Without vaccines and medicine, non-pharmaceutical interventions (NPIs) such as social distancing, have been the main strategy in controlling the spread of COVID-19. Strict social distancing policies may lead to heavy economic losses, while relaxed social distancing policies can threaten public health systems. We formulate optimization problems that minimize the stringency of NPIs during the prevaccination and vaccination phases and guarantee that cases requiring hospitalization will not exceed the number of available hospital beds. The approach utilizes an SEIQR model that separates mild from severe cases and includes a parameter μ that quantifies NPIs. Payoff constraints ensure that daily cases are decreasing at the end of the prevaccination phase and cases are minimal at the end of the vaccination phase. Using a penalty method, the constrained minimization is transformed into a non-convex, multi-modal unconstrained optimization problem. We solve this problem using the improved multi-operator differential evolution, which fared well when compared with other optimization algorithms. We apply the framework to determine optimal social distancing strategies in the Republic of Korea given different amounts and types of antiviral drugs. The model considers variants, booster shots, and waning of immunity. The optimal μ values show that fast administration of vaccines is as important as using highly effective vaccines. The initial number of infections and daily imported cases should be kept minimum especially if the bed capacity is low. In Korea, a gradual easing of NPIs without exceeding the bed capacity is possible if there are at least seven million antiviral drugs and the effectiveness of the drug in reducing severity is at least 86%. Model parameters can be adapted to a specific region or country, or other infectious diseases. The framework can be used as a decision support tool in planning economic policies, especially in countries with limited healthcare resources.
Citation: Victoria May P. Mendoza, Renier Mendoza, Jongmin Lee, Eunok Jung. Adjusting non-pharmaceutical interventions based on hospital bed capacity using a multi-operator differential evolution[J]. AIMS Mathematics, 2022, 7(11): 19922-19953. doi: 10.3934/math.20221091
[1] | Batirkhan Turmetov, Valery Karachik . On solvability of some inverse problems for a nonlocal fourth-order parabolic equation with multiple involution. AIMS Mathematics, 2024, 9(3): 6832-6849. doi: 10.3934/math.2024333 |
[2] | M. J. Huntul, Kh. Khompysh, M. K. Shazyndayeva, M. K. Iqbal . An inverse source problem for a pseudoparabolic equation with memory. AIMS Mathematics, 2024, 9(6): 14186-14212. doi: 10.3934/math.2024689 |
[3] | Bauyrzhan Derbissaly, Makhmud Sadybekov . Inverse source problem for multi-term time-fractional diffusion equation with nonlocal boundary conditions. AIMS Mathematics, 2024, 9(4): 9969-9988. doi: 10.3934/math.2024488 |
[4] | Arivazhagan Anbu, Sakthivel Kumarasamy, Barani Balan Natesan . Lipschitz stability of an inverse problem for the Kawahara equation with damping. AIMS Mathematics, 2020, 5(5): 4529-4545. doi: 10.3934/math.2020291 |
[5] | Yilihamujiang Yimamu, Zui-Cha Deng, Liu Yang . An inverse volatility problem in a degenerate parabolic equation in a bounded domain. AIMS Mathematics, 2022, 7(10): 19237-19266. doi: 10.3934/math.20221056 |
[6] | Ahmed M.A. El-Sayed, Eman M.A. Hamdallah, Hameda M. A. Alama . Multiple solutions of a Sturm-Liouville boundary value problem of nonlinear differential inclusion with nonlocal integral conditions. AIMS Mathematics, 2022, 7(6): 11150-11164. doi: 10.3934/math.2022624 |
[7] | Murat A. Sultanov, Vladimir E. Misilov, Makhmud A. Sadybekov . Numerical method for solving the subdiffusion differential equation with nonlocal boundary conditions. AIMS Mathematics, 2024, 9(12): 36385-36404. doi: 10.3934/math.20241726 |
[8] | Abdelkader Laiadi, Abdelkrim Merzougui . Free surface flows over a successive obstacles with surface tension and gravity effects. AIMS Mathematics, 2019, 4(2): 316-326. doi: 10.3934/math.2019.2.316 |
[9] | A. M. A. El-Sayed, W. G. El-Sayed, Somyya S. Amrajaa . On a boundary value problem of arbitrary orders differential inclusion with nonlocal, integral and infinite points boundary conditions. AIMS Mathematics, 2022, 7(3): 3896-3911. doi: 10.3934/math.2022215 |
[10] | Lin Fan, Shunchu Li, Dongfeng Shao, Xueqian Fu, Pan Liu, Qinmin Gui . Elastic transformation method for solving the initial value problem of variable coefficient nonlinear ordinary differential equations. AIMS Mathematics, 2022, 7(7): 11972-11991. doi: 10.3934/math.2022667 |
Without vaccines and medicine, non-pharmaceutical interventions (NPIs) such as social distancing, have been the main strategy in controlling the spread of COVID-19. Strict social distancing policies may lead to heavy economic losses, while relaxed social distancing policies can threaten public health systems. We formulate optimization problems that minimize the stringency of NPIs during the prevaccination and vaccination phases and guarantee that cases requiring hospitalization will not exceed the number of available hospital beds. The approach utilizes an SEIQR model that separates mild from severe cases and includes a parameter μ that quantifies NPIs. Payoff constraints ensure that daily cases are decreasing at the end of the prevaccination phase and cases are minimal at the end of the vaccination phase. Using a penalty method, the constrained minimization is transformed into a non-convex, multi-modal unconstrained optimization problem. We solve this problem using the improved multi-operator differential evolution, which fared well when compared with other optimization algorithms. We apply the framework to determine optimal social distancing strategies in the Republic of Korea given different amounts and types of antiviral drugs. The model considers variants, booster shots, and waning of immunity. The optimal μ values show that fast administration of vaccines is as important as using highly effective vaccines. The initial number of infections and daily imported cases should be kept minimum especially if the bed capacity is low. In Korea, a gradual easing of NPIs without exceeding the bed capacity is possible if there are at least seven million antiviral drugs and the effectiveness of the drug in reducing severity is at least 86%. Model parameters can be adapted to a specific region or country, or other infectious diseases. The framework can be used as a decision support tool in planning economic policies, especially in countries with limited healthcare resources.
Modern problems of natural science lead to the need to generalize the classical problems of mathematical physics, as well as to the formulation of qualitatively new problems, which include non-local problems for differential equations. Among nonlocal problems, problems with integral conditions are of great interest. Integral conditions are encountered in the study of physical phenomena in the case when the boundary of the process flow region is inaccessible for direct measurements. Inverse problems arise in various fields of human activity, such as seismology, mineral exploration, biology, medical visualization, computed tomography, earth remote sensing, spectral analysis, nondestructive control, etc. Various inverse problems for certain types of partial differential equations have been studied in many works. A more detailed bibliography and a classification of problems are found in [1,2,3,4,5]. Inverse problems for one-dimensional pseudo-parabolic equations of third-order were studied in [6]. The existence and uniqueness of the solution of the inverse problem for the third order pseudoparabolic equation with integral over-determination condition is studied in [7]. Khompysh [8] investigated the reconstruction of unknown coefficient in pseudo-parabolic inverse problem with the integral over determination condition and studied the uniqueness and existence of solution by means of method of successive approximations. Studies of wave propagation in cold plasma and magnetohydrodynamics also reduce to the partial differential equations of fourth-order. To the study of nonlocal boundary value problems (including integral conditions) for partial differential equations of the fourth-order are devoted large number of works, see, for example, [9,10]. It should be noted that boundary value problems with integral conditions are of particular interest. From physical considerations, the integral conditions are completely natural, and they arise in mathematical modelling in cases where it is impossible to obtain information about the process occurring at the boundary of the region of its flow using direct measurements or when it is possible to measure only some averaged (integral) characteristics of the desired quantity.
In this article, we study the an inverse boundary value problem for a fourth order pseudo parabolic equation with periodic and integral condition to identify the time-dependent coefficients along with the solution function theoretically, i.e. existence and uniqueness.
Statement of the problem and its reduction to an equivalent problem. In the domain DT={(x,t):0≤x≤1,0≤t≤T}, we consider an inverse boundary value problem of recovering the timewise dependent coefficients p(t) in the pseudo-parabolic equation of the fourth-order
ut(x,t)−butxx(x,t)+a(t)uxxxx(x,t)=p(t)u(x,t)+f(x,t) | (1.1) |
with the initial condition
u(x,0)+δu(x,T)=φ(x)(0≤x≤1), | (1.2) |
boundary conditions
u(0,t)=u(1,t),ux(0,t)=ux(1,t),uxx(0,t)=uxx(1,t)(0≤t≤T), | (1.3) |
nonlocal integral condition
∫10u(x,t)dx=0(0≤t≤T) | (1.4) |
and with an additional condition
u(0,t)=∫t0γ(τ)u(1,τ)dτ+h(t)(0≤t≤T), | (1.5) |
where b>0, δ≥0-given numbers, a(t)>0,f(x,t),φ(x),γ(τ),h(t) -given functions, u(x,t) and p(t) - required functions.
Denote
ˉC4,1(DT)={u(x,t):u(x,t)∈C2,1(DT),utxx,uxxxx∈C(DT)}. |
Definition.By the classical solution of the inverse boundary value problem (1.1)-(1.5)we mean the pair {u(x,t),p(t)} functions u(x,t)∈ˉC4,1(DT), p(t)∈C[0,T] satisfying equation (1.1) in DT, condition (1.2) in [0, 1] and conditions (1.3)-(1.5) in [0, T].
Theorem 1. Let be b>0,δ≥0,φ(x)∈C[0,1],f(x,t)∈C(DT), ∫10f(x,t)dx=0, 0<a(t)∈C[0,T], h(t)∈C1[0,T], h(t)≠0(0≤t≤T), γ(t)∈C[0,T],δγ(t)=0 (0≤t≤T) and
∫10φ(x)dx=0,φ(0)=h(0)+δh(T). |
Then the problem of finding a solution to problem (1.1)-(1.5) is equivalent to the problem of determining the functions u(x,t)∈ˉC4,1(DT) and p(t)∈C[0,T], from (1.1)-(1.3) and
uxxx(0,t)=uxxx(1,t)(0≤t≤T), | (1.6) |
γ(t)u(1,t)+h′(t)−butxx(0,t)+a(t)uxxxx(0,t)= |
=p(t)(∫t0γ(τ)u(1,τ)dτ+h(t))+f(0,t)(0≤t≤T). | (1.7) |
Proof. Let be {u(x,t),p(t)} is a classical solution to problem (1.1)-(1.5). Integrating equation (1.1) with respect to x from 0 to 1, we get:
ddt∫10u(x,t)dx−b(utx(1,t)−utx(0,t))+a(t)(uxxx(1,t)−uxxx(0,t))= |
=p(t)∫10u(x,t)dx+∫10f(x,t)dx(0≤t≤T). | (1.8) |
Assuming that ∫10f(x,t)dx=0, taking into account (1.3) and (1.4), we arrive at the fulfillment of (1.6).
Further, considering h(t)∈C1[0,T] and differentiating with respect to t (1.5), we get:
ut(0,t)=γ(t)u(1,t)+h′(t)(0≤t≤T) | (1.9) |
Substituting x=0 into equation (1.1), we have:
ut(0,t)−butxx(0,t)+a(t)uxxxx(0,t)=p(t)u(0,t)+f(0,t)(0≤t≤T). | (1.10) |
Now, suppose that {u(x,t),p(t)} is a solution to problem (1.1)-(1.3), (1.6), (1.7). Then from (1.8), taking into account (1.3) and (1.6), we find:
ddt∫10u(x,t)dx−p(t)∫10u(x,t)dx=0(0≤t≤T). | (1.11) |
Due to (1.2) and ∫10φ(x)dx=0, it's obvious that
∫10u(x,0)dx+δ∫10u(x,T)dx=∫10φ(x)dx=0. | (1.12) |
Obviously, the general solution(1.11) has the form:
∫10u(x,t)dx=ce−∫t0p(τ)dτ(0≤t≤T). | (1.13) |
From here, taking into account (1.12), we obtain:
∫10u(x,0)dx+δ∫10u(x,T)dx=c(1+δe−∫T0p(τ)dτ)=0. | (1.14) |
By virtue of δ≥0, from (1.14) we get that c=0, and substituting into (1.13) we conclude, that ∫10u(x,t)dx=0(0≤t≤T). Therefore, condition (1.4) is also satisfied.
Further, from (1.7) and (1.10), we obtain:
ddt[u(0,t)−(∫t0γ(τ)u(1,τ)dτ+h(t))]= |
=p(t)[u(0,t)−(∫t0γ(τ)u(1,τ)dτ+h(t))](0≤t≤T). | (1.15) |
Let introduce the notation:
y(t)≡u(0,t)−(∫t0γ(τ)u(1,τ)dτ+h(t))(0≤t≤T) | (1.16) |
and rewrite the last relation in the form:
y′(t)+p(t)y(t)=0(0≤t≤T). | (1.17) |
From (1.16), taking into account (1.2), δγ(t)=0 (0≤t≤T) and φ(0)=h(0)+δh(T), it is easy to see that
y(0)+δy(T)=u(0,0)−h(0)+δ[u(0,T)−(∫T0γ(τ)u(1,τ)dτ+h(T))]=u(0,0)+ |
+δu(0,T)−(h(0)+δh(T))−δ∫T0γ(τ)u(1,τ)dτ=φ(0)−(h(0)+δh(T))=0. | (1.18) |
Obviously, the general solution (1.17) has the form:
y(t)=ce−∫t0p(τ)dτ(0≤t≤T). | (1.19) |
From here, taking into account (1.18), we obtain:
y(0)+δy(T)=c(1+δe−∫T0a0(τ)a1(τ)dτ)=0. | (1.20) |
By virtue of δ≥0, from (1.20) we get that c=0, and substituting into (1.19) we conclude that y(t)=0(0≤t≤T). Therefore, from (1.16) it is clear that the condition (1.5). The theorem has been proven.
It is known [5] that the system
1,cosλ1x,sinλ1x,...,cosλkx,sinλkx,... | (2.1) |
forms the basis of L2(0,1), where λk=2kπ(k=0,1,...).
Since system (2.1) forms a basis in L2(0,1), it is obvious that for each solution {u(x,t),a(t)} problem (1.1)–(1.3), (1.6), (1.7):
u(x,t)=∞∑k=0u1k(t)cosλkx+∞∑k=1u2k(t)sinλkx(λk=2πk), | (2.2) |
where
u10(t)=∫10u(x,t)dx,u1k(t)=2∫10u(x,t)cosλkxdx(k=1,2,...), |
u2k(t)=2∫10u(x,t)sinλkxdx(k=1,2,...). |
Applying the formal scheme of the Fourier method, to determine the desired coefficients u1k(t)(k=0,1,...) and u2k(t)(k=1,2,...) functions u(x,t) from (1.1) and (1.2) we get:
u″10(t)=F10(t;u,p)(0≤t≤T), | (2.3) |
(1+bλ2k)u′ik(t)+a(t)λ4kuik(t)=Fik(t;u,p)(i=1,2;0≤t≤T;k=1,2,...), | (2.4) |
u10(0)+δu10(T)=φ10, | (2.5) |
uik(0)+δuik(T)=φik(i=1,2;k=1,2,...), | (2.6) |
where
F1k(t;u,a,b)=p(t)u1k(t)+f1k(t)(k=0,1,...), |
f10(t)=∫10f(x,t)dx,f1k(t)=2∫10f(x,t)cosλkxdx(k=1,2,...), |
φ10=∫10φ(x)dx,φ1k=2∫10φ(x)cosλkxdx(k=1,2,...), |
F2k(t;u,a,b)=p(t)u2k(t)+f2k(t), |
f2k(t)=2∫10f(x,t)sinλkxdx(k=1,2,...),φ2k=2∫10φ(x)sinλkxdx(k=1,2,...). |
Solving problem (2.3)-(2.6), we find:
u10(t)=(1+δ)−1(φ10−δ∫T0F0(τ;u,p)dτ)+∫t0F10(τ;u,p)dτ(0≤t≤T), | (2.7) |
uik(t)=e−∫t0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kdssφik+11+bλ2k∫t0Fik(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ− |
−δe−∫T0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kds11+bλ2k∫T0Fik(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ(i=1,2;0≤t≤T;k=1,2,...). | (2.8) |
After substituting the expression u1k(t)(k=0,1,...), u2k(t)(k=1,2,...) in (2.2), to define a component u(x,t) solution of problem (1.1)-(1.3), (1.6), (1.7), we obtain:
u(x,t)=(1+δ)−1(φ0−δ∫T0F0(τ;u,p)dτ)+∫t0F0(τ;u,p)dτ+ |
+∞∑k=1{e−∫t0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kdssφ1kk+11+bλ2k∫t0F1k(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ− |
−δe−∫T0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kds11+bλ2k∫T0F1k(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ}cosλkx+ |
+∞∑k=1{e−∫t0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kdssφ2kk+11+bλ2k∫t0F2k(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ− |
−δe−∫T0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kds11+bλ2k∫T0F2k(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ}sinλkx. | (2.9) |
Now from (1.7), taking into account (2.2), we have:
p(t)=[h(t)]−1{h′(t)−f(0,t)+γ(t)u10(t)−p(t)∫t0γ(τ)u10(τ)dτ+ |
+∞∑k=1(bλ2ku′1k(t)+a(t)λ4ku1k(t)+γ(t)u1k(t)−p(t)∫t0γ(τ)u1k(τ)dτ). | (2.10) |
Further, from (2.4), taking into account (2.8), we obtain:
bλ2ku′1k(t)+a(t)λ4ku1k(t)+γ(t)u1k(t)=F1k(t;u,p)−u′1k(t)+γ(t)u1k(t)= |
=bλ2k1+bλ2kF1k(t;u,p)+(a(t)λ4k1+bλ2k+γ(t))u1k(t)= |
=bλ2k1+bλ2kFk(t;u,p)+(a(t)λ4k1+bλ2k+γ(t))[e−∫t0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kdssφ1k+ |
+11+bλ2k∫t0F1k(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ− |
−δe−∫T0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kds11+bλ2k∫T0F1k(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ](0≤t≤T;k=1,2,...). | (2.11) |
p(t)=[h(t)]−1{h′(t)−f(0,t)+ |
+γ(t))[(1+δ)−1(φ10−δ∫T0F0(τ;u,p)dτ)+∫t0F10(τ;u,p)dτ]− |
−p(t)∫t0γ(τ)u10(τ)dτ+∞∑k=1[bλ2k1+bλ2kF1k(t;u,p)+ |
+(a(t)λ4k1+bλ2k+γ(t))[e−∫t0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kdssφ1k+11+bλ2k∫t0F1k(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ− |
+11+bλ2k∫t0F1k(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ− |
−δe−∫T0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kds11+bλ2k∫T0F1k(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ]+ |
+p(t)∫t0γ(τ)u1k(τ)dτ]}. | (2.12) |
Thus, the solution of problem (1.1)–(1.3), (1.6), (1.7)is reduced to the solution of system (2.9), (2.12) with respect to unknown functions u(x,t) and p(t).
To study the question of the uniqueness of the solution of problem (1.1)–(1.3), (1.6), (1.7) the following plays an important role.
Lemma 1. If {u(x,t),p(t)}-any solution of problem (1.1)–(1.3), (1.6), (1.7), then the functions
u10(t)=∫10u(x,t)dx,u1k(t)=2∫10u(x,t)cosλkxdx(k=1,2,...), |
u2k(t)=2∫10u(x,t)sinλkxdx(k=1,2,...) |
satisfy the system consisting of equations (27), (28) on [0,T].
It is obvious that if u10(t)=∫10u(x,t)dx, u1k(t)=2∫10u(x,t)cosλkxdx(k=1,2,...), u2k(t)=2∫10u(x,t)sinλkxdx(k=1,2,...) is a solution to system (2.7), (2.8), then the pair {u(x,t),p(t)} functions u(x,t)=∑∞k=0u1k(t)cosλkx+∑∞k=1u2k(t)sinλkx(λk=2πk) and p(t) is a solution to system (2.9), (2.12).
Consequence. Let system (29), (32) have a unique solution. Then problem (1.1)–(1.3), (1.6), (1.7) cannot have more than one solution, i.e. if problem (1.1)-(1.3), (1.6), (1.7) has a solution, then it is unique.
In order to study the problem (1.1)–(1.3), (1.6), (1.7) consider the following spaces.
Denote by Bα2,T [6] the set of all functions of the form
u(x,t)=∞∑k=0u1k(t)cosλkx+∞∑k=1u2k(t)sinλkx(λk=2πk), |
considered in DT, where each of the functions u1k(t)(k=0,1,...), u2k(t)(k=1,2,...) continuous on [0,T] and
J(u)=‖u10(t)‖C[0,T]+{∞∑k=1(λαk‖u1k(t)‖C[0,T])2}12+{∞∑k=1(λαk‖u2k(t)‖C[0,T])2}12<+∞, |
α≥0. We define the norm in this set as follows:
‖u(x,t)‖Bα2,T=J(u). |
Through EαT denote the space Bα2,T×C[0,T] vector - functions z(x,t)={u(x,t),p(t)} with norm
‖z(x,t)‖EαT=‖u(x,t)‖Bα2,T+‖p(t)‖C[0,T]. |
It is known that Bα2,T and EαT are Banach spaces.
Now consider in space E5T operator
Φ(u,p)={Φ1(u,p),Φ2(u,p)}, |
operator
Φ1(u,p))=˜u(x,t)≡∞∑k=0˜u1k(t)cosλkx+∞∑k=1˜u2k(t)sinλkx,Φ2(u,p)=˜p(t), |
˜u10(t),˜uik(t)(i=1,2;k=1,2,...),˜p(t) are equal to the right-hand sides of (2.7), (2.8) and (2.12), respectively.
It is easy to see that
1+bλ2k>bλ2k,1+δ≥1,.1+δe−∫T0a(s)λ4k1+bλ2kds≥1. |
Then, we have:
‖˜u0(t)‖C[0,T]≤|φ10|+(1+δ)√T(∫T0|f10(τ)|2dτ)12+(1+δ)T‖p(t)‖C[0,T]‖u10(t)‖C[0,T], | (2.13) |
(∞∑k=1(λ5k‖˜uik(t)‖C[0,T])2)12≤√3(∞∑k=1(λ5k|φik|)2)12+√3(1+δ)b√T(∫T0∞∑k=1(λ3k|fik(τ)|)2dτ)12+ |
+√3(1+δ)bT‖p(t)‖C[0,T](∞∑k=1(λ5k‖uik(t)‖C[0,T])2)12(i=1,2), | (2.14) |
‖˜p(t)‖C[0,T]≤‖[h(t)]−1‖C[0,T]{‖h′(t)−f(0,t)‖C[0,T]+ |
+‖γ(t)‖C[0,T][|φ0|+(1+δ)√T(∫T0|f0(τ)|2dτ)12+(1+δ)T‖p(t)‖C[0,T]‖u0(t)‖C[0,T]]+ |
+T‖γ(t)‖C[0,T]‖p(t)‖C[0,T]‖u10(t)‖C[0,T]+ |
+(∞∑k=1λ−2k)12[(∞∑k=1(λk‖f1k(t)‖)2C[0,T])12+‖p(t)‖C[0,T](∞∑k=1(λ3k‖u1k(t)‖C[0,T])2)12+ |
+(‖γ(t)‖C[0,T]+1b‖a(t)‖C[0,T])[(∞∑k=1(λ3k|φ1k|)2)12+√T(1+δ)b(∫T0∞∑k=1(λk|f1k(τ)|)2dτ)12+ |
+T(1+δ)b‖p(t)‖C[0,T](∞∑k=1(λ5k‖u1k(t)‖C[0,T])2)12]++T‖γ(t)‖C[0,T]‖p(t)‖C[0,T](∞∑k=1(λ5k‖u1k(t)‖C[0,T])2)12]}. | (2.15) |
Let us assume that the data of problem (1.1)–(1.3), (1.6), (1.7) satisfy the following conditions:
1.φ(x)∈W2(5)(0,1),φ(0)=φ(1),φ′(0)=φ′(1), |
φ″(0)=φ″(1),φ‴(0)=φ‴(1),φ(4)(0)=φ(4)(1); |
2.f(x,t),fx(x,t),fxx(x,t)∈C(DT),fxxx(x,t)∈L2(DT), |
f(0,t)=f(1,t),fx(0,t)=fx(1,t),fxx(0,t)=fxx(1,t)(0≤t≤T); |
3.b>0,δ≥0,γ(t),a(t)∈C[0,T],h(t)∈C1[0,T],h(t)≠0(0≤t≤T). |
Then from (2.10)–(2.12), we have:
‖˜u(x,t)‖B52,T≤A1(T)+B1(T)‖p(t)‖C[0,T]‖u(x,t)‖B52,T, | (2.16) |
‖˜p(t)‖C[0,T]≤A2(T)+B2(T)‖p(t)‖C[0,T]‖u(x,t)‖B52,T, | (2.17) |
where
A1(T)=‖φ(x)‖L2(0,1)+(1+δ)√T‖f(x,t)‖L2(DT)+2√3‖φ(5)(x)‖L2(0,1)+ |
+2√3b(1+δ)√T‖fxxx(x,t)‖L2(DT),B1(T)=(1+δ)(1+√3b)T, |
A2(T)=‖[h(t)]−1‖C[0,T]{‖h′(t)−f(0,t)‖C[0,T]+ |
+‖γ(t)‖C[0,T](‖φ(x)‖L2(0,1)+(1+δ)√T‖f(x,t)‖L2(DT))+ |
+(∞∑k=1λ−2k)12[‖‖fx(x,t)‖C[0,T]‖L2(0,1)+ |
+(‖γ(t)‖C[0,T]+1b‖a(t)‖C[0,T])(‖φ(3)(x)‖L2(0,1)+√T(1+δ)b‖fx(x,t)‖L2(DT))]}, |
B2(T)=‖[h(t)]−1‖C[0,T](∑∞k=1λ−2k)12[(‖γ(t)‖C[0,T]+1b‖a(t)‖C[0,T])T(2+δ)b+ |
+T‖γ(t)‖C[0,T]+1]. |
From inequalities (2.16), (2.17) we conclude:
‖u(x,t)‖B52,T+‖˜p(t)‖C[0,T]≤A(T)+B(T)‖p(t)‖C[0,T]‖u(x,t)‖B52,T, | (2.18) |
A(T)=A1(T)+A2(T),B(T)=B1(T)+B2(T). |
We can prove the following theorem.
Theorem 2. Let conditions 1-3 be satisfied and
(A(T)+2)2B(T)<1. | (2.19) |
Then problem (1.1)–(1.3), (1.6), (1.7) has in K=KR(‖z‖E5T≤R=A(T)+2) in the space E5T only one solution.
Proof. In space E5T consider the equation
z=Φz, | (2.20) |
where z={u,p}, components P Φ1(u,p),Φ2(u,p) of operators Φ(u,p) are defined by the right-hand sides of equations (2.9) and (2.12).
Consider the operator Φ(u,p) in a ball K=KR from E5T. Similarly to (2.18) we obtain that for any z={u,p}, z1={u1,p1}, z2={u2,p2}∈KR :
‖Φz‖E5T≤A(T)+B(T)‖p(t)‖C[0,T]‖u(x,t)‖B52,T, | (2.21) |
‖Φz1−Φz2‖E5T≤B(T)R(‖p1(t)−p2(t)‖C[0,T]+‖u1(x,t)−u2(x,t)‖B52,T). | (2.22) |
Then from estimates (2.21), (2.22), taking into account (2.19), it follows that the operator Φ acts in a ball K=KR and is contractive. Therefore, in the ball K=KR operator Φ has a single fixed point {u,p}, which is the only one in the ball K=KR solution of equation (2.20), i.e. is the only one solution in the ball K=KR of system (2.9), (2.12) in the ball.
Functions u(x,t), as an element of space B52,T is continuous and has continuous derivatives ux(x,t),uxx(x,t), uxxx(x,t),uxxxx(x,t) in DT.
From (2.4), it is easy to see that
(∞∑k=1(λk‖u′ik(t)‖C[0,T])2)12≤√2b‖a(t)‖C[0,T](∞∑k=1(λ5k‖uik(t)‖C[0,T])2)12+ |
+√2b‖‖fx(x,t)+p(t)ux(x,t)‖C[0,T]‖L2(0,1)(i=1,2). |
Hence it follows that ut(x,t) and utxx continuous in DT.
It is easy to check that equation (1.1) and conditions (1.2), (1.3), (1.6), (1.7) are satisfied in the usual sense. Consequently, {u(x,t),p(t)} is a solution to problem (1.1)–(1.3), (1.6), (1.7). By the corollary of Lemma 1, it is unique in the ball K=KR. The theorem has been proven.
With the help of Theorem 1, the unique solvability of the original problem (1.1)–(1.5) immediately follows from the last theorem.
Theorem 3. Let all the conditions of Theorem 1 be satisfied, ∫10f(x,t)dx=0(0≤t≤T), δγ(t)=0 (0≤t≤T) and the matching condition is met:
∫10φ(x)dx=0,φ(0)=h(0)+δh(T). |
Then problem (1.1)–(1.5) has in the ball K=KR(‖z‖E5T≤R=A(T)+2) from E5T the only classical solution.
The article considered an inverse boundary value problem with a periodic and integral condition, when the unknown coefficient depends on time for a linear pseudoparabolic equation of the fourth order. An existence and uniqueness theorem for the classical solution of the problem is proved.
The authors have declared no conflict of interest.
[1] |
N. Haider, A. Y. Osman, A. Gadzekpo, G. O. Akipede, D. Asogun, R. Ansumana, et al., Lockdown measures in response to COVID-19 in nine sub-Saharan African countries, BMJ Glob. Health, 5 (2020), e003319. http://dx.doi.org/10.1136/bmjgh-2020-003319 doi: 10.1136/bmjgh-2020-003319
![]() |
[2] |
J. Cohen, K. Kupferschmidt, Countries test tactics in 'war'against COVID-19, Science, 367 (2020), 1287–1288. http://dx.doi.org/10.1126/science.367.6484.1287 doi: 10.1126/science.367.6484.1287
![]() |
[3] |
T. P. B. Thu, P. N. H. Ngoc, N. M. Hai, Effect of the social distancing measures on the spread of COVID-19 in 10 highly infected countries, Sci. Total. Environ., 742 (2020), 140430. http://dx.doi.org/10.1016/j.scitotenv.2020.140430 doi: 10.1016/j.scitotenv.2020.140430
![]() |
[4] |
N. Lu, K. W. Cheng, N. Qamar, K. C. Huang, J. A. Johnson, Weathering COVID-19 storm: Successful control measures of five Asian countries, Am. J. Infect. Control, 48 (2020), 851–852. http://dx.doi.org/10.1016/j.ajic.2020.04.021 doi: 10.1016/j.ajic.2020.04.021
![]() |
[5] |
P. Deb, D. Furceri, J. D. Ostry, N. Tawk, The economic effects of COVID-19 containment measures, Open Econ. Rev., 33 (2022), 1–32. http://dx.doi.org/10.1007/s11079-021-09638-2 doi: 10.1007/s11079-021-09638-2
![]() |
[6] | A. Demirgüç-Kunt, M. Lokshin, I. Torre, The sooner, the better: The early economic impact of non-pharmaceutical interventions during the COVID-19 pandemic, Policy Research Working Paper, World Bank, Washington, DC, 9257 (2020). https://openknowledge.worldbank.org/handle/10986/33820 |
[7] |
C. Stokel-Walker, What do we know about covid vaccines and preventing transmission?, BMJ, 376 (2022), o298. http://dx.doi.org/10.1136/bmj.o298 doi: 10.1136/bmj.o298
![]() |
[8] |
S. Guerstein, V. Romeo-Aznar, M. Dekel, O. Miron, N. Davidovitch, R. Puzis, et al., The interplay between vaccination and social distancing strategies affects COVID-19 population-level outcomes, PLoS Comput. Biol., 17 (2021), e1009319. http://dx.doi.org/10.1371/journal.pcbi.1009319 doi: 10.1371/journal.pcbi.1009319
![]() |
[9] |
M. Dashtbali, M. Mirzaie, A compartmental model that predicts the effect of social distancing and vaccination on controlling COVID-19, Sci. Rep., 11 (2021), 1–11. http://dx.doi.org/10.1038/s41598-021-86873-0 doi: 10.1038/s41598-021-86873-0
![]() |
[10] |
M. F. Good, M. T. Hawkes, The interaction of natural and vaccine-induced immunity with social distancing predicts the evolution of the COVID-19 pandemic, mBio., 11 (2020), e02617–20. http://dx.doi.org/10.1128/mBio.02617-20 doi: 10.1128/mBio.02617-20
![]() |
[11] |
M. J. Keeling, E. M. Hill, E. E. Gorsich, B. Penman, G. Guyver-Fletcher, A. Holmes, et al., Predictions of COVID-19 dynamics in the UK: Short-term forecasting and analysis of potential exit strategies, PLoS Comput. Biol., 17 (2021), e1008619. http://dx.doi.org/10.1371/journal.pcbi.1008619 doi: 10.1371/journal.pcbi.1008619
![]() |
[12] |
R. Chowdhury, K. Heng, M. S. R. Shawon, G. Goh, D. Okonofua, C. Ochoa-Rosales, et al., Dynamic interventions to control COVID-19 pandemic: A multivariate prediction modelling study comparing 16 worldwide countries, Eur. J. Epidemiol., 35 (2020), 389–399. http://dx.doi.org/10.1007/s10654-020-00649-w doi: 10.1007/s10654-020-00649-w
![]() |
[13] |
T. Oraby, M. G. Tyshenko, J. C. Maldonado, K. Vatcheva, S. Elsaadany, W. Q. Alali, et al., Modeling the effect of lockdown timing as a COVID-19 control measure in countries with differing social contacts, Sci. Rep., 11 (2021), 1–13. http://dx.doi.org/10.1038/s41598-021-82873-2 doi: 10.1038/s41598-021-82873-2
![]() |
[14] |
I. U. Haq, N. Ali, H. Ahmad, T. A. Nofal, On the fractional-order mathematical model of COVID-19 with the effects of multiple non-pharmaceutical interventions, AIMS Math., 7 (2022), 16017–16036. http://dx.doi.org/10.3934/math.2022877 doi: 10.3934/math.2022877
![]() |
[15] | K. M. Sallam, S. M. Elsayed, R. K. Chakrabortty, M. J. Ryan, Improved multi-operator differential evolution algorithm for solving unconstrained problems, 2020 IEEE Congress on Evolutionary Computation (CEC), (2020), 1–8. http://dx.doi.org/10.1109/CEC48606.2020.9185577 |
[16] |
N. Gozzi, P. Bajardi, N. Perra, The importance of non-pharmaceutical interventions during the COVID-19 vaccine rollout, PLoS Comput. Biol., 17 (2021), e1009346. http://dx.doi.org/10.1371/journal.pcbi.1009346 doi: 10.1371/journal.pcbi.1009346
![]() |
[17] |
J. Pan, W. Zhu, J. Tian, Z. Liu, A. Xu, Y. Yao, et al., Vaccination as an alternative to non-drug interventions to prevent local resurgence of COVID-19, Infect. Dis. Poverty, 11 (2022), 1–13. http://dx.doi.org/10.1186/s40249-022-00960-6 doi: 10.1186/s40249-022-00960-6
![]() |
[18] |
I. M. Batiha, A. A. Al-Nana, R. B. Albadarneh, A. Ouannas, A. Al-Khasawneh, S. Momani, Fractional-order coronavirus models with vaccination strategies impacted on Saudi Arabia's infections, AIMS Math., 7 (2022), 12842–12858. http://dx.doi.org/10.3934/math.2022711 doi: 10.3934/math.2022711
![]() |
[19] | J. Lee, R. Mendoza, V. M. P. Mendoza, Y. Ko, J. Lee, Y. Seo, et al., Modelling the effects of social distancing, antiviral therapy, and booster shots on mitigating omicron spread, preprint (Version 1) available at Research Square, (09 February 2022). http://dx.doi.org/10.21203/rs.3.rs-1322738/v1 |
[20] |
Y. Alimohamadi, M. Taghdir, M. Sepandi, Estimate of the basic reproduction number for COVID-19: A systematic review and meta-analysis, J. Prev. Med. Public Health, 53 (2020), 151–157. http://dx.doi.org/10.3961/jpmph.20.076 doi: 10.3961/jpmph.20.076
![]() |
[21] |
Y. Liu, A. A. Gayle, A. Wilder-Smith, J. Rocklöv, The reproductive number of COVID-19 is higher compared to SARS coronavirus, J. Travel Med., 27 (2020), 1–4. http://dx.doi.org/10.1093/jtm/taaa021 doi: 10.1093/jtm/taaa021
![]() |
[22] |
W. He, G. Y. Yi, Y. Zhu, Estimation of the basic reproduction number, average incubation time, asymptomatic infection rate, and case fatality rate for COVID-19: Meta-analysis and sensitivity analysis, J. Med. Virol., 92 (2020), 2543–2550. http://dx.doi.org/10.1002/jmv.26041 doi: 10.1002/jmv.26041
![]() |
[23] | Daily vaccination situation, Korea Disease Control and Prevention Agency (KDCA), 2021. https://ncv.kdca.go.kr/vaccineStatus.es?mid=a11710000000 |
[24] | COVID-19 vaccine weekly surveillance report week 1, UK Health Security Agency (UKHSA), 2022. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1045329/Vaccine_surveillance_report_week_1_2022.pdf |
[25] | WHO Communicable Diseases, Emergencies Preparedness, Infection Prevention and Control UHL, Mask use in the context of COVID-19: Interim Guidance, World Health Organization, 2020, 1–22. WHO/2019-nCoV/IPC_Masks/2020.5 |
[26] |
Y. Wang, R. Chen, F. Hu, Y. Lan, Z. Yang, C. Zhan, et al., Transmission, viral kinetics and clinical characteristics of the emergent SARS-CoV-2 Delta VOC in Guangzhou, China, EClinicalMedicine, 40 (2021), 101129. http://dx.doi.org/10.1016/j.eclinm.2021.101129 doi: 10.1016/j.eclinm.2021.101129
![]() |
[27] | The effectiveness for severity and death of COVID-19 vaccine from May to July 2021, Korea Disease Control and Prevention Agency (KDCA), 2022. Available from: https://www.kdca.go.kr/board/board.es?mid=a20602010000&bid=0034&list_no=716913&act=view |
[28] |
E. S. Rosenberg, V. Dorabawila, D. Easton, U. E. Bauer, J. Kumar, R. Hoen, et al., COVID-19 vaccine effectiveness in New York State, N. Engl. J. Med., 386 (2022), 116–127. http://dx.doi.org/10.1056/NEJMoa2116063 doi: 10.1056/NEJMoa2116063
![]() |
[29] | O. T. Ranzani, M. D. Hitchings, M. Dorion, T. L. D'Agostini, R. C. de Paula, O. F. P. de Paula, et al., Effectiveness of the CoronaVac vaccine in older adults during a gamma variant associated epidemic of covid-19 in Brazil: Test negative case-control study, BMJ, 374 (2021). http://dx.doi.org/10.1136/bmj.n2015 |
[30] |
N. M. Lewis, E. A. Naioti, W. H. Self, A. A. Ginde, D. J. Douin, H. K. Talbot, et al., Effectiveness of mRNA vaccines in preventing COVID-19 hospitalization by age and burden of chronic medical conditions among immunocompetent US adults, March-August 2021, J. Infect. Dis., 225 (2022), 1694–1700. http://dx.doi.org/10.1093/infdis/jiab619 doi: 10.1093/infdis/jiab619
![]() |
[31] |
Y. H. Lee, C. M. Hong, D. H. Kim, T. H. Lee, J. Lee, Clinical course of asymptomatic and mildly symptomatic patients with coronavirus disease admitted to community treatment centers, South Korea, Emerg. Infect. Dis., 26 (2020), 2346–2352. http://dx.doi.org/10.3201/eid2610.201620 doi: 10.3201/eid2610.201620
![]() |
[32] | The weekly news review, Seoul Metropolitan Government, Citizen's health department, 2021. https://www.seoul.go.kr/seoulcom/fileDownload.do?fileName=corona/daily-news-review_211210_447.pdf |
[33] |
M. Ki, Epidemiologic characteristics of early cases with 2019 novel coronavirus (2019-nCoV) disease in Korea, Epidemiol. Health, 42 (2020), e2020007. http://dx.doi.org/10.4178/epih.e2020007 doi: 10.4178/epih.e2020007
![]() |
[34] |
G. Di Pillo, L. Grippo, Exact penalty functions in constrained optimization, SIAM Journal on control and optimization, SIAM J. Control Optim., 27 (1989), 1333–1360. http://dx.doi.org/10.1137/0327068 doi: 10.1137/0327068
![]() |
[35] | Current status of COVID-19 outbreak and vaccination in Korea (4.29.), Korea Disease Control and Prevention Agency (KDCA), 2022. Available from: https://kdca.go.kr/board/board.es?mid=a20501010000&bid=0015&list_no=719429&cg_code=&act=view&nPage=9# |
[36] | E. Mahase, Covid-19: Pfizer's paxlovid is 89% effective in patients at risk of serious illness, company reports, BMJ, 375 (2021). http://dx.doi.org/10.1136/bmj.n2713 |
[37] |
Y. Jo, S. B. Kim, M. Radnaabaatar, K. Huh, J. H. Yoo, K. R. Peck, et al., Model-based cost-effectiveness analysis of oral antivirals against SARS-CoV-2 in Korea, Epidemiol. Health, 44 (2022), e2022034. http://dx.doi.org/10.4178/epih.e2022034 doi: 10.4178/epih.e2022034
![]() |
[38] |
F. Agusto, M. Leite, Optimal control and cost-effective analysis of the 2017 meningitis outbreak in Nigeria, Infect. Dis. Model, 4 (2019), 161–187. http://dx.doi.org/10.1016/j.idm.2019.05.003 doi: 10.1016/j.idm.2019.05.003
![]() |
[39] |
X. Zhang, Z. Zhu, C. Zhang, Multi-stage differential evolution algorithm for constrained D-optimal design, AIMS Math., 6 (2021), 2956–2969. http://dx.doi.org/10.3934/math.2021179 doi: 10.3934/math.2021179
![]() |
[40] |
P. Wang, J. Huang, W. He, J. Zhang, F. Guo, Maximum likelihood DOA estimation based on improved invasive weed optimization algorithm and application of MEMS vector hydrophone array, AIMS Math., 7 (2022), 12342–12363. http://dx.doi.org/10.3934/math.2022685 doi: 10.3934/math.2022685
![]() |
[41] |
S. Zhu, A. P. Piotrowski, M. Ptak, J. J. Napiorkowski, J. Dai, Q. Ji, How does the calibration method impact the performance of the air2water model for the forecasting of lake surface water temperatures?, J. Hydrol., 597 (2021), 126219. http://dx.doi.org/10.1016/j.jhydrol.2021.126219 doi: 10.1016/j.jhydrol.2021.126219
![]() |
[42] |
A. Ferrolino, R. Mendoza, I. Magdalena, J. E. Lope, Application of particle swarm optimization in optimal placement of tsunami sensors, Peer J. Comput. Sci., 6 (2020), e333. http://dx.doi.org/10.7717/peerj-cs.333 doi: 10.7717/peerj-cs.333
![]() |
[43] | A. C. Velasco, M. Darbas, R. Mendoza, M. Bacon, J. C. de Leon, Comparative study of heuristic algorithms for electrical impedance tomography, Philipp. J. Sci., 149 (2020), 747–772. |
[44] |
X. Li, M. Yin, Design of a reconfigurable antenna array with discrete phase shifters using differential evolution algorithm, Prog. Electromagn. Res. B, 31 (2011), 29–43. http://dx.doi.org/10.2528/PIERB11032902 doi: 10.2528/PIERB11032902
![]() |
[45] | X. Li, X. Zhang, M. Yin, J. Wang, A genetic algorithm for the distributed assembly permutation flowshop scheduling problem, 2015 IEEE Congress on Evolutionary Computation (CEC), (2015), 3096–3101. http://dx.doi.org/10.1109/CEC.2015.7257275 |
[46] |
I. M. Hezam, O. Abdul-Raof, A. Foul, F. Aqlan, A quantum-inspired sperm motility algorithm, AIMS Math., 7 (2022), 9057–9088. http://dx.doi.org/10.3934/math.2022504 doi: 10.3934/math.2022504
![]() |
[47] |
B. She, A. Fournier, M. Yao, Y. Wang, G. Hu, A self-adaptive and gradient-based cuckoo search algorithm for global optimization, Appl. Soft Comput., 122 (2022), 108774. http://dx.doi.org/10.1016/j.asoc.2022.108774 doi: 10.1016/j.asoc.2022.108774
![]() |
[48] |
E. A. T. Enriquez, R. G. Mendoza, A. C. T. Velasco, Philippine Eagle optimization algorithm, IEEE Access, 10 (2022), 29089–29120. http://dx.doi.org/10.1109/ACCESS.2022.3158357 doi: 10.1109/ACCESS.2022.3158357
![]() |
[49] |
X. Li, J. Wang, J. Zhou, M. Yin, A perturb biogeography based optimization with mutation for global numerical optimization, Appl. Math. Comput., 218 (2011), 598–609. http://dx.doi.org/10.1016/j.amc.2011.05.110 doi: 10.1016/j.amc.2011.05.110
![]() |
[50] |
X. Li, S. Ma, J. Hu, Multi-search differential evolution algorithm, Appl. Intell., 47 (2017), 231–256. http://dx.doi.org/10.1007/s10489-016-0885-9 doi: 10.1007/s10489-016-0885-9
![]() |
[51] |
X. Li, M. Yin, Modified cuckoo search algorithm with self adaptive parameter method, Inf. Sci., 298 (2015), 80–97. http://dx.doi.org/10.1016/j.ins.2014.11.042 doi: 10.1016/j.ins.2014.11.042
![]() |
[52] |
P. Yarsky, Using a genetic algorithm to fit parameters of a COVID-19 SEIR model for US states, Math. Comput. Simul., 185 (2021), 687–695. http://dx.doi.org/10.1016/j.matcom.2021.01.022 doi: 10.1016/j.matcom.2021.01.022
![]() |
[53] |
C. U. Jamilla, R. G. Mendoza, V. M. P. Mendoza, Parameter estimation in neutral delay differential equations using genetic algorithm with multi-parent crossover, IEEE Access, 9 (2021), 131348–131364. http://dx.doi.org/10.1109/ACCESS.2021.3113677 doi: 10.1109/ACCESS.2021.3113677
![]() |
[54] |
Windarto, M. A. Khan, Fatmawati, Parameter estimation and fractional derivatives of dengue transmission model, AIMS Math., 5 (2020), 2758–2779. http://dx.doi.org/10.3934/math.2020178 doi: 10.3934/math.2020178
![]() |
[55] |
B. Ma, J. Qi, Y. Wu, P. Wang, D. Li, S. Liu, Parameter estimation of the COVID-19 transmission model using an improved quantum-behaved particle swarm optimization algorithm, Digit. Signal Process., 127 (2022), 103577. http://dx.doi.org/10.1016/j.dsp.2022.103577 doi: 10.1016/j.dsp.2022.103577
![]() |
[56] |
X. Li, M. Yin, Parameter estimation for chaotic systems by hybrid differential evolution algorithm and artificial bee colony algorithm, Nonlinear Dyn., 77 (2014), 61–71. http://dx.doi.org/10.1007/s11071-014-1273-9 doi: 10.1007/s11071-014-1273-9
![]() |
[57] |
R. Tanabe, A. S. Fukunaga, Improving the search performance of SHADE using linear population size reduction, 2014 IEEE Congress on Evolutionary Computation (CEC), (2014), 1658-1665. http://dx.doi.org/10.1109/CEC.2014.6900380 doi: 10.1109/CEC.2014.6900380
![]() |
[58] |
K. M. Sallam, S. M. Elsayed, R. A. Sarker, D. L. Essam, Landscape-based adaptive operator selection mechanism for differential evolution, Inf. Sci., 418-419 (2017), 383–404. http://dx.doi.org/10.1016/j.ins.2017.08.028 doi: 10.1016/j.ins.2017.08.028
![]() |
[59] |
J. Wei, H. Niu, A ranking-based adaptive cuckoo search algorithm for unconstrained optimization, Expert Syst. Appl., 204 (2022), 117428. http://dx.doi.org/10.1016/j.eswa.2022.117428 doi: 10.1016/j.eswa.2022.117428
![]() |
[60] | N. H. Awad, M. Z. Ali, P. N. Suganthan, Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems, 2017 IEEE Congress on Evolutionary Computation (CEC), (2017), 372–379. http://dx.doi.org/10.1109/CEC.2017.7969336 |
[61] | A. Kumar, R. K. Misra, D. Singh, Improving the local search capability of Effective Butterfly Optimizer using Covariance Matrix Adapted Retreat Phase, 2017 IEEE Congress on Evolutionary Computation (CEC), (2017), 1835–1842. http://dx.doi.org/10.1109/CEC.2017.7969524 |
[62] | A. W. Mohamed, A. A. Hadi, A. M. Fattouh, K. M. Jambi, LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems, 2017 IEEE Congress on Evolutionary Computation (CEC), (2017), 145–152. http://dx.doi.org/10.1109/CEC.2017.7969307 |
[63] |
N. Covic, B. Lacevic, Wingsuit Flying Search–A Novel Global Optimization Algorithm, IEEE Access, 8 (2020), 53883–53900. http://dx.doi.org/10.1109/ACCESS.2020.2981196 doi: 10.1109/ACCESS.2020.2981196
![]() |
[64] | Artificial Bee Colony Optimization, SKS Labs, 2022. Available from: https://www.mathworks.com/matlabcentral/fileexchange/74122-artificial-bee-colony-optimization |
[65] |
I. Ahmadianfar, O. Bozorg-Haddad, X. Chu, Gradient-based optimizer: A new metaheuristic optimization algorithm, Inf. Sci., 540 (2020), 131–159. http://dx.doi.org/10.1016/j.ins.2020.06.037 doi: 10.1016/j.ins.2020.06.037
![]() |
[66] |
X. Li, J. Zhang, M. Yin, Animal migration optimization: An optimization algorithm inspired by animal migration behavior, Neural Comput. Applic., 24 (2014), 1867–1877. http://dx.doi.org/10.1007/s00521-013-1433-8 doi: 10.1007/s00521-013-1433-8
![]() |
[67] |
X. Ma, D. Vervoort, Critical care capacity during the COVID-19 pandemic: global availability of intensive care beds, J. Crit. Care., 58 (2020), 96–97. http://dx.doi.org/10.1016/j.jcrc.2020.04.012 doi: 10.1016/j.jcrc.2020.04.012
![]() |
[68] |
F. Campbell, B. Archer, H. Laurenson-Schafer, Y. Jinnai, F. Konings, N. Batra, et al., Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021, Euro Surveill., 26 (2021), 2100509. http://dx.doi.org/10.2807/1560-7917.ES.2021.26.24.2100509 doi: 10.2807/1560-7917.ES.2021.26.24.2100509
![]() |
[69] | R. C. Barnard, N. G. Davies, C. A. Pearson, M. Jit, W. J. Edmunds, Projected epidemiological consequences of the Omicron SARS-CoV-2 variant in England, December 2021 to April 2022, preprint available at medRxiv, (16 December 2021). http://dx.doi.org/10.1101/2021.12.15.21267858 |
[70] | Report 50-Hospitalisation risk for Omicron cases in England, Imperial College London (22-12-2021), N. Ferguson, A. Ghani, W. Hinsley, E. Volz, on behalf of the Imperial College COVID-19 response team, 2021. Available from: http://hdl.handle.net/10044/1/93035 |
[71] |
V. Gupta, R. C. Bhoyar, A. Jain, S. Srivastava, R. Upadhayay, M. Imran et al., Asymptomatic Reinfection in 2 Healthcare Workers From India With Genetically Distinct Severe Acute Respiratory Syndrome Coronavirus 2, Clin. Infect. Dis., 73 (2021), e2823–e2825. http://dx.doi.org/10.1093/cid/ciaa1451 doi: 10.1093/cid/ciaa1451
![]() |
[72] |
P. Colson, M. Finaud, N. Levy, J. C. Lagier, D. Raoult, Evidence of SARS-CoV-2 re-infection with a different genotype, J. Infect., 82 (2021), 84–123. http://dx.doi.org/10.1016/j.jinf.2020.11.011 doi: 10.1016/j.jinf.2020.11.011
![]() |
[73] |
P. Brouqui, P. Colson, C. Melenotte, L. Houhamdi, M. Bedotto, C. Devaux, et al., COVID-19 re-infection, Eur. J. Clin. Invest., 51 (2021), e13537. http://dx.doi.org/10.1111/eci.13537 doi: 10.1111/eci.13537
![]() |
[74] |
P. C. Resende, J. F. Bezerra, R. Vasconcelos, I. Arantes, L. Appolinario, A. C. Mendonça, et al., Severe acute respiratory syndrome coronavirus 2 P. 2 lineage associated with reinfection case, Brazil, June–October 2020, Emerg. Infect. Dis., 27 (2021), 1789. http://dx.doi.org/10.3201/eid2707.210401 doi: 10.3201/eid2707.210401
![]() |
[75] |
J. P. Townsend, H. B. Hassler, Z. Wang, S. Miura, J. Singh, S. Kumar, et al., The durability of immunity against reinfection by SARS-CoV-2: A comparative evolutionary study, Lancet Microbe, 2 (2021), e666–e675. http://dx.doi.org/10.1016/S2666-5247(21)00219-6 doi: 10.1016/S2666-5247(21)00219-6
![]() |
[76] | B. J. Gardner, A. M. Kilpatrick, Estimates of reduced vaccine effectiveness against hospitalization, infection, transmission and symptomatic disease of a new SARS-CoV-2 variant, Omicron (B.1.1.529), using neutralizing antibody titers, preprint available at medRxiv, (12 December 2021). http://dx.doi.org/10.1101/2021.12.10.21267594 |
[77] |
S. Mirjalili, The Ant Lion Optimizer, Adv. Eng. Softw., 83 (2015), 80–98. http://dx.doi.org/10.1016/j.advengsoft.2015.01.010 doi: 10.1016/j.advengsoft.2015.01.010
![]() |
[78] | R. Victor, Z. Nahorski, R. V. V. Vidal, Simulated Annealing Applied to Combinatorial Optimization, Special Issue of the Journal of Control and Cybernetics, Warszawa, 25 (1996). |
[79] |
J. Kennedy, R. Eberhart, Particle swarm optimization, Proceedings of ICNN'95-International Conference on Neural Networks, 4 (1995), 1942–1948. http://dx.doi.org/10.1109/ICNN.1995.488968 doi: 10.1109/ICNN.1995.488968
![]() |
[80] |
S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey Wolf Optimizer, Adv. Eng. Softw., 69 (2014), 46–61. http://dx.doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007
![]() |
[81] | G. G. Wang, S. Deb, L. d. S. Coelho, Elephant Herding Optimization, 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI), (2015), 1–5. http://dx.doi.org/10.1109/ISCBI.2015.8 |
[82] | D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Longman Publishing Co., Inc., USA, 1989. |
[83] |
Y. Villuendas-Rey, J. L. Velázquez-Rodríguez, M. D. Alanis-Tamez, M. A. Moreno-Ibarra, C. Yáñez-Márquez, Mexican Axolotl Optimization: A Novel Bioinspired Heuristic, Mathematics, 9 (2021), 781. http://dx.doi.org/10.3390/math9070781 doi: 10.3390/math9070781
![]() |
[84] |
A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization: Algorithm and applications, Future Gener. Comput. Syst., 97 (2019), 849–872. http://dx.doi.org/10.1016/j.future.2019.02.028 doi: 10.1016/j.future.2019.02.028
![]() |
[85] |
C. Audet, J. E. Dennis, Analysis of Generalized Pattern Searches, SIAM J. Optim., 13 (2002), 889–903. http://dx.doi.org/10.1137/S1052623400378742 doi: 10.1137/S1052623400378742
![]() |
[86] |
S. Mirjalili, A. Lewis, The Whale Optimization Algorithm, Adv. Eng. Softw., 95 (2016), 51–67. http://dx.doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008
![]() |
[87] |
M. Khishe, M. R. Mosavi, Chimp optimization algorithm, Expert Syst. Appl., 149 (2020), 113338. http://dx.doi.org/10.1016/j.eswa.2020.113338 doi: 10.1016/j.eswa.2020.113338
![]() |
[88] | X. S. Yang, A New Metaheuristic Bat-Inspired Algorithm, In: J. R. González, D. A. Pelta, C. Cruz, G. Terrazas, N. Krasnogor, Eds, Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), Studies in Computational Intelligence, vol 284. Springer, Berlin, Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12538-6_6 |
1. | Batirkhan Turmetov, Valery Karachik, On solvability of some inverse problems for a nonlocal fourth-order parabolic equation with multiple involution, 2024, 9, 2473-6988, 6832, 10.3934/math.2024333 | |
2. | İrem Bağlan, Ahmet Akdemir, Mustafa Dokuyucu, Inverse coefficient problem for quasilinear pseudo-parabolic equation by fourier method, 2023, 37, 0354-5180, 7217, 10.2298/FIL2321217B |