networking for computational assessment of ternary hybrid nanofluid flow caused by a stretching sheet: Implications of machine-learning approach, Eng. Appl. Comput. Fluid Mech. , 18 (2024), 2411786. https://doi.org/10.1080/19942060.2024.2411786 doi: 10.1080/19942060.2024.2411786
    [17] T. N. Tanuja, S. Manjunatha, H. S. Migdadi, R. Saadeh, A. Qazza, U. Khan, et al., Leveraging artificial neural networks approach for thermal conductivity evaluation in porous rectangular wetted fins filled with ternary hybrid nanofluid, J. Radiat. Res. Appl. Sci. , 17 (2024), 101125. https://doi.org/10.1016/j.jrras.2024.101125 doi: 10.1016/j.jrras.2024.101125
    [18] H. Kim, Y. Do, S. Ramachandran, M. Sankar, K. Thirumalaisamy, Computational analysis of magnetohydrodynamic ternary-hybrid nanofluid flow and heat transfer inside a porous cavity with shape effects, Phys. Fluids, 36 (2024), 082008. https://doi.org/10.1063/5.0222802 doi: 10.1063/5.0222802
    [19] D. Mohanty, G. Mahanta, S. Shaw, Irreversibility and thermal performance of nonlinear radiative cross-ternary hybrid nanofluid flow about a stretching cylinder with industrial applications, Powder Technol. , 433 (2024), 119255. https://doi.org/10.1016/j.powtec.2023.119255 doi: 10.1016/j.powtec.2023.119255
    [20] A. Z. Ullah, X. Guo, T. Gul, I. Ali, A. Saeed, A. M. Galal, Thin film flow of the ternary hybrid nanofluid over a rotating disk under the influence of magnetic field due to nonlinear convection, J. Magn. Magn. Mater. , 573 (2023), 170673. https://doi.org/10.1016/j.jmmm.2023.170673 doi: 10.1016/j.jmmm.2023.170673
    [21] D. Mohanty, G. Mahanta, S. Shaw, R. Katta, Entropy and thermal performance on shape-based 3D tri-hybrid nanofluid flow due to a rotating disk with statistical analysis, J. Therm. Anal. Calorim. , 149 (2024), 12285–12306. https://doi.org/10.1007/s10973-024-13592-9 doi: 10.1007/s10973-024-13592-9
    [22] M. Faizan, M. Ajithkumar, M. V. Reddy, M. A. Jamal, B. Almutairi, N. A. Shah, J. D. Chung, A theoretical analysis of the ternary hybrid nano-fluid with Williamson fluid model, Ain Shams Eng. J. , 15 (2024), 102839. https://doi.org/10.1016/j.asej.2024.102839 doi: 10.1016/j.asej.2024.102839
    [23] M. Ramzan, F. Ali, N. Akkurt, A. Saeed, P. Kumam, A. M. Galal, Computational assessment of Carreau ternary hybrid nanofluid influenced by MHD flow for entropy generation, J. Magn. Magn. Mater. , 567 (2023), 170353. https://doi.org/10.1016/j.jmmm.2023.170353 doi: 10.1016/j.jmmm.2023.170353
    [24] A. Mishra, S. K. Rawat, M. Yaseen, M. Pant, Development of machine learning algorithm for assessment of heat transfer of ternary hybrid nanofluid flow towards three different geometries: Case of artificial neural network, Heliyon, 9 (2023), e21436. https://doi.org/10.1016/j.heliyon.2023.e21453 doi: 10.1016/j.heliyon.2023.e21453
    [25] A. Mishra, Analysis of waste discharge concentration in radiative hybrid nanofluid flow over a stretching/shrinking sheet with chemical reaction, Mech. Time-Depend. Mater. , 29 (2025), 7. https://doi.org/10.1007/s11043-024-09752-x doi: 10.1007/s11043-024-09752-x
    [26] A. Mishra, Significance of Thompson and Troian slip effects on Fe3O4-CoFe2O4 ethylene glycol-water hybrid nanofluid flow over a permeable plate, Hybrid Adv. , 6 (2024), 100262. https://doi.org/10.1016/j.hybadv.2024.100262 doi: 10.1016/j.hybadv.2024.100262
    [27] A. Mishra, Hydrothermal performance of hybrid nanofluid flow over an exponentially stretching sheet influenced by gyrotactic microorganisms: A comparative evaluation of Yamada-Ota and Xue models, Numer. Heat Transf. Part A Appl., 2024, 1–30. https://doi.org/10.1080/10407782.2024.2363496
    [28] G. Ramasekhar, F. Mebarek-Oudina, S. Suneetha, H. Vaidya, P. D. Selvi, Computational simulation of Casson hybrid nanofluid flow with Rosseland approximation and uneven heat source/sink, Int. J. Thermofluids, 24 (2024), 100893. https://doi.org/10.1016/j.ijft.2024.100893 doi: 10.1016/j.ijft.2024.100893
    [29] N. Z. Basha, F. Mebarek-Oudina, R. Choudhari, H. Vaidya, B. Hadimani, K. V. Prasad, et al., Thermal radiation effect on mixed convective Casson fluid flow over a porous stretching sheet with variable fluid properties, J. Adv. Res. Fluid Mech. Therm. Sci. , 111 (2023), 1. https://doi.org/10.37934/arfmts.111.1.127 doi: 10.37934/arfmts.111.1.127
    [30] I. Chabani, F. Mebarek-Oudina, Convection with Cu-MgO/Water hybrid nanofluid and discrete heating, In: Mathematical Modelling of Fluid Dynamics and Nanofluids, CRC Press, 2023,495–510.
    [31] A. Mezaache, F. Mebarek-Oudina, H. Vaidya, Y. Fouad, Heat transfer analysis of nanofluid flow with entropy generation in a corrugated heat exchanger channel partially filled with porous medium, Heat Trans. , 53 (2024), 4625–4647. https://doi.org/10.1002/htj.23149 doi: 10.1002/htj.23149
    [32] L. S. Sundar, E. V. Ramana, M. K. Singh, A. C. Sousa, Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: An experimental study, Int. Commun. Heat Mass Trans. , 56 (2014), 86–95. https://doi.org/10.1016/j.icheatmasstransfer.2014.06.009 doi: 10.1016/j.icheatmasstransfer.2014.06.009
    [33] Y. Zhang, N. Shahmir, M. Ramzan, H. A. S. Ghazwani, M. Y. Malik, Comparative analysis of Maxwell and Xue models for a hybrid nanofluid film flow on an inclined moving substrate, Case Stud. Therm. Eng. , 28 (2021), 101598. https://doi.org/10.1016/j.csite.2021.101598 doi: 10.1016/j.csite.2021.101598
    [34] Y. Zhang, N. Shahmir, M. Ramzan, H. A. S. Ghazwani, M. Y. Malik, Comparative analysis of Maxwell and Xue models for a hybrid nanofluid film flow on an inclined moving substrate, Case Stud. Therm. Eng. , 28 (2021), 101598. https://doi.org/10.1016/j.csite.2021.101598 doi: 10.1016/j.csite.2021.101598
    [35] A. M. Galal, A. Akgül, S. A. Idris, S. Formanova, T. K. Ibrahim, M. K. Hassani, et al, , The performance evolution of Xue and Yamada-Ota models for local thermal non equilibrium effects on 3D radiative Casson trihybrid nanofluid, Sci. Rep. , 15 (2025), 7325. https://doi.org/10.1038/s41598-025-87257-4 doi: 10.1038/s41598-025-87257-4
    [36] M. Y. Rafiq, A. Sabeen, A. U. Rehman, Z. Abbas, Comparative study of Yamada-Ota and Xue models for MHD hybrid nanofluid flow past a rotating stretchable disk: Stability analysis, Int. J. Numer. Methods Heat Fluid Flow, 34 (2024), 3793–3819. https://doi.org/10.1108/HFF-01-2024-0060 doi: 10.1108/HFF-01-2024-0060
    [37] T. Maryam, U. Ahmad, G. Rasool, M. Ashraf, T. Sun, I. Razzaq, Numerical study of the thermal performance of the combined effect of solar energy and variable density around a laminar vertical jet, Case Stud. Therm. Eng. , 56 (2024), 104275. https://doi.org/10.1016/j.csite.2024.104275 doi: 10.1016/j.csite.2024.104275
    [38] J. C. Mollendorf, B. Gebhart, Thermal buoyancy in round laminar vertical jets, Int. J. Heat Mass Trans. , 16 (1973), 735–745. https://doi.org/10.1016/0017-9310(73)90087-2 doi: 10.1016/0017-9310(73)90087-2
    [39] T. Mogi, S. Horiguchi, Experimental study on the hazards of high-pressure hydrogen jet diffusion flames, J. Loss Prev. Proc. Ind. , 22 (2009), 45–51. https://doi.org/10.1016/j.jlp.2008.08.006 doi: 10.1016/j.jlp.2008.08.006
    [40] S. Siddiqa, S. Asghar, M. A. Hossain, Radiation effects in mixed convection flow of a viscous fluid having temperature-dependent density along a permeable vertical plate, J. Eng. Phys. Thermophy. , 85 (2012), 339–348. https://doi.org/10.1007/s10891-012-0658-1 doi: 10.1007/s10891-012-0658-1
    [41] H. Maurer, C. Kessler, Identification and quantification of ethylene glycol and diethylene glycol in plasma using gas chromatography-mass spectrometry, Arch. Toxicol. , 62 (1988), 66–69. https://doi.org/10.1007/BF00316260 doi: 10.1007/BF00316260
    [42] A. Mariano, M. J. Pastoriza-Gallego, L. Lugo, A. Camacho, S. Canzonieri, M. M. Piñeiro, Thermal conductivity, rheological behaviour and density of non-Newtonian ethylene glycol-based SnO2 nanofluids, Fluid Phase Equilib. , 337 (2013), 119–124. https://doi.org/10.1016/j.fluid.2012.09.029 doi: 10.1016/j.fluid.2012.09.029
    [43] S. Mukhopadhyay, P. R. De, K. Bhattacharyya, G. C. Layek, Casson fluid flow over an unsteady stretching surface, Ain Shams Eng. J. , 4 (2013), 933–938. https://doi.org/10.1016/j.asej.2013.04.004 doi: 10.1016/j.asej.2013.04.004
    [44] M. Y. Rafiq, A. Sabeen, A. U. Rehman, Z. Abbas, Comparative study of Yamada-Ota and Xue models for MHD hybrid nanofluid flow past a rotating stretchable disk: stability analysis, Int. J. Numer. Methods Heat Fluid Flow, 34 (2024), 3793–3819. https://doi.org/10.1108/HFF-01-2024-0060 doi: 10.1108/HFF-01-2024-0060
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(937) PDF downloads(43) Cited by(7)

Article outline

Figures and Tables

Figures(22)  /  Tables(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog