This paper addresses a mixed and free convective Casson nanofluid flowing on an oscillating inclined poured plate with sinusoidal heat transfers and slip boundaries. As base fluid water is supposed and the suspension of nanofluid is formulated with the combination of individual copper (Cu), titanium dioxide (TiO2) and aluminum oxide (Al2O3) as nanoparticles, the dimensionless governing equations are generalized based on Atangana-Baleanu (AB) and Caputo-Fabrizio (CF) fractional operators for developing a fractional form. Then, for the semi-analytical solution of the momentum and thermal profiles, the Laplace transformation is utilized. To discuss the influences of various pertinent parameters on governing equations, graphical tablecomparison of the Nusselt number and skin friction is also inspected at different times and numerical schemes. As a result, it has been concluded that both the momentum and energy profiles represent the more significant results for the AB-fractional model as related to the CF-fractional model solution. Furthermore, water-based titanium dioxide (TiO2) has a more progressive impact on the momentum as well as the thermal fields as compared to copper (Cu) and aluminum oxide (Al2O3) nanoparticles. The Casson fluid parameter represents the dual behavior for the momentum profile, initially momentum field decreases due to the Casson parameter but it then reverses its impact and the fluid flow moves more progressively.
Citation: Ali Raza, Umair Khan, Aurang Zaib, Wajaree Weera, Ahmed M. Galal. A comparative study for fractional simulations of Casson nanofluid flow with sinusoidal and slipping boundary conditions via a fractional approach[J]. AIMS Mathematics, 2022, 7(11): 19954-19974. doi: 10.3934/math.20221092
[1] | Khaled M. Saad, Manal Alqhtani . Numerical simulation of the fractal-fractional reaction diffusion equations with general nonlinear. AIMS Mathematics, 2021, 6(4): 3788-3804. doi: 10.3934/math.2021225 |
[2] | Abdon Atangana, Ali Akgül . Analysis of a derivative with two variable orders. AIMS Mathematics, 2022, 7(5): 7274-7293. doi: 10.3934/math.2022406 |
[3] | Abdon Atangana, Seda İğret Araz . Extension of Chaplygin's existence and uniqueness method for fractal-fractional nonlinear differential equations. AIMS Mathematics, 2024, 9(3): 5763-5793. doi: 10.3934/math.2024280 |
[4] | Manal Alqhtani, Khaled M. Saad . Numerical solutions of space-fractional diffusion equations via the exponential decay kernel. AIMS Mathematics, 2022, 7(4): 6535-6549. doi: 10.3934/math.2022364 |
[5] | Amir Ali, Abid Ullah Khan, Obaid Algahtani, Sayed Saifullah . Semi-analytical and numerical computation of fractal-fractional sine-Gordon equation with non-singular kernels. AIMS Mathematics, 2022, 7(8): 14975-14990. doi: 10.3934/math.2022820 |
[6] | Hasib Khan, Jehad Alzabut, Anwar Shah, Sina Etemad, Shahram Rezapour, Choonkil Park . A study on the fractal-fractional tobacco smoking model. AIMS Mathematics, 2022, 7(8): 13887-13909. doi: 10.3934/math.2022767 |
[7] | Rahat Zarin, Amir Khan, Pushpendra Kumar, Usa Wannasingha Humphries . Fractional-order dynamics of Chagas-HIV epidemic model with different fractional operators. AIMS Mathematics, 2022, 7(10): 18897-18924. doi: 10.3934/math.20221041 |
[8] | Muhammad Farman, Ali Akgül, Sameh Askar, Thongchai Botmart, Aqeel Ahmad, Hijaz Ahmad . Modeling and analysis of fractional order Zika model. AIMS Mathematics, 2022, 7(3): 3912-3938. doi: 10.3934/math.2022216 |
[9] | Muhammad Aslam, Muhammad Farman, Hijaz Ahmad, Tuan Nguyen Gia, Aqeel Ahmad, Sameh Askar . Fractal fractional derivative on chemistry kinetics hires problem. AIMS Mathematics, 2022, 7(1): 1155-1184. doi: 10.3934/math.2022068 |
[10] | Asif Khan, Tayyaba Akram, Arshad Khan, Shabir Ahmad, Kamsing Nonlaopon . Investigation of time fractional nonlinear KdV-Burgers equation under fractional operators with nonsingular kernels. AIMS Mathematics, 2023, 8(1): 1251-1268. doi: 10.3934/math.2023063 |
This paper addresses a mixed and free convective Casson nanofluid flowing on an oscillating inclined poured plate with sinusoidal heat transfers and slip boundaries. As base fluid water is supposed and the suspension of nanofluid is formulated with the combination of individual copper (Cu), titanium dioxide (TiO2) and aluminum oxide (Al2O3) as nanoparticles, the dimensionless governing equations are generalized based on Atangana-Baleanu (AB) and Caputo-Fabrizio (CF) fractional operators for developing a fractional form. Then, for the semi-analytical solution of the momentum and thermal profiles, the Laplace transformation is utilized. To discuss the influences of various pertinent parameters on governing equations, graphical tablecomparison of the Nusselt number and skin friction is also inspected at different times and numerical schemes. As a result, it has been concluded that both the momentum and energy profiles represent the more significant results for the AB-fractional model as related to the CF-fractional model solution. Furthermore, water-based titanium dioxide (TiO2) has a more progressive impact on the momentum as well as the thermal fields as compared to copper (Cu) and aluminum oxide (Al2O3) nanoparticles. The Casson fluid parameter represents the dual behavior for the momentum profile, initially momentum field decreases due to the Casson parameter but it then reverses its impact and the fluid flow moves more progressively.
Fractional calculus has come out as one of the most applicable subjects of mathematics [1]. Its importance is evident from the fact that many real-world phenomena can be best interpreted and modeled using this theory. It is also a fact that many disciplines of engineering and science have been influenced by the tools and techniques of fractional calculus. Its emergence can easily be traced and linked with the famous correspondence between the two mathematicians, L'Hospital and Leibnitz, which was made on 30th September 1695. After that, many researchers tried to explore the concept of fractional calculus, which is based on the generalization of nth order derivatives or n-fold integration [2,3,4].
Recently, Khan and Khan [5] have discovered novel definitions of fractional integral and derivative operators. These operators enjoy interesting properties such as continuity, boundedeness, linearity etc. The integral operators, they presented, are stated as under:
Definition 1 ([5]). Let h∈Lθ[s,t](conformable integrable on [s,t]⊆[0,∞)). The left-sided and right-sided generalized conformable fractional integrals τθKνs+ and τθKνt− of order ν>0 with θ∈(0,1], τ∈R, θ+τ≠0 are defined by:
τθKνs+h(r)=1Γ(ν)r∫s(rτ+θ−wτ+θτ+θ)ν−1h(w)wτdθw,r>s, | (1.1) |
and
τθKνt−h(r)=1Γ(ν)t∫r(wτ+θ−rτ+θτ+θ)ν−1h(w)wτdθw,t>r, | (1.2) |
respectively, and τθK0s+h(r)=τθK0t−h(r)=h(r). Here Γ denotes the well-known Gamma function.
Here the integral t∫sdθw represents the conformable integration, defined as:
t∫sh(w)dθw=t∫sh(w)wθ−1dw. | (1.3) |
The operators defined in Definition 1 are in generalized form and contain few important operators in themselves. Here, only the left-sided operators are presented, the corresponding right-sided operators may be deduced in the similar way. Moreover, to understand the theory of conformable fractional calculus, one can see [5,6,7]. Also, the basic theory of fractional calculus can be found in the books [1,8,9] and for the latest research in this field one can see [3,4,10,11,12] and the references there in.
Remark 1. 1) For θ=1 in the Definition 1, the following Katugampula fractional integral operator is obtained [13]:
τ1Kνs+h(r)=1Γ(ν)r∫s(rτ+1−wτ+1τ+1)ν−1h(w)dw,r>s. | (1.4) |
2) For τ=0 in the Definition 1, the New Riemann Liouville type conformable fractional integral operator is obtained as given below:
0θKνs+h(r)=1Γ(ν)r∫s(rθ−wθθ)ν−1h(w)dθw,r>s. | (1.5) |
3) Using the definition of conformable integral given in (1.3) and L'Hospital rule, it is straightforward that when θ→0 in (1.5), we get the Hadamard fractional integral operator as follows:
00+Kνs+h(r)=1Γ(ν)r∫s(logrw)ν−1h(w)dww,r>s. | (1.6) |
4) For θ=1 in (1.5), the well-known Riemann-Liouville fractional integral operator is obtained as follows:
01Kνs+h(r)=1Γ(ν)r∫s(r−w)ν−1h(w)dw,r>s. | (1.7) |
5) For the case ν=1,τ=0 in Definition 1, we get the conformable fractional integrals. And when θ=ν=1, τ=0, we get the classical Riemann integrals.
This subsection is devoted to start with the definition of convex function, which plays a very important role in establishment of various kinds of inequalities [14]. This definition is given as follows [15]:
Definition 2. A function h:I⊆R→R is said to be convex on I if the inequality
h(ηs+(1−η)t)≤ηh(s)+(1−η)h(t) | (1.8) |
holds for all s,t∈I and 0≤η≤1. The function h is said to be concave on I if the inequality given in (1.8) holds in the reverse direction.
Associated with the Definition 2 of convex functions the following double inequality is well-known and it has been playing a key role in various fields of science and engineering [15].
Theorem 1. Let h:I⊆R→R be a convex function and s,t∈I with s<t. Then we have the following Hermite-Hadamard inequality:
h(s+t2)≤1t−st∫sh(τ)dτ≤h(s)+h(t)2. | (1.9) |
This inequality (1.9) appears in a reversed order if the function h is supposed to be concave. Also, the relation (1.9) provides upper and lower estimates for the integral mean of the convex function h. The inequality (1.9) has various versions (extensions or generalizations) corresponding to different integral operators [16,17,18,19,20,21,22,23,24,25] each version has further forms with respect to various kinds of convexities [26,27,28,29,30,31,32] or with respect to different bounds obtained for the absolute difference of the two leftmost or rightmost terms in the Hermite-Hadamard inequality.
By using the Riemann-Liouville fractional integral operators, Sirikaye et al. have proved the following Hermite-Hadamard inequality [33].
Theorem 2. ([33]). Let h:[s,t]→R be a function such that 0≤s<t and h∈L[s,t]. If h is convex on [s,t], then the following double inequality holds:
h(s+t2)≤Γ(ν+1)2(t−s)ν[01Kνs+h(t)+01Kνt−h(s)]≤h(s)+h(t)2. | (1.10) |
For more recent research related to generalized Hermite-Hadamard inequality one can see [34,35,36,37,38,39,40,41,42] and the references therein.
Motivated from the Riemann-Liouville version of Hermite-Hadamard inequality (given above in (1.10)), we prove the same inequality for newly introduced generalized conformable fractional operators. As a result we get a more generalized inequality, containing different versions of Hermite-Hadamard inequality in single form. We also prove an identity for generalized conformable fractional operators and establish a bound for the absolute difference of two rightmost terms in the newly obtained Hermite-Hadamard inequality. We point out some relations of our results with those of other results from the past. At the end we present conclusion, where directions for future research are also mentioned.
In the following theorem the well-known Hermite-Hadamard inequality for the newly defined integral operators is proved.
Theorem 3. Let ν>0 and τ∈R,θ∈(0,1] such that τ+θ>0. Let h:[s,t]⊆[0,∞)→R be a function such that h∈Lθ[s,t](conformal integrable on [s, t]). If h is also a convex function on [s,t], then the following Hermite-Hadamard inequality for generalized conformable fractional Integrals τθKνs+ and τθKνt− holds:
h(s+t2)≤(τ+θ)νΓ(ν+1)4(tτ+θ−sτ+θ)ν[τθKνs+H(t)+τθKνt−H(s)]≤h(s)+h(t)2, | (2.1) |
where H(x)=h(x)+˜h(x), ˜h(x)=h(s+t−x).
Proof. Let η∈[0,1]. Consider x,y∈[s,t], defined by x=ηs+(1−η)t,y=(1−η)s+ηt. Since h is a convex function on [s,t], we have
h(s+t2)=h(x+y2)≤h(x)+h(y)2=h(ηs+(1−η)t)+h((1−η)s+ηt)2. | (2.2) |
Multiplying both sides of (2.2) by
(t−s)(τ+θ)1−ν((1−η)s+ηt)τ+θ−1Γ(ν)[tτ+θ−((1−η)s+ηt)τ+θ]1−ν, |
and integrating with respect to η, we get
(t−s)(τ+θ)1−νΓ(ν)h(s+t2)1∫0((1−η)s+ηt)τ+θ−1[tτ+θ−((1−η)s+ηt)τ+θ]1−νdη≤(t−s)(τ+θ)1−νΓ(ν)12{1∫0((1−η)s+ηt)τ+θ−1[tτ+θ−((1−η)s+ηt)τ+θ]1−νh(ηs+(1−η)t)dη+1∫0(1−η)s+ηt)τ+θ−1[tτ+θ−((1−η)s+ηt)τ+θ]1−νh((1−η)s+ηt)dη}. | (2.3) |
Note that we have
1∫0((1−η)s+ηt)τ+θ−1[tτ+θ−((1−η)s+ηt)τ+θ]1−νdη=1ν(τ+θ)(t−s)(tτ+θ−sτ+θ)ν. |
Also, by using the identity ˜h((1−η)s+ηt)=h(ηs+(1−η)t), and making substitution (1−η)s+ηt=w, we get
(t−s)(τ+θ)1−νΓ(ν)1∫0((1−η)s+ηt)τ+θ−1[tτ+θ−((1−η)s+ηt)τ+θ]1−νh(ηs+(1−η)t)dη=(τ+θ)1−νΓ(ν)t∫swτ+θ−1[tτ+θ−wτ+θ]1−ν˜h(w)dw=(τ+θ)1−νΓ(ν)t∫swτ[tτ+θ−wτ+θ]1−ν˜h(w)dθw=τθKνs+˜h(t). | (2.4) |
Similarly
(t−s)(τ+θ)1−νΓ(ν)1∫0((1−η)s+ηt)τ+θ−1[tτ+θ−((1−η)s+ηt)τ+θ]1−νh(ηt+(1−η)s)dη=τθKνs+h(t). | (2.5) |
By substituting these values in (2.3), we get
(tτ+θ−sτ+θ)νΓ(ν+1)(τ+θ)νh(s+t2)≤τθKνs+H(t)2. | (2.6) |
Again, by multiplying both sides of (2.2) by
(t−s)(τ+θ)1−ν((1−η)s+ηt)τ+θ−1Γ(ν)[((1−η)s+ηt)τ+θ−sτ+θ]1−ν, |
and then integrating with respect to η and by using the same techniques used above, we can obtain:
(tτ+θ−sτ+θ)νΓ(ν+1)(τ+θ)νh(s+t2)≤τθKνt−H(s)2. | (2.7) |
Adding (2.7) and (2.6), we get:
h(s+t2)≤Γ(ν+1)(τ+θ)ν4(tτ+θ−sτ+θ)ν[τθKνs+H(t)+τθKνt−H(s)]. | (2.8) |
Hence the left-hand side of the inequality (2.1) is established.
Also since h is convex, we have:
h(ηs+(1−η)t)+h((1−η)s+ηt)≤h(s)+h(t). | (2.9) |
Multiplying both sides
(t−s)(τ+θ)1−ν((1−η)s+ηt)τ+θ−1Γ(ν)[tτ+θ−((1−η)s+ηt)τ+θ]1−ν, |
and integrating with respect to η we get
(t−s)(τ+θ)1−νΓ(ν)1∫0((1−η)s+ηt)τ+θ−1[tτ+θ−((1−η)s+ηt)τ+θ]1−νh(ηs+(1−η)t)dη+(t−s)(τ+θ)1−νΓ(ν)1∫0((1−η)s+ηt)τ+θ−1[tτ+θ−((1−η)s+ηt)τ+θ]1−νh(ηt+(1−η)s)dη≤(t−s)(τ+θ)1−νΓ(ν)[h(s)+h(t)]1∫0(1−η)s+ηt)τ+θ−1[tτ+θ−((1−η)s+ηt)τ+θ]1−νdη, | (2.10) |
that is,
τθKνs+H(t)≤(tτ+θ−sτ+θ)νΓ(ν+1)(τ+θ)ν[h(s)+h(t)]. | (2.11) |
Similarly multiplying both sides of (2.9) by
(t−s)(τ+θ)1−ν((1−η)s+ηt)τ+θ−1Γ(ν)[((1−η)s+ηt)τ+θ−sτ+θ]1−ν, |
and integrating with respect to η, we can obtain
τθKνt−H(s)≤(tτ+θ−sτ+θ)νΓ(ν+1)(τ+θ)ν[h(s)+h(t)]. | (2.12) |
Adding the inequalities (2.11) and (2.12), we get:
Γ(ν+1)(τ+θ)ν4(tτ+θ−sτ+θ)ν[τθKνt−H(s)+τθKνs+H(t)]≤h(s)+h(t)2. | (2.13) |
Combining (2.8) and (2.13), we get the required result.
The inequality in (2.1) is in compact form containing few inequalities for different integrals in it. The following remark tells us about that fact.
Remark 2. 1) For θ=1 in (2.1), we get Hermite-Hadamard inequality for Katugampola fractional integral operators, as follows [38]:
h(s+t2)≤(τ+1)νΓ(ν+1)4(tτ+1−sτ+1)ν[τ1Kνs+H(t)+τ1Kνt−H(s)]≤h(s)+h(t)2, | (2.14) |
where H(x)=h(x)+˜h(x), ˜h(x)=h(s+t−x).
2) For τ=0 in (2.1), we get Hermite-Hadamard inequality for newly obtained Riemann Liouville type conformable fractional integral operators, as follows:
h(s+t2)≤θνΓ(ν+1)4(tθ−sθ)ν[0θKνs+H(t)+0θKνt−H(s)]≤h(s)+h(t)2, | (2.15) |
where H(x)=h(x)+˜h(x), ˜h(x)=h(s+t−x).
3) For τ+θ→0, in (2.1), applying L'Hospital rule and the relation (1.3), we get Hermite-Hadamard inequality for Hadamard fractional integral operators, as follows:
h(s+t2)≤Γ(ν+1)2(lnts)ν[00+Kνs+h(t)+00+Kνt−h(s)]≤h(s)+h(t)2. | (2.16) |
4) For τ+θ=1 in (2.1), the Hermite-Hadamard inequality is obtained for Riemann-Liouville fractional integrals [33]:
h(s+t2)≤Γ(ν+1)2(t−s)ν[01Kνs+h(t)+01Kνt−h(s)]≤h(s)+h(t)2. | (2.17) |
5) For the case ν=1,τ=0 in (2.1), the Hermite-Hadamard inequality is obtained for the conformable fractional integrals as follows:
h(s+t2)≤θ2(tθ−sθ)t∫sH(w)dθw≤h(s)+h(t)2. | (2.18) |
6) When θ=ν=1, τ=0 the Hermite-Hadamard inequality is obtained for classical Riemann integrals [15]:
h(s+t2)≤1t−st∫sh(w)dw≤h(s)+h(t)2. | (2.19) |
To bound the difference of two rightmost terms in the main inequality (2.1), we need to establish the following Lemma.
Lemma 1. Let τ+θ>0 and ν>0. If h∈Lθ[s,t], then
h(s)+h(t)2−(τ+θ)νΓ(ν+1)4(tτ+θ−sτ+θ)ν[τθKνs+H(t)+τθKνt−H(s)]=t−s4(tτ+θ−sτ+θ)ν1∫0Δντ+θ(η)h′(ηs+(1−η)t)dη, | (2.20) |
where
Δντ+θ(η)=[(ηs+(1−η)t)τ+θ−sτ+θ]ν−[(ηt+(1−η)s)τ+θ−sτ+θ]ν+[tτ+θ−((1−η)s+ηt)τ+θ]ν−[tτ+θ−((1−η)t+ηs)τ+θ]ν. |
Proof. With the help of integration by parts, we have
τθKνs+H(t)=(tτ+θ−sτ+θ)ν(τ+θ)νΓ(ν+1)H(s)+(t−s)ν(τ+θ)νΓ(ν+1)1∫0[tτ+θ−((1−η)s+ηt)τ+θ]νH′(ηt+(1−η)s)dη. | (2.21) |
Similarly, we have
τθKνt−H(s)=(tτ+θ−sτ+θ)ν(τ+θ)νΓ(ν+1)H(t)−(t−s)ν(τ+θ)νΓ(ν+1)1∫0[((1−η)s+ηt)τ+θ−sτ+θ]νH′(ηt+(1−η)s)dη. | (2.22) |
Using (2.21) and (2.22) we have
4(tτ+θ−sτ+θ)νt−s(h(s)+h(t)2−(τ+θ)νΓ(ν+1)4(tτ+θ−sτ+θ)ν[τθKνt−H(s)+τθKνs+H(t)])=1∫0([((1−η)s+ηt)τ+θ−sτ+θ]ν−[(tτ+θ−((1−η)s+ηt)τ+θ]ν)H′(ηt+(1−η)s)dη. | (2.23) |
Also, we have
H′(ηt+(1−η)s)=h′(ηt+(1−η)s)−h′(ηs+(1−η)t),η∈[0,1]. | (2.24) |
And
1∫0[((1−η)s+ηt)τ+θ−sτ+θ]νH′(ηt+(1−η)s)dη=1∫0[((1−η)t+ηs)τ+θ−sτ+θ]νh′(ηs+(1−η)t)dη−1∫0[((1−η)s+ηt)τ+θ−sτ+θ]νh′(ηs+(1−η)t)dη. | (2.25) |
Also, we have
1∫0[tτ+θ−((1−η)s+ηt)τ+θ]νH′(ηt+(1−η)s)dη=1∫0[tτ+θ−((1−η)t+ηs)τ+θ]νh′(ηs+(1−η)t)dη−1∫0[tτ+θ−((1−η)s+ηt)τ+θ]νh′(ηs+(1−η)t)dη. | (2.26) |
Using (2.23), (2.25) and (2.26) we get the required result.
Remark 3. When τ+θ=1 in Lemma 1, we get the Lemma 2 in [33].
Definition 3. For ν>0, we define the operators
Ων1(x,y,τ+θ)=s+t2∫s|x−w||yτ+θ−wτ+θ|νdw−t∫s+t2|x−w||yτ+θ−wτ+θ|νdw, | (2.27) |
and
Ων2(x,y,τ+θ)=s+t2∫s|x−w||wτ+θ−yτ+θ|νdw−t∫s+t2|x−w||wτ+θ−yτ+θ|νdw, | (2.28) |
where x,y∈[s,t]⊆[0,∞) and τ+θ>0.
Theorem 4. Let h be a conformable integrable function over [s,t] such that |h′| is convex function. Then for ν>0 and τ+θ>0 we have:
|h(s)+h(t)2−(τ+θ)νΓ(ν+1)4(tτ+θ−sτ+θ)ν[τθKνs+H(t)+τθKνt−H(s)]|≤Kντ+θ(s,t)4(t−s)(tτ+θ−sτ+θ)ν(|h′(s)|+|h′(t)|), | (2.29) |
where Kντ+θ(s,t)=Ων1(t,t,τ+θ)+Ων2(s,s,τ+θ)−Ων2(t,s,τ+θ)−Ων1(s,t,τ+θ).
Proof. Using Lemma 1 and convexity of |h′|, we have:
|h(s)+h(t)2−(τ+θ)νΓ(ν+1)4(tτ+θ−sτ+θ)ν[τθKνs+H(t)+τθKνt−H(s)]|≤t−s4(tτ+θ−sτ+θ)ν1∫0|Δντ+θ(η)||h′(ηs+(1−η)t)|dη≤t−s4(tτ+θ−sτ+θ)ν(|h′(s)|1∫0η|Δντ+θ(η)|dη+|h′(t)|1∫0(1−η)|Δντ+θ(η)|dη). | (2.30) |
Here 1∫0η|Δντ+θ(η)|dη=1(t−s)2t∫s|ψ(u)|(t−u)du,
and ψ(u)=(uτ+θ−sτ+θ)ν−((t+s−u)τ+θ−sτ+θ)ν+(tτ+θ−(s+t−u)τ+θ)ν−(tτ+θ−uτ+θ)ν.
We observe that ψ is a nondecreasing function on [s,t]. Moreover, we have:
ψ(s)=−2(tτ+θ−sτ+θ)ν<0, |
and also ψ(s+t2)=0. As a consequence, we have
{ψ(u)≤0,if s≤u≤s+t2,ψ(u)>0,if s+t2<u≤t. |
Thus we get
1∫0η|Δντ+θ(η)|dη=1(t−s)2t∫s|ψ(u)|(t−u)du=1(t−s)2[−s+t2∫sψ(u)(t−u)du+t∫s+t2ψ(u)(t−u)du]=1(t−s)2[K1+K2+K3+K4], | (2.31) |
where
K1=−s+t2∫s(t−u)(uτ+θ−sτ+θ)νdu+t∫s+t2(t−u)(uτ+θ−sτ+θ)νdu, | (2.32) |
K2=s+t2∫s(t−u)((t+s−u)τ+θ−sτ+θ)νdu−t∫s+t2(t−u)((t+s−u)τ+θ−sτ+θ)νdu, | (2.33) |
K3=−s+t2∫s(t−u)(tτ+θ−(s+t−u)τ+θ)νdu+t∫s+t2(t−u)(tτ+θ−(s+t−u)τ+θ)νdu, | (2.34) |
and
K4=s+t2∫s(t−u)(tτ+θ−uτ+θ)νdu−t∫s+t2(t−u)(tτ+θ−uτ+θ)νdu. | (2.35) |
We can see here that K1=−Ων2(t,s,τ+θ), K4=Ων1(t,t,τ+θ).
Also, by using of change of the variables v=s+t−u, we get
K2=Ων2(s,s,τ+θ),K3=−Ων1(s,t,τ+θ). | (2.36) |
By substituting these values in (2.31), we get
1∫0ηΔντ+θ(η)dη=−Ων2(t,s,τ+θ)+Ων1(t,t,τ+θ)+Ων2(s,s,τ+θ)−Ων1(s,t,τ+θ)(t−s)2. | (2.37) |
Similarly, we can find
1∫0(1−η)Δντ+θ(η)dη=Ων2(s,s,τ+θ)−Ων2(t,s,τ+θ)+Ων1(t,t,τ+θ)−Ων1(s,t,τ+θ)(t−s)2. | (2.38) |
Finally, by using (2.30), (2.37) and (2.38) we get the required result.
Remark 4. when τ+θ=1 in (2.29), we obtain
|h(s)+h(t)2−Γ(ν+1)2(t−s)ν[01Kνt−h(s)+01Kνs+h(t)]|≤(t−s)2(ν+1)(1−12ν)[h′(s)+h′(t)], |
which is Theorem 3 in [33].
A generalized version of Hermite-Hadamard inequality via newly introduced GC fractional operators has been acquired successfully. This result combines several versions (new and old) of the Hermite-Hadamard inequality into a single form, each one has been discussed by fixing parameters in the newly established version of the Hermite-Hadamard inequality. Moreover, an identity containing the GC fractional integral operators has been proved. By using this identity, a bound for the absolute of the difference between the two rightmost terms in the newly established Hermite-Hadamard inequality has been presented. Also, some relations of our results with those of already existing results have been pointed out. Since this is a fact that there exist more than one definitions for fractional derivatives [2] which makes it difficult to choose a convenient operator for solving a given problem. Thus, in the present paper, the GC fractional operators (containing various previously defined fractional operators into a single form) have been used in order to overcome the problem of choosing a suitable fractional operator and to provide a unique platform for researchers working with different operators in this field. Also, by making use of GC fractional operators one can follow the research work which has been performed for the two versions (1.9) and (1.10) of Hermite-Hadamard inequality.
This work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11301127, 11701176, 11626101, 11601485).
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] |
A. Saeedi, M. Akbari, D. Toghraie, An experimental study on rheological behavior of a nanofluid containing oxide nanoparticle and proposing a new correlation, Physica E, 99 (2018), 285-293. http://dx.doi.org/10.1016/j.physe.2018.02.018 doi: 10.1016/j.physe.2018.02.018
![]() |
[2] |
D. Toghraie, N. Sina, M. Mozafarifard, A. Alizadeh, F. Soltani, M. Fazilati, Prediction of dynamic viscosity of a new non-Newtonian hybrid nanofluid using experimental and artificial neural network (ANN) methods, Heat. Transf. Res., 51 (2020), 1351-1362. http://dx.doi.org/10.1615/HeatTransRes.2020034645 doi: 10.1615/HeatTransRes.2020034645
![]() |
[3] |
Y. Zheng, H. Yang, M. Fazilati, D. Toghraie, H. Rahimi, M. Afrand, Experimental investigation of heat and moisture transfer performance of CaCl2/H2O-SiO2 nanofluid in a gas-liquid micro porous hollow fiber membrane contactor, Int. Commun. Heat Mass, 113 (2020), 104533. http://dx.doi.org/10.1016/j.icheatmasstransfer.2020.104533 doi: 10.1016/j.icheatmasstransfer.2020.104533
![]() |
[4] | D. Yılmaz Aydın, M. Gürü, Nanofluids: preparation, stability, properties, and thermal performance in terms of thermo-hydraulic, thermodynamics and thermo-economic analysis, J. Therm. Anal. Calorim., 147 (2022), 7631-7664. http://dx.doi.org/10.1007/s10973-021-11092-8 |
[5] |
M. Sanches, A. Moita, A. Ribeiro, A. Moreira, Heat transfer in nanofluid spray cooling of a solid heated surface for cooling systems in civil and military applications, ICLASS, 1 (2021), 275. http://dx.doi.org/10.2218/iclass.2021.6000 doi: 10.2218/iclass.2021.6000
![]() |
[6] |
N. Saleem, S. Munawar, Significance of synthetic cilia and Arrhenius energy on double diffusive stream of radiated hybrid nanofluid in microfluidic pump under ohmic heating: An entropic analysis, Coatings, 11 (2021), 1292. http://dx.doi.org/10.3390/coatings11111292 doi: 10.3390/coatings11111292
![]() |
[7] | S. Salman, A. Talib, S. Saadon, M. Hameed Sultan, Hybrid nanofluid flow and heat transfer over backward and forward steps: a review, Powder Technology, 363 (2020), 448-472. http://dx.doi.org/10.1016/j.powtec.2019.12.038 |
[8] | A. Dalkılıç, Ӧ. Acikgöz, B. Kücükyildirim, A. Eker, B. Lüleci, C. Jumpholkul, et al., Experimental investigation on the viscosity characteristics of water based SiO2-graphite hybrid nanofluids, Int. Commun. Heat Mass, 97 (2018), 30-38. http://dx.doi.org/10.1016/j.icheatmasstransfer.2018.07.007 |
[9] | N. Wahid, N. Ariffin, N. Khashi'ie, R. Yahaya, I. Pop, N. Bachok, et al., Three-dimensional radiative flow of hybrid nanofluid past a shrinking plate with suction, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 85 (2021), 54-70. http://dx.doi.org/10.37934/arfmts.85.1.5470 |
[10] |
N. Faizal, N. Ariffin, Y. Rahim, M. Hafidzuddin, N. Wahi, MHD and slip effect in micropolar hybrid nanofluid and heat transfer over a stretching sheet with thermal radiation and non-uniform heat source/sink, CFD Letters, 12 (2020), 121-130. http://dx.doi.org/10.37934/cfdl.12.11.121130 doi: 10.37934/cfdl.12.11.121130
![]() |
[11] |
R. Dash, K. Mehta, G. Jayaraman, Casson fluid flow in a pipe filled with a homogeneous porous medium, Int. J. Eng. Sci., 34 (1996), 1145-1156. http://dx.doi.org/10.1016/0020-7225(96)00012-2 doi: 10.1016/0020-7225(96)00012-2
![]() |
[12] | N. Casson, A flow equation for pigment-oil suspensions of the printing ink type, In: Rheology of disperse systems, Oxford: Pergamon Press, 1959, 84-104. |
[13] | G. Vinogradov, A. Malkin, Rheology of polymers, Berlin: Springer, 1980. |
[14] |
A. Ali, Z. Bukhari, M. Umar, M. Ismail, Z. Abbas, Cu and Cu-SWCNT nanoparticles' suspension in pulsatile Casson fluid flow via Darcy-Forchheimerporous channel with compliant walls: aprospective model for blood flow in stenosed arteries, Int. J. Mol. Sci., 22 (2021), 6494. http://dx.doi.org/10.3390/ijms22126494 doi: 10.3390/ijms22126494
![]() |
[15] | M. Shahrim, A. Mohamad, L. Jiann, M. Zakaria, S. Shafie, Z. Ismail, et al., Exact solution of fractional convective Casson fluid through an accelerated plate, CFD Letters, 13 (2021), 15-25. http://dx.doi.org/10.37934/cfdl.13.6.1525 |
[16] |
M. Mustafa, T. Hayat, I. Pop, A. Aziz, Unsteady boundary layer flow of a Casson fluid impulsively started moving flat plate, Heat Transf.-Asian Re., 40 (2011), 563-576. http://dx.doi.org/10.1002/htj.20358 doi: 10.1002/htj.20358
![]() |
[17] |
S. Mukhopadhyay, P. De, K. Bhattacharyya, G. Layek, Casson fluid flow over an unsteady stretching surface, Ain Shams Eng. J., 4 (2013), 933-938. http://dx.doi.org/10.1016/j.asej.2013.04.004 doi: 10.1016/j.asej.2013.04.004
![]() |
[18] |
A. Khalid, I. Khan, A. Khan, S. Shafie, Unsteady MHD free convection flow of Casson fluid past over an oscillating vertical plate embedded in a porous medium, Eng. Sci. Technol., 18 (2015), 309-317. http://dx.doi.org/10.1016/j.jestch.2014.12.006 doi: 10.1016/j.jestch.2014.12.006
![]() |
[19] |
I. Animasaun, E. Adebile, A. Fagbade, Casson fluid flow with variable thermo-physical property along exponentially stretching sheet with suction and exponentially decaying internal heat generation using the homotopy analysis method, Journal of the Nigerian Mathematical Society, 35 (2016), 1-17. http://dx.doi.org/10.1016/j.jnnms.2015.02.001 doi: 10.1016/j.jnnms.2015.02.001
![]() |
[20] | A. Rashad, A. Chamkha, S. El‐Kabeir, Effect of chemical reaction on heat and mass transfer by mixed convection flow about a sphere in a saturated porous media, Int. J. Numer. Method. H., 21 (2011), 418-433. http://dx.doi.org/10.1108/09615531111123092 |
[21] |
O. Makinde, N. Sandeep, T. Ajayi, I. Animasaun, Numerical exploration of heat transfer and Lorentz force effects on the flow of MHD Casson fluid over an upper horizontal surface of a thermally stratified melting surface of a paraboloid of revolution, Int. J. Nonlin. Sci. Num., 19 (2018), 93-106. http://dx.doi.org/10.1515/ijnsns-2016-0087 doi: 10.1515/ijnsns-2016-0087
![]() |
[22] |
N. Khashi'ie, N. Md Arifin, I. Pop, R. Nazar, Melting heat transfer in hybrid nanofluid flow along a moving surface, J. Therm. Anal. Calori., 147 (2022), 567-578. http://dx.doi.org/10.1007/s10973-020-10238-4 doi: 10.1007/s10973-020-10238-4
![]() |
[23] | N. Khashi'ie, I. Waini, N. Zainal, K. Hamzah, A. Mohd Kasim, Hybrid nanofluid flow past a shrinking cylinder with prescribed surface heat flux, Symmetry, 12 (2020), 1493. http://dx.doi.org/10.3390/sym12091493 |
[24] | N. Khashi'ie, M. Hafidzuddin, N. Arifin, N. Wahi, Stagnation point flow of hybrid nanofluid over a permeable vertical stretching/shrinking cylinder with thermal stratification effect, CFD Letters, 12 (2020), 80-94. |
[25] |
M. Ahmad, M. Asjad, A. Akgül, D. Baleanu, Analytical solutions for free convection flow of Casson nanofluid over an infinite vertical plate, AIMS Mathematics, 6 (2021), 2344-2358. http://dx.doi.org/10.3934/math.2021142 doi: 10.3934/math.2021142
![]() |
[26] |
T. Thumma, A. Wakif, I. Animasaun, Generalized differential quadrature analysis of unsteady three‐dimensional MHD radiating dissipative Casson fluid conveying tiny particles, Heat Transf., 49 (2020), 2595-2626. http://dx.doi.org/10.1002/htj.21736 doi: 10.1002/htj.21736
![]() |
[27] |
F. Alwawi, H. Alkasasbeh, A. Rashad, R. Idris, Heat transfer analysis of ethylene glycol-based Casson nanofluid around a horizontal circular cylinder with MHD effect, P. I. Mech. Eng. C-J. Mec., 234 (2020), 2569-2580. http://dx.doi.org/10.1177/0954406220908624 doi: 10.1177/0954406220908624
![]() |
[28] |
F. Alwawi, H. Alkasasbeh, A. Rashad, R. Idris, Natural convection flow of Sodium Alginate based Casson nanofluid about a solid sphere in the presence of a magnetic field with constant surface heat flux, J. Phys.: Conf. Ser., 1366 (2019), 012005. http://dx.doi.org/10.1088/1742-6596/1366/1/012005 doi: 10.1088/1742-6596/1366/1/012005
![]() |
[29] |
Q. Ali, S. Riaz, A. Awan, K. Abro, A mathematical model for thermography on viscous fluid based on damped thermal flux, Z. Naturforsch. A, 76 (2021), 285-294. http://dx.doi.org/10.1515/zna-2020-0322 doi: 10.1515/zna-2020-0322
![]() |
[30] | A. Raza, S. Khan, M. Khan, E. El-Zahar, Heat transfer analysis for oscillating flow of magnetized fluid by using the modified Prabhakar-like fractional derivatives, submitted for publication. http://dx.doi.org/10.21203/rs.3.rs-1086428/v1 |
[31] | A. Raza, S. Khan, S. Farid, M. Khan, M. Khan, A. Haq, et al., Transport properties of mixed convective nano-material flow considering the generalized Fourier law and a vertical surface: concept of Caputo-time fractional derivative, P. I. Mech. Eng. C-J. Mec., 236 (2022), 974-984. http://dx.doi.org/10.1177/09576509221075110 |
[32] | S. Riaz, M. Sattar, K. Abro, Q. Ali, Thermo-dynamical investigation of constitutive equation for rate type fluid: a semi-analytical approach, International Journal of Modelling and Simulation, in press. http://dx.doi.org/10.1080/02286203.2022.2056427 |
[33] |
A. Awan, S. Riaz, K. Abro, A. Siddiqa, Q. Ali, The role of relaxation and retardation phenomenon of Oldroyd-B fluid flow through Stehfest's and Tzou's algorithms, Nonlinear Engineering, 11 (2022), 35-46. http://dx.doi.org/10.1515/nleng-2022-0006 doi: 10.1515/nleng-2022-0006
![]() |
[34] | Y. Wang, A. Raza, S. Khan, M. Khan, M. Ayadi, M. El-Shorbagy, et al., Prabhakar fractional simulations for hybrid nanofluid with aluminum oxide, titanium oxide and copper nanoparticles along with blood base fluid, Wave. Random Complex, in press. http://dx.doi.org/10.1080/17455030.2022.2063983 |
[35] | Z. Jie, M. Khan, K. Al-Khaled, E. El-Zahar, N. Acharya, A. Raza, et al., Thermal transport model for Brinkman type nanofluid containing carbon nanotubes with sinusoidal oscillations conditions: a fractional derivative concept, Wave. Random Complex, in press. http://dx.doi.org/10.1080/17455030.2022.2049926 |
[36] |
S. Suganya, M. Muthtamilselvan, Z. Alhussain, Activation energy and Coriolis force on Cu-TiO2/water hybrid nanofluid flow in an existence of nonlinear radiation, Appl. Nanosci., 11 (2021), 933-949. http://dx.doi.org/10.1007/s13204-020-01647-w doi: 10.1007/s13204-020-01647-w
![]() |
[37] |
S. Abu Bakar, N. Md Arifin, N. Khashi'ie, N. Bachok, Hybrid nanofluid flow over a permeable shrinking sheet embedded in a porous medium with radiation and slip impacts, Mathematics, 9 (2021), 878. http://dx.doi.org/10.3390/math9080878 doi: 10.3390/math9080878
![]() |
[38] |
S. Shoeibi, H. Kargarsharifabad, N. Rahbar, G. Ahmadi, M.Safaei, Performance evaluation of a solar still using hybrid nanofluid glass cooling-CFD simulation and environmental analysis, Sustain. Energy Techn., 49 (2022), 101728. http://dx.doi.org/10.1016/j.seta.2021.101728 doi: 10.1016/j.seta.2021.101728
![]() |
[39] |
P. Kanti, K. Sharma, Z. Said, M. Jamei, K.Yashawantha, Experimental investigation on thermal conductivity of fly ash nanofluid and fly ash-Cu hybrid nanofluid: prediction and optimization via ANN and MGGP model, Particul. Sci. Technol., 40 (2022), 182-195. http://dx.doi.org/10.1080/02726351.2021.1929610 doi: 10.1080/02726351.2021.1929610
![]() |
[40] |
M. Nadeem, I. Siddique, J. Awrejcewicz, M. Bilal, Numerical analysis of a second-grade fuzzy hybrid nanofluid flow and heat transfer over a permeable stretching/shrinking sheet, Sci. Rep., 12 (2022), 1631. http://dx.doi.org/10.1038/s41598-022-05393-7 doi: 10.1038/s41598-022-05393-7
![]() |
[41] | L. Karthik, G. Kumar, T. Keswani, A. Bhattacharyya, S. Sarath Chandar, K. Bhaskara Rao, Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound, PloS ONE, 9 (2014), 90972. http://dx.doi.org/10.1371/journal.pone.0090972 |
[42] |
N. Shah, I. Khan, Heat transfer analysis in a second grade fluid over and oscillating vertical plate using fractional Caputo-Fabrizio derivatives, Eur. Phys. J. C, 76 (2016), 362. http://dx.doi.org/10.1140/epjc/s10052-016-4209-3 doi: 10.1140/epjc/s10052-016-4209-3
![]() |
[43] |
S. Mondal, N. Haroun, P. Sibanda, The effects of thermal radiation on an unsteady MHD axisymmetric stagnation-point flow over a shrinking sheet in presence of temperature dependent thermal conductivity with Navier slip, PLoS ONE, 10 (2015), 0138355. http://dx.doi.org/10.1371/journal.pone.0138355 doi: 10.1371/journal.pone.0138355
![]() |
[44] |
S. Aman, I. Khan, Z. Ismail, M. Salleh, Applications of fractional derivatives to nanofluids: exact and numerical solutions, Math. Model. Nat. Phenom., 13 (2018), 2. http://dx.doi.org/10.1051/mmnp/2018013 doi: 10.1051/mmnp/2018013
![]() |
[45] |
P. Sreedevi, P. Sudarsana Reddy, M. Sheremet, A comparative study of Al2O3 and TiO2 nanofluid flow over a wedge with non-linear thermal radiation, Int. J. Numer. Method. H., 30 (2020), 1291-1317. http://dx.doi.org/10.1108/HFF-05-2019-0434 doi: 10.1108/HFF-05-2019-0434
![]() |
[46] |
A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. http://dx.doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
![]() |
[47] |
M. Riaz, A. Atangana, N. Iftikhar, Heat and mass transfer in Maxwell fluid in view of local and non-local differential operators, J. Therm. Anal. Calorim., 143 (2021), 4313-4329. http://dx.doi.org/10.1007/s10973-020-09383-7 doi: 10.1007/s10973-020-09383-7
![]() |
[48] |
M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
![]() |
[49] |
A. Atangana, On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation, Appl. Math. Comput., 273 (2016), 948-956. http://dx.doi.org/10.1016/j.amc.2015.10.021 doi: 10.1016/j.amc.2015.10.021
![]() |
[50] |
M. Abdullah, A. Butt, N. Raza, E. Haque, Semi-analytical technique for the solution of fractional Maxwell fluid, Can. J. Phys., 95 (2017), 472-478. http://dx.doi.org/10.1139/cjp-2016-0817 doi: 10.1139/cjp-2016-0817
![]() |
[51] |
M. Khan, Z. Hammouch, D. Baleanu, Modeling the dynamics of hepatitis E via the Caputo-Fabrizio derivative, Math. Model. Nat. Phenom., 14 (2019), 311. http://dx.doi.org/10.1051/mmnp/2018074 doi: 10.1051/mmnp/2018074
![]() |
[52] |
V. Rajesh, Chemical reaction and radiation effects on the transient MHD free convection flow of dissipative fluid past an infinite vertical porous plate with ramped wall temperature, Chem. Ind. Chem. Eng. Q., 17 (2011), 189-198. http://dx.doi.org/10.2298/CICEQ100829003R doi: 10.2298/CICEQ100829003R
![]() |
1. | Rania Saadeh, Laith Hamdi, Ahmad Qazza, 2024, Chapter 18, 978-981-97-4875-4, 259, 10.1007/978-981-97-4876-1_18 | |
2. | Saad Ihsan Butt, Ahmad Khan, Sanja Tipurić-Spužević, New fractal–fractional Simpson estimates for twice differentiable functions with applications, 2024, 51, 23074108, 100205, 10.1016/j.kjs.2024.100205 | |
3. | Rania Saadeh, Motasem Mustafa, Aliaa Burqan, 2024, Chapter 17, 978-981-97-4875-4, 239, 10.1007/978-981-97-4876-1_17 |