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Abstract: This paper addresses a mixed and free convective Casson nanofluid flowing on an 

oscillating inclined poured plate with sinusoidal heat transfers and slip boundaries. As base fluid 

water is supposed and the suspension of nanofluid is formulated with the combination of individual 

copper (𝐶𝑢) , titanium dioxide (𝑇𝑖𝑂2)  and aluminum oxide (𝐴𝑙2𝑂3)  as nanoparticles, the 

dimensionless governing equations are generalized based on Atangana-Baleanu (AB) and 

Caputo-Fabrizio (CF) fractional operators for developing a fractional form. Then, for the 

semi-analytical solution of the momentum and thermal profiles, the Laplace transformation is 

utilized. To discuss the influences of various pertinent parameters on governing equations, graphical 

tablecomparison of the Nusselt number and skin friction is also inspected at different times and 
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numerical schemes. As a result, it has been concluded that both the momentum and energy profiles 

represent the more significant results for the AB-fractional model as related to the CF-fractional 

model solution. Furthermore, water-based titanium dioxide (𝑇𝑖𝑂2) has a more progressive impact 

on the momentum as well as the thermal fields as compared to copper (𝐶𝑢) and aluminum oxide 

(𝐴𝑙2𝑂3) nanoparticles. The Casson fluid parameter represents the dual behavior for the momentum 

profile, initially momentum field decreases due to the Casson parameter but it then reverses its 

impact and the fluid flow moves more progressively. 

Keywords: fractional derivatives; nanofluids; AB-fractional derivative; slip boundary; sinusoidal 

conditions 

Mathematics Subject Classification: 26A33, 76A05, 76R10 

 

1. Introduction 

It is very tough to visualize humans living in a recent time without heat transference. Maximum 

heat transmission processes in heat systems are achieved by employing the thermal transmission of 

fluids. The utilization of conventional thermal transfer fluids like ethylene glycol, water, engine oil and 

methanol is finite because of their short heat conductions [1]. For the advancement of the energy 

effectiveness of systems in different fields of science and engineering, the conventional thermal 

transference of fluids was substituted by nanofluids (NFs) [2]. NFs are an emulsion of little complex 

non-metallic or metallic elements, named nanoparticles in the base as mentioned for earlier liquids [3]. 

Through the more significant heat conduction of nanoparticles, the use of NFs boosts the thermal 

transmission. The NFs, in terms of their thermal performance, construction, solidity, and properties, 

were studied by Aydin and Guru [4]. Although NFs are formed through scattering one kind of 

nanoparticles in the base liquid, the thermal characteristics of NFs might be enhanced by using hybrid 

nanofluids (HNFs). HNFs combine two or more two different nanoparticles in the base liquid. Suitable 

nanoparticle kinds with precise weight percent are utilized to attain the required thermal exchange 

percentage. The HNFs institute enormous utilization in various features of the human life cycle, for 

instance, in defense, microfluidics and transportation [5,6], in this mode, the idea of HNFs has been the 

topic of several numerical and experimental investigations. An excellent analysis of HNFs, their 

techniques of preparation and the features affecting their performance and areas of employment were 

examined in [7]. The water-based HNF of silicon dioxide and graphite was groomed by Dalkılıç 

et al. [8], and its thickness in dissimilar NP volume fractions and temperatures was calculated. The 

thickness increases by the volume fraction rise and temperature decline were established; the 

maximum thickness increase was also attained. Numerous researches work on the movement of HNFs 

have been investigated in the relevant literature; see [9,10]. A Casson fluid is an essential form of 

non-Newtonian fluid that acts identical to a flexible solid in which no movement happens with minor 

yield stress [11]. It is appropriate for cooling and heating operations because of its powerful influence 

on the energy communication rate, which qualifies it for application in numerous fields like diet 

processing, drilling, metallurgy, and biotechnology developments. A Casson fluid is helpful during the 

construction of printing ink [12]. Casson fluid is also proficiently efficient at describing many 

polymers' movement features extensively [13]. 

Moreover, experiments based on blood have established that blood can perform as a Casson 

fluid [14,15]. Human blood, tomato sauce, custard, toothpaste, foams, starch suspensions, yogurt, nail 
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polish and molten cosmetics are well-known examples of this fluid. Recently, Mustafa et al. [16] 

testified, when the speed is reducing and temperature is growing, raising the Casson parameter 

increases shear stress as well as thermal transfer. Mukhopadhyay et al. [17] exploited the shooting 

technique to study the flow of a Casson liquid as well as energy communication. Khalid et al. [18] 

studied the magneto-natural convection flow of a Casson fluid on a plate in a porous medium. 

Animasaun et al. [19] verified that the development in the Casson constraint source estimations 

enhances curve growth and reduces temperature curves. The influence of chemical reactions with a 

Casson liquid and a sphere was reviewed in [20]. Makinde et al. [21] discussed a meaningful 

connection between the influence of the Lorentz force and the movement of Casson fluid. The 

influence and skill of HNFs as the heat transfer fluid with a moving surface were numerically 

examined in [22]. A numerical investigation was done to study the HNFs boundary layer flow by 

Khashi’ie et al. [23]. They proved that the surface of a flat plate reduces the difference of the 

boundary layer and improves the heat transmission phenomena. The numerical solution and stability 

investigation for HNFs flow on a porous stretching/shrinking cylinder was discussed in [24] by 

utilizing the bvp4c problem solver in the Matlab package. They proved that a rise in the melting factor 

decreases the quantity of heat transmission and boosts the difference in the boundary layer. Ahmad 

et al. [25] investigated the analytical solution of a Casson NF flowing on an infinite vertical plate by 

utilizing the Caputo fractional derivatives definition. 

The construction of different physical phenomena consequences complicated partial differential 

equations. The solution to such problems is relatively substantial in evaluating diverse types of 

physical phenomena. Fractional calculus excellently defines different approaches for investigating this 

type of problem. The terms, with the local and non-local kernels, are proficiently conserved by 

fractional technique. In the branch of fractional calculus, Caputo-Fabrizio (CF) and Atangana-Baleanu 

(AB) approaches are well-known techniques which have been extensively applied by investigators for 

several years in the past [26,27]. A well-known Indian mathematician, Tialk Raj Prabhakar, 

anticipated an innovative fractional operator along with three parameters. The Prabhakar fractional 

operator is a Mittag-Leffer function with three dissimilar fractional derivative operators. This operator 

has Mittag-Leffer tails using classical kernels positively [28]. Ali et al. [29] applied a Laplace 

transform and fractional approach to discuss a viscous fractional fluid model. Raza et al. [30, 31] 

applied Prabhakar and Caputo fractional approach and a Laplace transform to study different fluid 

models and tools to improve the thermal transfer methods. Samia et al. [32] discussed a rate-type 

fractional model with a semi-analytical approach. Different numerical familiar techniques were 

applied for a fractional Oldroyd-B fluid mathematical model in [33]. Wang et al. [34] applied a 

Prabhakar approach to examine the blood-based HNF models with diverse nanoparticles by 

considering the Newtonian heating effect. Jie et al. [35] discussed the Brinkman NF fractional model 

and sinusoidal oscillations and submitted significant results. Suganya et al. [36] discussed an 

innovative numerical technique for 2-D stimulation energy along with an unsteady and revolving 

HNF flow for stretching and moving surfaces by exploiting the explicit finite-difference method. Their 

results revealed that the stimulation energy controls the thermal transmission amount. Abu Bakar 

et al. [37]studied the flow of HNFs over a porous medium along with the slip and radiation effects on 

a shrinking sheet by employing the shooting method. They perceived the rise of thermal transfer in the 

HNF relative to the usual NF. Shoeibi et al. [38] studied the glass chilling of a double-slope lunar still 

by utilizing an HNF (TiO2-Al2O3) at a 0.4% concentration numerically. Kanti et al. [39] applied the 

two-step technique to formulate the nanofluids. Their results exposed that the thermal conductivity of 

the NFs increased with increasing concentration and temperature. Nadeem et al. [40] discussed the 

heat transmission and MHD (magnetohydrodynamics) second-grade stagnation point flow of HNF 
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with a convectively heated porous sheet to enhance the quantity of heat transfer by exploiting the 

numerical bvp4c method. 

After reviewing the above literature, we have examined the Casson NF with sinusoidal heat 

transference and slip boundaries in this article. Different nanoparticles, i.e., copper (𝐶𝑢), titanium 

dioxide (𝑇𝑖𝑂2) and aluminum oxide (𝐴𝑙2𝑂3) have been utilized for the suspension of NFs with 

water as the base fluid. The comparative analysis of the attained results of governed equations with 

innovative fractional derivatives, i.e., AB and CF-time fractional derivatives are examined. The 

semi-analytical solution of thermal and momentum fields is attained with the assistance of the 

Laplace transform and some numerical methods. To analyze the effects of different parameters on the 

governing equations, graphical and numerical comparisons are discussed with different values of 

parameters. Furthermore, the numerical comparison of the Nusselt number and skin friction is 

inspected at different times and numerical schemes. 

2. Problem description 

In this manuscript, we have supposed a free mixed-convection viscous Casson NF flowing on an 

oscillating poured inclined plate due to the influence of applied inclined magnetic field with a strength 

of 𝐵𝑜 . The flowing Casson fluid is mixed with different (𝐴𝑙2𝑂3, 𝐶𝑢, 𝑇𝑖𝑂2)  nanoparticles. 

Thermophysical properties and their values of base fluid and nanoparticles are described in Tables 1 

and 2. Primarily at 𝑡 = 0, the temperature and inclined poured plate are both in a stable position. With 

the time at 𝑡 > 0+, the inclined plate begins to vibrate with a velocity 𝑈𝑜𝐶𝑜𝑠(𝜔𝑡), where 𝜔 shows 

the frequency of oscillations of the inclined plate. Due to the plate oscillations and rise in the thermal 

profile, the fluid also begins to flow on the oscillating plate with the same velocity as the plate 

oscillations, as displayed in Figure 1. 

Table 1. Model for thermophysical properties of NF quantities. 

Thermal features Regular NF 

Density 
𝜌𝑓 =

𝜌𝑛𝑓

(1 − 𝜑) + 𝜑
𝜌𝑠

𝜌𝑠

 

Dynamic Viscosity 𝜇𝑓 = 𝜇𝑛𝑓(1 − 𝜑)
2.5 

Electrical conductivity 

𝜎𝑓 =
𝜎𝑛𝑓

(1 +
3(

𝜎𝑠
𝜎𝑓
−1)𝜑

(
𝜎𝑠
𝜎𝑓
+2)−(

𝜎𝑠
𝜎𝑓
−1)𝜑

)

 

Thermal conductivity 
𝑘𝑓 =

𝑘𝑛𝑓

(
𝑘𝑠+(𝑛−1)𝑘𝑓−(𝑛−1)(𝑘𝑓−𝑘𝑠)𝜑

𝑘𝑠+(𝑛−1)𝑘𝑓+(𝑘𝑓−𝑘𝑠)𝜑
)
 

Heat capacitance 
(𝜌𝐶𝑝)𝑓 =

(𝜌𝐶𝑝)𝑛𝑓

(1 − 𝜑) + 𝜑
(𝜌𝐶𝑝)𝑠
(𝜌𝐶𝑝)𝑓

 

Thermal Expansion 

Coefficient 

(𝜌𝛽)𝑓 =
(𝜌𝛽)𝑛𝑓

(1 − 𝜑) + 𝜑
(𝜌𝛽)𝑠

(𝜌𝛽)𝑓
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Table 2. Thermal characteristics of base fluids and nanoparticles [45]. 

Material Water Al2O3 Cu TiO2 

𝜌(𝑘𝑔/𝑚3) 997.1 3970 8933 4250 

𝐶𝑝(𝐽/𝑘𝑔𝐾) 4179 765 385 686.2 

𝑘(𝑊/𝑚𝐾) 0.613 40 401 8.9528 

𝛽𝑇 × 10
5(𝐾−1) 21 0.85 1.67 0.90 

 

Figure 1. Geometry of the flow. 

By neglecting the pressure gradient and utilizing the Boussinesq's [41,42] and Rosseland 

estimations, the governed equations for this fractional model can be originated as follows [43,44]: 

𝜌𝑛𝑓
𝜕𝑤(𝜉,𝑡)

𝜕𝑡
= 𝜇𝑛𝑓 (1 +

1

𝜆1
∗)

𝜕2𝑤(𝜉,𝑡)

𝜕𝜉2
− (𝜎𝑛𝑓𝐵𝑜

2𝑆𝑖𝑛(𝜃1) +
𝜇𝑛𝑓𝜑

𝐾
)𝑤(𝜉, 𝑡) + 𝑔(𝜌𝛽)𝑛𝑓[𝑇(𝜉, 𝑡) −

𝑇∞]𝐶𝑜𝑠(𝜃2),                               (1) 

(𝜌𝐶𝑝)𝑛𝑓
𝜕𝑇(𝜉,𝑡)

𝜕𝑡
= 𝑘𝑛𝑓

𝜕2𝑇(𝜉,𝑡)

𝜕𝜉2
,                        (2) 

with suitable conditions, as follows 

𝑤(𝜉, 0) = 0, 𝑇(𝜉, 0) = 𝑇∞;  𝜉 > 0,                     (3) 

𝑤(𝜉, 𝑡) − ℎ
𝜕𝑤(𝜉,𝑡)

𝜕𝜉
|
𝜉=0

= 𝑈𝑜𝐶𝑜𝑠(𝜔𝑡), 𝑇(0, 𝑡) =

{
 
 

 
 𝑇∞ + (𝑇𝑤 − 𝑇∞)

𝑡

𝑡𝑜
, 0 < 𝑡 ≤ 𝑡𝑜,

𝑇𝑤, 𝑡 > 𝑡𝑜,

   (4) 

𝑤(𝜉, 𝑡) → 0, 𝑇(𝜉, 𝑡) → 𝑇∞;  𝜉 → ∞, 𝑡 > 0.                 (5) 

Now, we introduce the appropriate non-dimensional parameters to non-dimensionalize the 

leading perspective conditions, Eqs (1) and (2): 
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𝑤∗ =
𝑤

𝑤𝑜
, 𝜉∗ =

𝜉𝑈𝑜

𝜐𝑓
, ℎ∗ =

ℎ𝑈𝑜
2

𝜐
𝑡∗ =

𝑡

𝑡𝑜
, 𝑡𝑜 =

𝜐𝑓

𝑈𝑜
2 , 𝑇

∗ =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
. 

By neglecting the star notation, the governing Eqs (1) and (2) and corresponding conditions in the 

non-dimensional form will become as 

Π1
𝜕𝑤(𝜉,𝑡)

𝜕𝑡
= Π2𝜆1

𝜕2𝑤(𝜉,𝑡)

𝜕𝜉2
− (Π3𝑀𝑆𝑖𝑛(𝜃1) +

Π2

𝐾
)𝑤(𝜉, 𝑡) + Π4𝐺𝑟𝐶𝑜𝑠(𝜃2)𝑇(𝜉, 𝑡),    (6) 

Π5𝑃𝑟
𝜕𝑇(𝜉,𝑡)

𝜕𝑡
= Π6

𝜕2𝑇(𝜉,𝑡)

𝜕𝜉2
,                           (7) 

with the non-dimensional conditions: 

𝑤(𝜉, 0) = 0, 𝑇(𝜉, 0) = 0; 𝜉 > 0,                       (8) 

𝑤(𝜉, 𝑡) − ℎ
𝜕𝑤(𝜉,𝑡)

𝜕𝜉
|
𝜉=0

= 𝐶𝑜𝑠(𝜔𝑡), 𝑇(0, 𝑡) = {

𝑡, 0 < 𝑡 ≤ 1,

1, 𝑡 > 1,

           (9) 

𝑤(𝜉, 𝑡) → 0, 𝑇(𝜉, 𝑡) → 0; 𝜉 → ∞, 𝑡 > 0.                   (10) 

In Eq (8) the initial conditions of the flowing mathematical model are described with the zero velocity 

and temperature at time  𝑡 = 0. And in Eq (9) the boundary conditions at  𝜉 = 0 are described with 

slipping boundary effect and sinusoidal thermal conditions, where 

Π1 = (1 − 𝜑)𝜌𝑓 + 𝜑
𝜌𝑠

𝜌𝑓
,Π2 =

1

(1−𝜑)2.5
,Π3 =

𝜎ℎ𝑛𝑓

𝜎𝑓
, 

Π4 = (1 − 𝜑) + 𝜑
(𝜌𝛽𝑇)𝑠

(𝜌𝛽𝑇)𝑓
,Π5 = (1 − 𝜑) + 𝜑

(𝜌𝐶𝑝)𝑠
(𝜌𝐶𝑝)𝑓

, 

Π6 =
(1−𝜙)+2𝜙

𝑘𝑠
𝑘𝑠−𝑘𝑓

𝑙𝑛(
𝑘𝑠−𝑘𝑓

2𝑘𝑓
)

(1−𝜙)+2𝜙
𝑘𝑠

𝑘𝑠−𝑘𝑓
𝑙𝑛(

𝑘𝑠+𝑘𝑓

2𝑘𝑓
)

, 𝜆1 = 1 +
1

𝜆1
∗ , 𝐺𝑟 =

𝑔𝛽𝑓(𝑇𝑤−𝑇∞)

𝑈𝑜
3 , 

𝑃𝑟 =
𝜇𝑓(𝐶𝑝)𝑓

𝑘𝑓
, 𝑀 =

𝜐𝑓𝜎𝑓𝐵𝑜
2

𝜌𝑓𝑈𝑜
2 , 𝐾 =

𝑘𝑈𝑜
2

𝜐𝑓𝜑
. 

3. Some basic preliminaries 

Definition 1. The mathematical form of the AB-fractional derivative for the function 𝑢(𝑦, 𝑡) is 

𝔇𝑡
𝛽𝐴𝐵 𝑢(𝑦, 𝑡) =

1

1−𝛽
∫ 𝐸𝛽 [

𝛽(𝑡−𝑧)𝛽

1−𝛽
]

𝑡

0
𝑢′
(𝑦,𝑡)𝑑𝑡;  0 < 𝛽 < 1,               (11) 

where 𝔇𝑡
𝛽𝐴𝐵  is the AB-fractional operator with fractional order parameter𝛽 [46] and 𝐸𝛽(𝑧) is a 

Mittag-Leffer function with the mathematical form of 

𝐸𝛽(𝑧) = ∑
𝑧𝛽

Γ(𝑟𝛽+1)
;  𝑧 ∈ ℂ∞

𝑟=0 . 

The Laplace transform of the AB-fractional derivative (Eq(5)) can be well-defined as [47] 

ℒ{ 𝔇𝑡
𝛽𝐴𝐵 𝑤(𝜉, 𝑡)} =

𝑞𝛽ℒ[𝑤(𝜉,𝑡)]−𝑞𝛽−1𝑤(𝜉,0)

(1−𝛽)𝑞𝛽+𝛽
,                    (12) 
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where 𝑞 is the transformed constraint via the Laplace scheme. 

Definition 2. The CF-time-fractional derivative for the function 𝑢(𝑦, 𝑡) can be notarized as 

𝔇𝑡
𝛼𝐶𝐹 𝑢(𝑦, 𝑡) =

1

1−𝛼
∫ 𝑒𝑥𝑝 (

𝛼(1−𝜏)

1−𝛼
) 𝑢′(𝑦, 𝑡)𝑑𝜏

𝑡

0
;  0 < 𝛼 < 1,            (13) 

where 𝔇𝑡
𝛼𝐶𝐹  is the CF-fractional operator with non-integer order 𝛼, and its Laplace transformation 

is [48,49] 

ℒ{ 𝔇𝑡
𝛼𝐶𝐹 𝑤(𝜉, 𝑡)} =

𝑠ℒ[𝑤(𝜉,𝑡)]−𝑤(𝜉,0)

(1−𝛼)𝑠+𝛼
 .                       (14) 

4. AB-fractional model 

The dimensionless version of the AB-fractional model may be attained by substituting the partial 

derivative with the AB-time fractional operator 𝔇𝑡
𝛽𝐴𝐵  of Eqs (6) and (7). 

Π1 𝔇𝑡
𝛽𝐴𝐵 𝑤(𝜉, 𝑡) = Π2𝜆1

𝜕2𝑤(𝜉,𝑡)

𝜕𝜉2
− (Π3𝑀𝑆𝑖𝑛(𝜃1) +

Π2

𝐾
)𝑤(𝜉, 𝑡) + Π4𝐺𝑟𝐶𝑜𝑠(𝜃2)𝑇(𝜉, 𝑡),   (15) 

Π5𝑃𝑟 𝔇𝑡
𝛽𝐴𝐵 𝑇(𝜉, 𝑡) = Π6

𝜕2𝑇(𝜉,𝑡)

𝜕𝜉2
,                        (16) 

where 𝔇𝑡
𝛽𝐴𝐵  signifies the AB-fractional operator. 

4.1. Energy profile by AB 

Using the Laplace transform to solve the energy equation (Eq (16)), we have 

Π5𝑃𝑟 (
𝑞𝛽ℒ[𝑇(𝜉,𝑡)]−𝑞𝛽−1�̅�(𝜉,0)

(1−𝛽)𝑞𝛽+𝛽
) = Π6

𝜕2�̅�(𝜉,𝑡)

𝜕𝜉2
                    (17) 

with the following transformed conditions: 

�̅�(𝜉, 𝑞) =
1−𝑒−𝑞

𝑞2
, and �̅�(𝜉, 𝑞) → 0 as 𝜉 → ∞. 

Exploiting the above transformed conditions, the simulation of the energy profile is summarized 

as 

�̅�(𝜉, 𝑞) =
1−𝑒−𝑞

𝑞2
𝑒
−𝜉√(

Π5𝑃𝑟

Π6

𝑞𝛽

(1−𝛽)𝑞𝛽+𝛽
)

.                     (18) 

In Tables 3–5, we show the inverse results for Eq (18) that were obtained numerically by using 

inverse procedures such as the Stehfest and Tzou's approaches. 

4.2. Momentum profile by AB 

Applying the Laplace transform to Eq (15) and its accompanying conditions, we acquire the 

velocity solution as 
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Π1 (
𝑞𝛽ℒ[𝑤(𝜉, 𝑡)] − 𝑞𝛽−1𝑤(𝜉, 0)

(1 − 𝛽)𝑞𝛽 + 𝛽
) = Π2𝜆1

𝜕2�̅�(𝜉, 𝑞)

𝜕𝜉2
− (Π3𝑀𝑆𝑖𝑛(𝜃1) +

Π2

𝐾
) �̅�(𝜉, 𝑞) 

+Π4𝐺𝑟𝐶𝑜𝑠(𝜃2)�̅�(𝜉, 𝑞)                           (19) 

with the transformed conditions: 

�̅�(𝜉, 𝑞) − ℎ
𝜕�̅�(𝜉,𝑞)

𝜕𝜉
|
𝜉=0

=
𝜔

𝜔2+𝑞2
 and �̅�(𝜉, 𝑞) → 0 as 𝜉 → ∞.           (20) 

Utilizing conditions of Eq (20), the solution of Eq (19) will become 

�̅�(𝜉, 𝑞) =
1

1 + ℎ√
1

𝛱2𝜆1
(𝛱3𝑀𝑆𝑖𝑛(𝜃1) +

𝛱2

𝐾
+ 

𝛱1𝑞
𝛽

(1−𝛽)𝑞𝛽+𝛽
)

× 

(

 
𝛱4𝐺𝑟𝐶𝑜𝑠(𝜃2)

𝛱2𝜆1

1 − 𝑒−𝑞

𝑞2

1 + ℎ√
𝛱5𝑃𝑟

𝛱6

𝑞𝛽

(1−𝛽)𝑞𝛽+𝛽

(
𝛱5𝑃𝑟

𝛱6

𝑞𝛽

(1−𝛽)𝑞𝛽+𝛽
) −

1

𝛱2𝜆1
(𝛱3𝑀𝑆𝑖𝑛(𝜃1) +

𝛱2

𝐾
+ 

𝛱1𝑞
𝛽

(1−𝛽)𝑞𝛽+𝛽
)
+

𝜔

𝜔2 + 𝑞2

)

 × 

𝑒
−𝜉√

1

𝛱2𝜆1
(𝛱3𝑀𝑆𝑖𝑛(𝜃1)+

𝛱2
𝐾
 +

𝛱1𝑞
𝛽

(1−𝛽)𝑞𝛽+𝛽
)

− 

𝛱4𝐺𝑟𝐶𝑜𝑠(𝜃2)

𝛱2𝜆1

1−𝑒−𝑞

𝑞2
𝑒
−𝜉√

𝛱5𝑃𝑟
𝛱6

𝑞𝛽

(1−𝛽)𝑞𝛽+𝛽

(
𝛱5𝑃𝑟

𝛱6

𝑞𝛽

(1−𝛽)𝑞𝛽+𝛽
)−

1

𝛱2𝜆1
(𝛱3𝑀𝑆𝑖𝑛(𝜃1)+

𝛱2
𝐾
+ 

𝛱1𝑞
𝛽

(1−𝛽)𝑞𝛽+𝛽
)
.            (21) 

5. CF-fractional model 

By substituting the partial derivative with respect to time with the CF-fractional operator 𝔇𝑡
𝛼𝐶𝐹 , 

the model equations for the CF-fractional derivative will be obtained as 

Π1 𝔇𝑡
𝛼𝐶𝐹 𝑤(𝜉, 𝑡) = Π2𝜆1

𝜕2𝑤(𝜉,𝑡)

𝜕𝜉2
− (Π3𝑀𝑆𝑖𝑛(𝜃1) +

Π2

𝐾
)𝑤(𝜉, 𝑡) + Π4𝐺𝑟𝐶𝑜𝑠(𝜃2)𝑇(𝜉, 𝑡),   (22) 

Π5𝑃𝑟 𝔇𝑡
𝛼𝐶𝐹 𝑇(𝜉, 𝑡) = Π6

𝜕2𝑇(𝜉,𝑡)

𝜕𝜉2
,                         (23) 

where 𝔇𝑡
𝛼𝐶𝐹  signifies the CF-fractional operator. With the following transformed conditions: 

𝑤(𝜉, 0) = 0, 𝑇(𝜉, 0) = 0;  𝜉 > 0, 

𝑤(𝜉, 𝑡) − ℎ
𝜕𝑤(𝜉, 𝑡)

𝜕𝜉
|
𝜉=0

= 𝐶𝑜𝑠(𝜔𝑡), 𝑇(0, 𝑡) = {

𝑡, 0 < 𝑡 ≤ 1,

1, 𝑡 > 1,

 

𝑤(𝜉, 𝑡) → 0, 𝑇(𝜉, 𝑡) → 0;  𝜉 → ∞, 𝑡 > 0. 

5.1. Energy field by CF 

Because the thermal profile in Eq (23) is agnostic of the momentum profile, applying the Laplace 

transform to the heat equation (Eq (23)) yields 



19962 

AIMS Mathematics  Volume 7, Issue 11, 19954–19974. 

Π5𝑃𝑟 (
𝑠ℒ[𝑇(𝜉,𝑡)]−𝑇(𝜉,0)

(1−𝛼)𝑠+𝛼
) = Π6

𝜕2�̅�(𝜉,𝑠)

𝜕𝜉2
,                      (24) 

with the following conditions: 

�̅�(𝜉, 𝑠) =
1−𝑒−𝑠

𝑠2
 and �̅�(𝜉, 𝑠) → 0 as 𝜉 → ∞. 

Employing the above conditions, the thermal profile will be 

�̅�(𝑦, 𝑠) =
1−𝑒−𝑠

𝑠2
𝑒
−𝜉√(

Π5𝑃𝑟

Π6

a1s

s+a2
)
.                       (25) 

Again the Laplace inverse of the above equation can be observed numerically in Table 4. 

5.2. Momentum field by CF 

Now, for the velocity solution, apply the Laplace transform to the CF-fractional version given by 

Eq (22), as well as the temperature solution found in Eq (25) 

𝜕2�̅�(𝜉,𝑠)

𝜕𝜉2
−

1

Π2𝜆1
(Π3𝑀𝑆𝑖𝑛(𝜃1) +

Π2

𝐾
+ 

Π1a1s

s+a2
) �̅�(𝜉, 𝑠) = −

Π4𝐺𝑟𝐶𝑜𝑠(𝜃2)

Π2𝜆1
�̅�(𝜉, 𝑠),    (26) 

with the following conditions: 

�̅�(𝜉, 𝑠) − ℎ
𝜕�̅�(𝜉,𝑠)

𝜕𝜉
|
𝜉=0

=
𝜔

𝜔2+𝑠2
 and �̅�(𝜉, 𝑠) → 0 as 𝜉 → ∞.          (27) 

Using the condition mentioned earlier, the follow-up studies of Eq (26) may be obtained. 

�̅�(𝜉, 𝑠) =
1

1 + ℎ√
1

𝛱2𝜆1
(𝛱3𝑀𝑆𝑖𝑛(𝜃1) +

𝛱2

𝐾
+ 

𝛱1𝑎1𝑠

𝑠+𝑎2
)

× 

(

 
𝛱4𝐺𝑟𝐶𝑜𝑠(𝜃2)

𝛱2𝜆1

1 − 𝑒−𝑞

𝑞2

1 + ℎ√
𝛱5𝑃𝑟

𝛱6

𝑎1𝑠

𝑠+𝑎2

(
𝛱5𝑃𝑟

𝛱6

𝑎1𝑠

𝑠+𝑎2
) −

1

𝛱2𝜆1
(𝛱3𝑀𝑆𝑖𝑛(𝜃1) +

𝛱2

𝐾
+
𝛱1𝑎1𝑠

𝑠+𝑎2
)
+

𝜔

𝜔2 + 𝑞2

)

 × 

𝑒
−𝜉√

1

𝛱2𝜆1
(𝛱3𝑀𝑆𝑖𝑛(𝜃1)+

𝛱2
𝐾
+
𝛱1𝑎1𝑠

𝑠+𝑎2
)
−
𝛱4𝐺𝑟𝐶𝑜𝑠(𝜃2)

𝛱2𝜆1

1−𝑒−𝑞

𝑞2
𝑒
−𝜉√

𝛱5𝑃𝑟
𝛱6

𝑎1𝑠
𝑠+𝑎2

(
𝛱5𝑃𝑟

𝛱6

𝑎1𝑠

𝑠+𝑎2
)−

1

𝛱2𝜆1
(𝛱3𝑀𝑆𝑖𝑛(𝜃1)+

𝛱2
𝐾
+
𝛱1𝑎1𝑠

𝑠+𝑎2
)
.  (28) 

We will utilize Stehfest and Tzou's numerical methods to compute the inverse Laplace transform 

of the temperature and velocity profiles using the AB and CF-fractional derivatives of 

Eqs (18), (21), (25) and (28), correspondingly [50–52]: 

𝑤(𝜉, 𝑡) =
𝑙𝑛(2)

𝑡
∑ 𝑣𝑛𝑢 (𝜉, 𝑛

𝑙𝑛(2)

𝑡
)𝑀

𝑛=1 , 

𝑣𝑛 = (−1)
𝑛+

𝑀

2 ∑
𝑝
𝑀
2 (2𝑝)!

(
𝑀

2
−𝑝)!𝑝! (𝑝−1)! (𝑞−𝑝)! (2𝑝−𝑞)!

𝑚𝑖𝑛(𝑞,
𝑀

2
)

𝑝=
𝑞+1

2

, 

𝑤(𝜉, 𝑡) =
𝑒4.7

𝑡
[
1

2
�̅� (𝑟,

4.7

𝑡
) + 𝑅𝑒 {∑ (−1)𝑘𝑤 (𝑟,

4.7+𝑘𝜋𝑖

𝑡
)𝑁

𝑗=1 }]. 
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6. Results and discussion 

The fundamental goal of this investigation was to demonstrate the importance of fractional 

derivatives for the Casson-type NF by means of AB and CF derivatives. For the energy and 

momentum equations, an NF mixed with various nanoparticles, such as 𝐴𝑙2𝑂3, 𝐶𝑢, 𝑇𝑖𝑂2 was 

assumed and water was applied as the base fluid. The solution of the non-dimensional governing 

equations, i.e., the energy and momentum fields were found by applying the Laplace approach to the 

AB and CF-fractional models. The impacts of various constraints on non-dimensional governing 

equations are visually shown in Figures 2–13. The results of the numerical analysis of the Nusselt 

number and the skin friction are shown in Tables 3–5. 

The effects of the fractional parameters (𝛼, 𝛽) on temperature are shown in Figure 2(a) and 2(b). 

It is perceived that the temperature behavior decreases with growing estimations of fractional 

parameters for both fractional approaches. The AB-fractional operators have a more substantial impact 

than the CF-fractional operators on the energy profile. Such an impact happens because of the kernel 

of both diverse fractional operators. Figure 2(b) also shows the comparison of two different 

nanoparticles indicating that titanium dioxide (𝑇𝑖𝑂2)-based NFs have a relatively more progressive 

value than copper (𝐶𝑢)-based NFs, due to the physical characteristics of the considered nanoparticles. 

Figure 3(a) and 3(b) were made to intercept the response of the temperature profile when the volume 

fraction of the 𝑇𝑖𝑂2 and 𝐶𝑢 nanoparticles are equally varied. The response of the temperature field 

declined for improvement of the volume fraction (𝜑) for both fractional models. Figure 3(b) shows 

that the profile of the temperature of the 𝑇𝑖𝑂2-based NF was better than that of the 𝐶𝑢-based NF. 

These suspension consequences are due to a growth in the thickness of the subsequent impact of the 

nanoparticles. Further, this effect is primarily attributed to the thermal features of the included 

nanoparticles, which refine the thermal presentation of the host fluid. Figure 4(a) and 4(b) were 

designed for the temperature profile to display the impacts of the 𝑃𝑟; the thermal boundary layer is 

shown as the same for both cases of fractional techniques. The temperature profile can be perceived as 

reciprocal performance for heat transmission over the whole domain. Figure 4(b) shows that the 

temperature for the normal working-based fluid. Here, the rising impacts of 𝑃𝑟  decelerates the 

temperature profile. 

 

Figure 2. Temperature profile against 𝜉 due to 𝛼, 𝛽 when 𝑃𝑟 = 6.2, 𝜑 = 0.02, and 𝑡 = 1.0. 
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Figure 3. Temperature profile against𝜉due to𝜑when𝛼, 𝛽 = 0.5,𝑃𝑟 = 6.2, and 𝑡 = 1.0. 

 

Figure 4. Temperature profile against 𝜉 due to 𝑃𝑟 when 𝛼, 𝛽 = 0.5,𝜑 = 0.0, and 𝑡 = 1.0. 

The effects of the fractional parameters (𝛼, 𝛽) on velocity are exposed in Figure 5(a) and 5(b). It 

is noted that the velocity behavior also lessened with growing estimations of the fractional parameters 

for both cases of fractional approaches. The AB-fractional operators had a more significant impact 

than CF fractional operators owing to the different kernels of the diverse fractional derivatives on the 

velocity profile. Figure 5(b) also illustrates the comparison of two different nanoparticles, and we 

concluded that titanium dioxide (𝑇𝑖𝑂2)-based NFs has a relatively progressive value than copper 

(𝐶𝑢)-based nanofluid, due to the physical characteristics of the considered nanoparticles, like the 

thermal profile. 

Figure 5. Velocity profile against 𝜉 due to 𝛼, 𝛽 when 𝑃𝑟 = 6.2, 𝐺𝑟 = 2.6, 𝑀 = 0.85, 𝜃1 =

𝜃2 =
𝜋

4
, 𝐾 = 2.5, ℎ = 0.5, and 𝑡 = 1.0. 
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Figure 6(a) and 6(b) were sketched for the profile of the velocity to see the impact of 𝑃𝑟 and it is 

noted that the velocity profile also had reciprocal performance for heat transmission over the whole 

domain due to the fact that 𝑃𝑟 states the ratio of momentum diffusivity to thermal diffusivity. In heat 

transference models, 𝑃𝑟 controls the relative viscosity of the momentum and thermal boundary layers. 

Figure 6(b) describes the velocity for the normal working-based fluid. The results reveal that, with the 

rising value of 𝑃𝑟, the velocity profile declines. The effects of the volume fraction (𝜑) on the velocity 

are shown in Figure 7(a) and 7(b) for both fractional models. It was detected that the velocity 

decelerates by increasing the estimations of 𝜑 because of the thermal conductivity of NFs for the 𝜑 

parameters. Moreover, Figure 7(b) depicts that 𝑇𝑖𝑂2 -based NFs have a superior velocity value 

compared to 𝐶𝑢-based NFs. Figure 8(a) is portrayed to examine the behavior of 𝛽 on a velocity, 

along with the slip and no-slip conditions. It is observed that the velocity declines due to more 

significant estimations of 𝛽. Moreover, it is distinguished that the velocity graph with slip conditions 

was higher than the graph without slip conditions near the oscillating plate. The effect of the Casson 

parameter 𝜆1  on the velocity is shown in Figure 8(b). It can be seen that the velocity behavior 

represents the dual behavior for the Casson parameter 𝜆1 for both cases of fractional approaches. 

Initially, the momentum profile decreases due to increase in 𝜆1 , but and then decelerate its impact and 

the fluid flows more significantly. The AB-fractional operators have a more significant impact than the 

CF-fractional operators owing to the different kernels of the diverse fractional derivatives on the 

velocity. 

 

Figure 6. Velocity profile against 𝜉 due to 𝑃𝑟 when𝛼, 𝛽 = 0.5,𝐺𝑟 = 2.6,𝑀 = 0.85, 

𝜃1 = 𝜃2 =
𝜋

4
, 𝐾 = 2.5, ℎ = 0.5, 𝜑 = 0.0, and 𝑡 = 1.0. 

 

Figure 7. Velocity profile against 𝜉 due to 𝜑 when 𝛼, 𝛽 = 0.5, 𝑃𝑟 = 6.2,𝐺𝑟 = 2.6, 

𝑀 = 0.85, 𝜃1 = 𝜃2 =
𝜋

4
, 𝐾 = 2.5, ℎ = 0.5, and 𝑡 = 1.0. 



19966 

AIMS Mathematics  Volume 7, Issue 11, 19954–19974. 

 

Figure 8. Velocity profile against 𝜉 due to ℎ when 𝛼, 𝛽 = 0.5, 𝑃𝑟 = 6.2, 𝐺𝑟 = 2.6, 

𝑀 = 0.85, 𝜃1 = 𝜃2 =
𝜋

4
, 𝐾 = 2.5, and 𝑡 = 1.0. 

Figure 9(a) and 9(b) represent the velocity diagrams that can be used to understand the influence 

of 𝐺𝑟 and 𝐾, respectively. A rise in the velocity appeared because an enhancement in the estimations 

of 𝐺𝑟 and the decreasing behavior can be seen for the porosity constraint 𝐾. Physically, the upsurge 

in the 𝐺𝑟 results from significant induced fluid flows because of an increase in buoyancy influences. 

Consequently, these forces may influence an increase in the velocity. Moreover, for the porosity 

constraint, physically, when in the porous medium, the holes are significantly sufficient, so the 

resistance of the permeability medium can be ignored. Therefore, the velocity rises as the existence of 

the porous surface increases the resistance to the fluid. 

 

Figure 9. Velocity profile against 𝜉 due to 𝐾 when 𝛼, 𝛽 = 0.5, 𝑃𝑟 = 6.2,𝐺𝑟 = 2.6, 

𝑀 = 0.85, 𝜃1 = 𝜃2 =
𝜋

4
, ℎ = 0.5, and 𝑡 = 1.0. 

Figure 10(a) illustrates the impact of the magnetic field 𝑀 on the velocity. It is defined that 

magnetic field existence creates a Lorentz force in an electrically conducting fluid, which acts 

inversely to the fluid movement path if the value of 𝑀 is imposed in the perpendicular direction, 

decelerating the velocity of the fluid. Furthermore, Figure 10(b) shows a comparison of different 

nanoparticles, and it is concluded that titanium dioxide (𝑇𝑖𝑂2)-based NFs have a more significant 

impact on the momentum field as compared to the copper (𝐶𝑢) and aluminum oxide (𝐴𝑙2𝑂3) 

nanoparticles. Figure 11(a) and 11(b) signify the effects of ordinary and fractional derivatives on 

velocity and temperature. It is perceived that the velocity and temperature for the ordinary model were 

more extensive than those for the AB- and CF-fractional models. Figure 12(a) and 12(b) were drawn to 

compare two different numerical methods, i.e., the Stehfest and Tzou methods, for thermal and 
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momentum profiles. The outcomes from both curves show a slight overlap, which signifies this work's 

validity. Figure 13(a) and 13(b) were plotted to check the validity of our attained results in comparison 

with the results of Ahmad et al. [25] for velocity and temperature fields, respectively. It can be realized 

from these figures that our obtained results match those acquired by Ahmad et al. [25] by the 

overlapping of both curves. 

 

Figure 10. Velocity profile against 𝜉 due to 𝑀 when𝛼, 𝛽 = 0.5,𝑃𝑟 = 6.2,𝐺𝑟 = 2.6, 

𝜃1 = 𝜃2 =
𝜋

4
, 𝐾 = 2.5, ℎ = 0.5, and 𝑡 = 1.0. 

 

Figure 11. Comparison of fractional and ordinary derivative momentum and thermal fields. 

 

Figure 12. Comparison of numerical schemes for momentum and thermal fields. 



19968 

AIMS Mathematics  Volume 7, Issue 11, 19954–19974. 

 

Figure 13. Comparison of thermal and momentum profiles with the results of Ahmad et al. [25]. 

Table 3 shows the numerical analysis of the Nusselt number 𝑁𝑢 with the impact of diverse 

parameters for the AB and CF models. It is perceived that the value of 𝑁𝑢 for the CF model is larger 

than that for the AB model. Physically, it is due to the kernels of different fractional operators. Table 

4 signifies the results of the numerical investigation of the skin friction 𝐶𝑓 with the disparity in the 

fractional parameters at various times for the AB- and CF-fractional derivatives; it was concluded that 

the value of 𝐶𝑓 for the CF model was larger than that for the AB model. Table 5 represents the 

results of the numerical study of velocity and temperature via diverse numerical inverse systems for 

the validation and accuracy of our obtained results as well as applied techniques. Furthermore, the 

results of the numerical comparison of our attained temperature and velocity profiles are examined in 

Table 6. 

Table 3. Numerical analysis results for the Nusselt number 𝑁𝑢 for the AB- and CF-fractional models. 

𝜶, 𝜷 𝝋 𝒕 𝑵𝒖(𝑨𝑩) 𝑵𝒖(𝑪𝑭) 

0.1 0.00 0.1 0.6300 0.6410 

0.4 0.01 0.1 0.7200 0.7589 

0.7 0.02 0.1 0.9153 0.9761 

0.9 0.03 0.1 1.2046 1.2565 

0.1 0.00 0.3 0.6202 0.6310 

0.4 0.01 0.3 0.7088 0.7471 

0.7 0.02 0.3 0.9011 0.9609 

0.9 0.03 0.3 1.1859 1.2369 

0.1 0.00 0.5 0.5955 0.6059 

0.4 0.01 0.5 0.6806 0.7174 

0.7 0.02 0.5 0.8653 0.9227 

0.9 0.03 0.5 1.1387 1.1877 

0.1 0.00 0.8 0.6106 0.6213 

0.4 0.01 0.8 0.6978 0.7356 

0.7 0.02 0.8 0.8872 0.9461 

0.9 0.03 0.8 1.1676 1.2178 

 



19969 

AIMS Mathematics  Volume 7, Issue 11, 19954–19974. 

Table 4. Numerical analysis results for the skin friction𝐶𝑓at different time. 

𝜷 

𝒕 = 𝟏. 𝟎 𝒕 = 𝟏. 𝟓 

𝑪𝒇 (𝑨𝑩) 𝑪𝒇 (𝑪𝑭) 𝑪𝒇 (𝑨𝑩) 𝑪𝒇 (𝑪𝑭) 

0.1 0.1201 0.1546 0.7407 0.7590 

0.2 0.1384 0.1993 0.7541 0.7851 

0.3 0.1679 0.2484 0.7750 0.8150 

0.4 0.2083 0.3025 0.8034 0.8496 

0.5 0.2601 0.3624 0.8401 0.8903 

0.6 0.3243 0.4286 0.8869 0.9391 

0.7 0.4027 0.5014 0.9471 0.9990 

0.8 0.4967 0.5793 1.0264 1.0747 

0.9 0.6050 0.6550 1.1349 1.1720 

Table 5. Numerical analysis results for the velocity and temperature profile. 

𝝃 

Velocity (Stehfest) Velocity (Tzou's) 
Temperature 

(Stehfest) 

Temperature 

(Tzou) 

AB CF AB CF AB CF AB CF 

0.1 1.8385 1.8236 1.8203 1.8179 0.7294 0.7258 0.7389 0.7352 

0.3 1.9869 2.0373 1.9890 2.0235 0.6074 0.5984 0.6154 0.6064 

0.5 1.9289 2.0150 1.9456 1.9963 0.5059 0.4934 0.5126 0.5000 

0.7 1.7664 1.8673 1.7927 1.8461 0.4212 0.4067 0.4269 0.4123 

0.9 1.5601 1.6622 1.5917 1.6404 0.3507 0.3353 0.3555 0.3399 

1.1 1.3447 1.4401 1.3787 1.4189 0.2920 0.2763 0.2960 0.2802 

1.3 1.1394 1.2239 1.1735 1.2041 0.2431 0.2277 0.2464 0.2310 

1.5 1.9533 1.0254 0.9862 1.0073 0.2024 0.1876 0.2052 0.1904 

1.7 0.7902 0.8498 0.8208 0.8337 0.1684 0.1546 0.1708 0.1569 

1.9 0.6502 0.6983 0.6781 0.6842 0.1402 0.1274 0.1422 0.1293 

Table 6. Numerical comparison results for the temperature and velocity with Ahmad et al. [25]. 

𝝃 
Temperature by 

this study 

Temperature by 

Ahmad et al. [25]  

Velocity by this 

study 

Velocity by Ahmad 

et al. [25] 

0.1 0.9311 0.9376 0.9407 0.9363 

0.3 0.7991 0.8198 0.8710 0.8599 

0.5 0.6854 0.7151 0.7658 0.7448 

0.7 0.5877 0.6226 0.6516 0.6223 

Continued on next page 
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𝝃 
Temperature by 

this study 

Temperature by 

Ahmad et al. [25]  

Velocity by this 

study 

Velocity by Ahmad 

et al. [25] 

0.9 0.5037 0.5412 0.5424 0.5076 

1.1 0.4311 0.4696 0.4446 0.4071 

1.3 0.3696 0.4068 0.3602 0.3226 

1.5 0.3164 0.3520 0.2894 0.2533 

1.7 0.2708 0.3041 0.2310 0.1976 

1.9 0.2317 0.2624 0.1835 0.1533 

7. Conclusions 

The Casson nanoparticles flow via AB and CF time-fractional derivatives has been studied. An 

NF mixed with various nanoparticles was assumed with water as the base fluid for the energy and 

momentum equations. The inversion algorithms as well as the Laplace transform were employed to 

obtain the solutions of velocity and temperature. A comparison was carried out for the ordinary, AB- 

and CF models. Some consequences from the literature can also be recovered from our obtained 

outcomes. Some concluding remarks are as follows: 

• Temperature and momentum fields illustrate decaying behavior for fractional parameters in the 

case of the AB and CF models. 

• The response of temperature and velocity fields declined to improve the volume fraction (𝜑) for 

both fractional models. 

• The computations show that temperature, as well as the velocity field rate declined by growing 

𝑃𝑟 for both fractional techniques. 

• The velocity behavior also lessened with 𝜆1 for both cases of fractional approaches. 

• An increasing behavior for the velocity appeared due to an enhancement in the estimations of 𝐺𝑟 

and decreasing behavior was seen for 𝐾. 

• The behavior of velocity declined with the growing estimations of 𝑀. 

• The velocity and temperature for the ordinary model were more extensive than those for the AB- 

and CF- fractional models. 

• The comparison of the two different numerical methods, i.e., the Stehfest and Tzou methods for 

thermal and momentum profiles, showed that the outcomes from both curves have a slight 

overlap. 

• Our obtained temperature and velocity profile results match those acquired by Ahmad et al. [25]. 

• Velocity field increases are more significant than increase in the values of 𝐺𝑟. 

• The solution attained via the CF approach showed more decaying behavior then the AB model. 
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