Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

An exact solution of heat and mass transfer analysis on hydrodynamic magneto nanofluid over an infinite inclined plate using Caputo fractional derivative model

  • Received: 26 June 2022 Revised: 12 October 2022 Accepted: 12 October 2022 Published: 22 November 2022
  • MSC : 35Q30, 26A33

  • This paper presents the problem modeled using Caputo fractional derivatives with an accurate study of the MHD unsteady flow of Nanofluid through an inclined plate with the mass diffusion effect in association with the energy equation. H2O is thought to be a base liquid with clay nanoparticles floating in it in a uniform way. Bousinessq's approach is used in the momentum equation for pressure gradient. The nondimensional fluid temperature, species concentration, and fluid transport are derived together with Jacob Fourier sine and Laplace transforms Techniques in terms of exponential decay function, whose inverse is computed further in terms of Mittag-Leffler function. The impact of various physical quantities interpreted with fractional order of the Caputo derivatives. The obtained temperature, transport, and species concentration profiles show behaviours for 0<α<1 where α is the fractional parameter. Numerical calculations have been carried out for the rate of heat transmission and the Sherwood number is swotted to be put in the form of tables. The parameters for the magnetic field and the angle of inclination slow down the boundary layer of momentum. The distributions of velocity, temperature, and concentration expand more rapidly for higher values of the fractional parameter. Additionally, it is revealed that for the volume fraction of nanofluids, the concentration profiles behave in the opposite manner. The limiting case solutions also presented on flow field of governing model.

    Citation: J. Kayalvizhi, A. G. Vijaya Kumar, Ndolane Sene, Ali Akgül, Mustafa Inc, Hanaa Abu-Zinadah, S. Abdel-Khalek. An exact solution of heat and mass transfer analysis on hydrodynamic magneto nanofluid over an infinite inclined plate using Caputo fractional derivative model[J]. AIMS Mathematics, 2023, 8(2): 3542-3560. doi: 10.3934/math.2023180

    Related Papers:

    [1] Ibtesam Alshammari, Islam M. Taha . On fuzzy soft β-continuity and β-irresoluteness: some new results. AIMS Mathematics, 2024, 9(5): 11304-11319. doi: 10.3934/math.2024554
    [2] R. Mareay, Radwan Abu-Gdairi, M. Badr . Soft rough fuzzy sets based on covering. AIMS Mathematics, 2024, 9(5): 11180-11193. doi: 10.3934/math.2024548
    [3] Fahad Alsharari, Ahmed O. M. Abubaker, Islam M. Taha . On r-fuzzy soft γ-open sets and fuzzy soft γ-continuous functions with some applications. AIMS Mathematics, 2025, 10(3): 5285-5306. doi: 10.3934/math.2025244
    [4] Abdelghani Taouti, Waheed Ahmad Khan . Fuzzy subnear-semirings and fuzzy soft subnear-semirings. AIMS Mathematics, 2021, 6(3): 2268-2286. doi: 10.3934/math.2021137
    [5] Arife Atay . Disjoint union of fuzzy soft topological spaces. AIMS Mathematics, 2023, 8(5): 10547-10557. doi: 10.3934/math.2023535
    [6] Samirah Alzahrani, A. A. Nasef, N. Youns, A. I. EL-Maghrabi, M. S. Badr . Soft topological approaches via soft γ-open sets. AIMS Mathematics, 2022, 7(7): 12144-12153. doi: 10.3934/math.2022675
    [7] Rui Gao, Jianrong Wu . Filter with its applications in fuzzy soft topological spaces. AIMS Mathematics, 2021, 6(3): 2359-2368. doi: 10.3934/math.2021143
    [8] Warud Nakkhasen, Teerapan Jodnok, Ronnason Chinram . Intra-regular semihypergroups characterized by Fermatean fuzzy bi-hyperideals. AIMS Mathematics, 2024, 9(12): 35800-35822. doi: 10.3934/math.20241698
    [9] Fenhong Li, Liang Kong, Chao Li . Non-global nonlinear mixed skew Jordan Lie triple derivations on prime -rings. AIMS Mathematics, 2025, 10(4): 7795-7812. doi: 10.3934/math.2025357
    [10] Umar Ishtiaq, Fahad Jahangeer, Doha A. Kattan, Manuel De la Sen . Generalized common best proximity point results in fuzzy multiplicative metric spaces. AIMS Mathematics, 2023, 8(11): 25454-25476. doi: 10.3934/math.20231299
  • This paper presents the problem modeled using Caputo fractional derivatives with an accurate study of the MHD unsteady flow of Nanofluid through an inclined plate with the mass diffusion effect in association with the energy equation. H2O is thought to be a base liquid with clay nanoparticles floating in it in a uniform way. Bousinessq's approach is used in the momentum equation for pressure gradient. The nondimensional fluid temperature, species concentration, and fluid transport are derived together with Jacob Fourier sine and Laplace transforms Techniques in terms of exponential decay function, whose inverse is computed further in terms of Mittag-Leffler function. The impact of various physical quantities interpreted with fractional order of the Caputo derivatives. The obtained temperature, transport, and species concentration profiles show behaviours for 0<α<1 where α is the fractional parameter. Numerical calculations have been carried out for the rate of heat transmission and the Sherwood number is swotted to be put in the form of tables. The parameters for the magnetic field and the angle of inclination slow down the boundary layer of momentum. The distributions of velocity, temperature, and concentration expand more rapidly for higher values of the fractional parameter. Additionally, it is revealed that for the volume fraction of nanofluids, the concentration profiles behave in the opposite manner. The limiting case solutions also presented on flow field of governing model.



    In this paper, we consider the existence of solutions and a generalized Lyapunov-type inequality to the following boundary value problem for differential equation of variable order

    {Dq(t)0+x(t)+f(t,x)=0,  0<t<T,x(0)=0,x(T)=0, (1.1)

    where 0<T<+, Dq(t)0+ denotes derivative of variable order([1,2,3,4]) defined by

    Dq(t)0+x(t)=d2dt2t0(ts)1q(s)Γ(2q(s))x(s)ds,t>0, (1.2)

    and

    I2q(t)0+x(t)=t0(ts)1q(s)Γ(2q(s))x(s)ds,t>0, (1.3)

    denotes integral of variable order 2q(t), 1<q(t)2, 0tT. f:(0,T]×RR is given continuous function satisfying some assumption conditions.

    The operators of variable order, which fall into a more complex operator category, are the derivatives and integrals whose order is the function of certain variables. The variable order fractional derivative is an extension of constant order fractional derivative. In recent years, the operator and differential equations of variable order have been applied in engineering more and more frequently, for the examples and details, see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17].

    The subject of fractional calculus has gained considerable popularity and importance due to its frequent appearance in different research areas and engineering, such as physics, chemistry, control of dynamical systems etc. Recently, many people paid attention to the existence and uniqueness of solutions to boundary value problems for fractional differential equations. Although the existing literature on solutions of boundary value problems of fractional order (constant order) is quite wide, few papers deal with the existence of solutions to boundary value problems of variable order. According to (1.2) and (1.3), it is obviously that when q(t) is a constant function, i.e. q(t)q (q is a finite positive constant), then Iq(t)0+,Dq(t)0+ are the usual Riemann-Liouville fractional integral and derivative [18].

    The following properties of fractional calculus operators Dq0+, Iq0+ play an important part in discussing the existence of solutions of fractional differential equations.

    Proposition 1.1. [18] The equality Iγ0+Iδ0+f(t)=Iγ+δ0+f(t), γ>0,δ>0 holds for fL(0,b),0<b<+.

    Proposition 1.2. [18] The equality Dγ0+Iγ0+f(t)=f(t), γ>0 holds for fL(0,b),0<b<+.

    Proposition 1.3. [18] Let 1<α2. Then the differential equation

    Dα0+f=0

    has solutions

    f(t)=c1tα1+c2tα2,c1,c2R.

    Proposition 1.4. [18] Let 1<α2, f(t)L(0,b), Dα0+fL(0,b). Then the following equality holds

    Iα0+Dα0+f(t)=f(t)+c1tα1+c2tα2,c1,c2R.

    These properties play a very important role in considering the existence of the solutions of differential equations for the Riemnn-Liouville fractional derivative, for details, please refer to [18]. However, from [1,2,16], for general functions h(t),g(t), we notice that the semigroup property doesn't hold, i.e., Ih(t)a+Ig(t)a+Ih(t)+g(t)a+. Thus, it brings us extreme difficulties, we can't get these properties like Propositions 1.1-1.4 for the variable order fractional operators (integral and derivative). Without these properties for variable order fractional derivative and integral, we can hardly consider the existence of solutions of differential equations for variable order derivative by means of nonlinear functional analysis (for instance, some fixed point theorems).

    Let's take Proposition 1.1 for example. To begin with the simplest case,

    Example 1.5. Let p(t)=t, q(t)=1, f(t)=1,0t3. Now, we calculate Ip(t)0+Iq(t)0+f(t)|t=1 and Ip(t)+q(t)0+f(t)|t=1 defined in (1.3).

    Ip(t)0+Iq(t)0+f(t)|t=1=10(1s)s1Γ(s)s0(sτ)11Γ(1)dτds=10(1s)s1sΓ(s)ds0.472.

    and

    Ip(t)+q(t)0+f(t)|t=1=10(1s)sΓ(s+1)ds=10(1s)ssΓ(s)ds0.686.

    Therefore,

    Ip(t)0+Iq(t)0+f(t)|t=1Ip(t)+q(t)0+f(t)|t=1.

    As a result, the Propositions 1.2 and Propositions 1.4 do not hold for Dp(t)0+ and Ip(t)0+, such as, for function fL(0,T),0<p(t)<1,0tT, we get

    Dp(t)0+Ip(t)0+f(t)=D1(I1p(t)0+Ip(t)0+f(t))D1I1p(t)+p(t)0+f(t)=f(t),t(0,T],

    since we know that I1p(t)0+Ip(t)0+f(t)I1p(t)+p(t)0+f(t) for general function f.

    Now, we can conclude that Propositions 1.1–1.4 do not hold for Dq(t)0+ and Iq(t)0+.

    So, one can not transform a differential equation of variable order into an equivalent interval equation without the Propositions 1.1–1.4. It is a difficulty for us in dealing with the boundary value problems of differential equations of variable order. Since the equations described by the variable order derivatives are highly complex, difficult to handle analytically, it is necessary and significant to investigate their solutions.

    In [16], by means of Banach Contraction Principle, Zhang considered the uniqueness result of solutions to initial value problem of differential equation of variable order

    {Dp(t)0+x(t)=f(t,x),0<tT,x(0)=0, (1.4)

    where 0<T<+, Dp(t)0+ denotes derivative of variable order p(t) ([1,2,3,4]) defined by

    Dp(t)0+x(t)=ddtt0(ts)p(t)Γ(1p(t))x(s)ds,t>0. (1.5)

    and 1Γ(1p(t))t0(ts)p(t)x(s)ds is integral of variable order 1p(t) for function x(t). And p:[0,T](0,1] is a piecewise constant function with partition P={[0,T1],(T1,T2],(T2,T3],, (TN1,T]} (N is a given natural number) of the finite interval [0,T], i.e.

    p(t)=Nk=1qkIk(t),t[0,T],

    where 0<qk1,k=1,2,,N are constants, and Ik is the indicator of the interval [Tk1,Tk],k=1,2,,N(here T0=0,TN=T), that is Ik=1 for t[Tk1,Tk], Ik=0 for elsewhere.

    In [17], the authors studied the Cauchy problem for variable order differential equations with a piecewise constant order function[19]. Inspired by these works, we will study the boundary value problem (1.1) for variable order differential equation with a piecewise constant order function q(t) in this paper.

    Lyapunov's inequality is an outstanding result in mathematics with many different applications, see [20,21,22,23,24,25] and references therein. The result, as proved by Lyapunov[20] in 1907, asserts that if h:[a,b]R is a continuous function, then a necessary condition for the boundary value problem

    {y(t)+h(t)y(t)=0,a<t<b,y(a)=y(b)=0, (1.6)

    to have a nontrivial solution is given by

    ba|h(s)|ds>4ba, (1.7)

    where <a<b<+.

    Lyapunov's inequality has taken many forms, including versions in the context of fractional (noninteger order) calculus, where the second-order derivative in (1.6) is substituted by a fractional operator of order α,

    {Dαa+y(t)+h(t)y(t)=0,a<t<b,y(a)=y(b)=0, (1.8)

    where Dαa+ is the Riemann-Liouville derivative of order α(1,2] and h:[a,b]R is a continuous function. If (1.8) has a nontrivial solution, then

    ba|h(s)|ds>Γ(α)(4ba)α1.

    A Lyapunov fractional inequality can also be obtained by considering the fractional derivative in in the sense of Caputo instead of Riemann-Liouville [22]. More recently, there are some results of Lyapunov type inequalities for fractional boundary value problems. see [23,24]. In [25], authors obtained a generalization of inequality to boundary value problem as following

    {Dαa+y(t)+h(t)f(y)=0,a<t<b,y(a)=y(b)=0, (1.9)

    where Dαa+ is the Riemann-Liouville derivative, 1<α2, and h:[a,b]R is a Lebesgue integrable function. Under some assumptions on the nonlinear term f, authors got a generalization of inequality to the boundary value problem (1.9).

    ba|h(s)|ds>4α1Γ(α)η(ba)α1f(η), (1.10)

    where η is maximum value of nontrivial solution to the boundary value problem (1.9).

    Motivated by [21,22,23,24,25] and the above results, we focus on a generalized Lyapunov-type inequality to the boundary value problem (1.1) under certain assumptions of nonlinear term.

    The paper is organized as following. In Section 2, we provide some necessary definitions associated with the boundary value problem (1.1). In Section 3, we establish the existence of solutions for the boundary value problem (1.1) by using the Schauder fixed point theorem. In Section 4, we investigative the generalized Lyapunov-type inequalities to the boundary value problem (1.1). In section 5, we give some examples are presented to illustrate the main results.

    For the convenience of the reader, we present here some necessary definitions that will be used to prove our main results.

    Definition 2.1. A generalized interval is a subset I of R which is either an interval (i.e. a set of the form [a,b],(a,b),[a,b) or (a,b]); a point {a}; or the empty set .

    Definition 2.2. If I is a generalized interval. A partition of I is a finite set P of generalized intervals contained in I, such that every x in I lies in exactly one of the generalized intervals J in P.

    Example 2.3. The set P={{1},(1,6),[6,7),{7},(7,8]} of generalized intervals is a partition of [1,8].

    Definition 2.4. Let I be a generalized interval, let f:IR be a function, and let P a partition of I. f is said to be piecewise constant with respect to P if for every JP, f is constant on J.

    Example 2.5. The function f:[1,6]R defined by

    f(x)={3,  1x<3,4,  x=3,5,  3<x<6,2,  x=6,

    is piecewise constant with respect to the partition {[1,3],{3},(3,6),{6}} of [1,6].

    The following example illustrates that the semigroup property of the variable order fractional integral doesn't holds for the piecewise constant functions p(t) and q(t) defined in the same partition of finite interval [a,b].

    Example 2.6. Let p(t)={3,  0t1,2,  1<t4, q(t)={2,  0t1,3,  1<t4, and f(t)=1,0t4. We'll verify Ip(t)0+Iq(t)0+f(t)|t=2Ip(t)+q(t)0+f(t)|t=2, here, the variable order fractional integral is defined in (1.3). For 1t4, we have

    Ip(t)0+Iq(t)0+f(t)=10(ts)p(s)1Γ(p(s))s0(sτ)q(τ)1Γ(q(τ))dτds+t1(ts)p(s)1Γ(p(s))s0(sτ)q(τ)1Γ(q(τ))dτds=10(ts)2Γ(3)s0(sτ)Γ(2)dτds+t1(ts)Γ(2)[10(sτ)Γ(2)dτ+s1(sτ)2Γ(3)dτ]ds=10(ts)2s22Γ(3)ds+t1(ts)[s22(s1)22+(s1)36]ds=10(ts)2s22Γ(3)ds+16t1(ts)(s33s2+9s4)ds,

    thus, we have

    Ip(t)0+Iq(t)0+f(t)|t=2=10(2s)2s22Γ(3)ds+1621(2s)(s33s2+9s4)ds=215+1760=512
    Ip(t)+q(t)0+f(t)|t=2=20(2s)p(s)+q(s)1Γ(p(s)+q(s))ds=10(2s)3+21Γ(3+2)ds+21(2s)2+31Γ(2+3)ds=31120+1120=415.

    Therefore, we obtain

    Ip(t)0+Iq(t)0+f(t)|t=2Ip(t)+q(t)0+f(t)|t=2,

    which implies that the semigroup property of the variable order fractional integral doesn't hold for the piecewise constant functions p(t) and q(t) defined in the same partition [0,1],(1,4] of finite interval [0,4].

    We need the following assumptions:

    (H1) Let nN be an integer, P={[0,T1],(T1,T2],(T2,T3],,(Tn1,T]} be a partition of the interval [0,T], and let q(t):[0,T](1,2] be a piecewise constant function with respect to P, i.e.,

    q(t)=Nk=1qkIk(t)={q1,  0tT1,q2,  T1<tT2,,  ,qn,  Tn1<tTn=T, (3.1)

    where 1<qk2(k=1,2,,n) are constants, and Ik is the indicator of the interval [Tk1,Tk], k=1,2,,n (here T0=0,Tn=T), that is, Ik(t)=1 for t[Tk1,Tk] and Ik(t)=0 for elsewhere.

    (H2) Let trf:[0,T]×RR be a continuous function (0r<1), there exist constants c1>0,c2>0, 0<γ<1 such that

    tr|f(t,x(t))|c1+c2|x(t)|γ,0tT,x(t)R.

    In order to obtain our main results, we firstly carry on essential analysis to the boundary value problem (1.1).

    By (1.2), the equation of the boundary value problem (1.1) can be written as

    d2dt2t0(ts)1q(s)Γ(2q(s))x(s)ds+f(t,x)=0,  0<t<T, (3.2)

    According to (H1), Eq (3.2) in the interval (0,T1] can be written as

    Dq10+x(t)+f(t,x)=0,  0<tT1. (3.3)

    Equation (3.2) in the interval (T1,T2] can be written by

    d2dt2(T10(ts)1q1Γ(2q1)x(s)ds+tT1(ts)1q2Γ(2q2)x(s)ds)+f(t,x)=0, (3.4)

    and Eq (3.2) in the interval (T2,T3] can be written by

    d2dt2(T10(ts)1q1Γ(2q1)x(s)ds+T2T1(ts)1q2Γ(2q2)x(s)ds+tT2(ts)1q3Γ(2q3)x(s)ds)+f(t,x)=0. (3.5)

    In the same way, Eq (3.2) in the interval (Ti1,Ti],i=4,5,,n1 can be written by

    d2dt2(T10(ts)1q1Γ(2q1)x(s)ds++tTi1(ts)1qiΓ(2qi)x(s)ds)+f(t,x)=0. (3.6)

    As for the last interval (Tn1,T), similar to above argument, Eq (3.2) can be written by

    d2dt2(T10(ts)1q1Γ(2q1)x(s)ds++tTn1(ts)1qnΓ(2qn)x(s)ds)+f(t,x)=0. (3.7)

    Remark 3.1. From the arguments above, we find that, according to condition (H1), in the different interval, the equation of the boundary value problem (1.1) must be represented by different expression. For instance, in the interval (0,T1], the equation of the boundary value problem (1.1) is represented by (3.3); in the interval (T1,T2], the equation of the boundary value problem (1.1) is represented by (3.4); in the interval (T2,T3], the equation of the boundary value problem (1.1) is represented by (3.5), etc. But, as far as we know, in the different intervals, the equation of integer order or constant fractional order problems may be represented by the same expression. Based these facts, different than integer order or constant fractional order problems, in order to consider the existence results of solution to the boundary value problem (1.1), we need consider the relevant problem defined in the different interval, respectively.

    Now, based on arguments previous, we present definition of solution to the boundary value problem (1.1), which is fundamental in our work.

    Definition 3.2. We say the boundary value problem (1.1) has a solution, if there exist functions xi(t),i=1,2,,n such that x1C[0,T1] satisfying equation (3.3) and x1(0)=0=x1(T1); x2C[0,T2] satisfying equation (3.4) and x2(0)=0=x2(T2); x3C[0,T3] satisfying equation (3.5) and x3(0)=0=x3(T3); xiC[0,Ti] satisfying equation (3.6) and xi(0)=0=xi(Ti)(i=4,5,,n1); xnC[0,T] satisfying equation (3.7) and xn(0)=xn(T)=0.

    Theorem 3.3. Assume that conditions (H1) and (H2) hold, then the boundary value problem (1.1) has one solution.

    Proof. According the above analysis, the equation of the boundary value problem (1.1) can be written as Eq (3.2). Equation (3.2) in the interval (0,T1] can be written as

    Dq10+x(t)+f(t,x)=0,  0<tT1.

    Now, we consider the following two-point boundary value problem

    {Dq10+x(t)+f(t,x)=0,  0<t<T1,x(0)=0,x(T1)=0. (3.8)

    Let xC[0,T1] be solution of the boundary value problem (3.8). Now, applying the operator Iq10+ to both sides of the above equation. By Propositions 1.4, we have

    x(t)=d1tq11+d2tq121Γ(q1)t0(ts)q11f(s,x(s))ds,0<tT1.

    By x(0)=0 and the assumption of function f, we could get d2=0. Let x(t) satisfying x(T1)=0, thus we can get d1=Iq10+f(T1,x)T1q11. Then, we have

    x(t)=Iq10+f(T1,x)T1q11tq11Iq10+f(t,x),0tT1 (3.9)

    Conversely, let xC[0,T1] be solution of integral Eq (3.9), then, by the continuity of function trf and Proposition 1.2, we can easily get that x is the solution of boundary value problem (3.8).

    Define operator T:C[0,T1]C[0,T1] by

    Tx(t)=Iq10+f(T1,x)T1q11tq11Iq10+f(t,x(t)),0tT1.

    It follows from the properties of fractional integrals and assumptions on function f that the operator T:C[0,T1]C[0,T1] defined above is well defined. By the standard arguments, we could verify that T:C[0,T1]C[0,T1] is a completely continuous operator.

    In the next analysis, we take

    M(r,q)=max

    Let \Omega = \{x\in C[0, T_1]: \|x\|\leq R\} be a bounded closed convex subset of C[0, T_1] , where

    R = \max\left\{ 2c_1M(r, q)(T+1)^2, \left(2c_2M(r, q)(T+1)^2\right)^{\frac 1{1-\gamma}}\right \}.

    For x\in \Omega and by (H_2) , we have

    \begin{eqnarray*} |Tx(t)|\leq&&\frac {T_1^{1-q_1}t^{q_1-1}}{\Gamma(q_1)}\int_0^{T_1}(T_1-s)^{q_1-1}|f(s, x(s))|ds+\frac 1{\Gamma(q_1)}\int_0^t(t-s)^{q_1-1}|f(s, x(s))|ds\\ \\ \leq&&\frac 2{\Gamma(q_1)}\int_0^{T_1}(T_1-s)^{q_1-1}|f(s, x(s))|ds\\ \\ \leq&&\frac 2{\Gamma(q_1)}\int_0^{T_1}(T_1-s)^{q_1-1}s^{-r}(c_1+c_2|x(s)|^{\gamma}) ds\\ \\ \leq&&\frac {2T_1^{q_1-1}}{\Gamma(q_1)}\int_0^{T_1}s^{-r}(c_1+c_2R^{\gamma})ds\\ \\ \leq&&\frac{ 2T_1^{q_1-1}T_1^{1-r}}{(1-r)\Gamma(q_1)}(c_1+c_2R^{\gamma})\\ \\ \leq&&M(r, q)T_1^{q_1-r}(c_1+c_2R^{\gamma})\\ \\ \leq&&M(r, q)(T+1)^2(c_1+c_2RR^{\gamma-1})\\ \\ \leq&&\frac R2+\frac R2 = R, \end{eqnarray*}

    which means that T(\Omega)\subseteq \Omega . Then the Schauder fixed point theorem assures that the operator T has one fixed point x_1\in \Omega , which is a solution of the boundary value problem (3.8).

    Also, we have obtained that Eq (3.2) in the interval (T_1, T_2] can be written by (3.4). In order to consider the existence result of solution to (3.4), we rewrite (3.4) as following

    \begin{equation*} \frac {d^2}{dt^2}\int_0^{T_1}\frac{(t-s)^{1-q_2}} {\Gamma(2-q_2)}x(s)ds+\frac {d^2}{dt^2}\int_{T_1}^t\frac{(t-s)^{1-q_2}} {\Gamma(2-q_2)}x(s)ds = f(t, x).\ \ T_1 \lt t\leq T_2, \end{equation*}

    For 0\leq s\leq T_1 , we take x(s)\equiv 0 , then, by the above equation, we get

    D_{T_1}^{q_2}x(t)+f(t, x) = 0, T_1 \lt t \lt T_2.

    Now, we consider the following boundary value problem

    \begin{equation} \left\{ \begin{array}{ll} D_{T_1+}^{q_2} x(t)+f(t, x) = 0, \ \ T_1 \lt t \lt T_2, \\ x(T_1) = 0, \; \; x(T_2) = 0, \end{array}\right. \end{equation} (3.10)

    Let x\in C[T_1, T_2] be solution of the boundary value problem (3.10). Now, applying operator I_{T_1+}^{q_2} on both sides of equation to boundary value problem (3.10) and by Propositions 1.4, we have

    x(t) = d_1(t-T_1)^{q_2-1}+d_2(t-T_1)^{q_2-2}-\frac 1{\Gamma(q_2)} \int_{T_1}^t(t-s)^{q_2-1}f(s, x(s))ds, \; \; T_1 \lt t\leq T_2.

    By x(T_1) = 0, x(T_2) = 0 , we have d_2 = 0 and d_1 = I_{T_1+}^{q_2}f(T_2, x)(T_2-T_1)^{1-q_2} . Then, we have

    \begin{align*} x(t) = I_{0+}^{q_2}f(T_2, x)(T_2&-T_1)^{1-q_2}(t-T_1)^{q_2-1}- \frac 1{\Gamma(q_2)}\int_{T_1}^t(t-s)^{q_2-1}f(s, x(s))ds, \; \; T_1\leq t\leq T_2. \end{align*}

    Conversely, let x\in C[T_1, T_2] be solution of integral equation above, then, by the continuity assumption of function t^rf and Proposition (1.2), we can get that x is solution solution of the boundary value problem (3.10).

    Define operator T:C[T_1, T_2]\rightarrow C[T_1, T_2] by

    Tx(t) = I_{0+}^{q_2}f(T_2, x)(T_2-T_1)^{1-q_2}(t-T_1)^{q_2-1}- \frac 1{\Gamma(q_2)}\int_{T_1}^t(t-s)^{q_2-1}f(s, x(s))ds.

    It follows from the continuity of function t^rf that operator T:C[T_1, T_2]\rightarrow C[T_1, T_2] is well defined. By the standard arguments, we know that T:C[T_1, T_2]\rightarrow C[T_1, T_2] is a completely continuous operator.

    For x\in \Omega and by (H_2) , we get

    \begin{eqnarray*} |Tx(t)|\leq&&\frac {(T_2-T_1)^{1-q_2}(t-T_1)^{q_2-1}}{\Gamma(q_2)}\int_{T_1}^{T_2}(T_2-s)^{q_2-1}|f(s, x(s))|ds+\frac 1{\Gamma(q_2)}\int_{T_1}^t(t-s)^{q_2-1}|f(s, x(s))|ds\\ \\ \leq&&\frac 2{\Gamma(q_2)}\int_{T_1}^{T_2}(T_2-s)^{q_2-1}|f(s, x(s))|ds\\ \\ \leq&&\frac 2{\Gamma(q_2)}\int_{T_1}^{T_2}(T_2-s)^{q_2-1}s^{-r}(c_1+c_2|x(s)|^{\gamma}) ds\\ \\ \leq&&\frac {2T_2^{q_2-1}}{\Gamma(q_2)}\int_{T_1}^{T_2}s^{-r}(c_1+c_2R^{\gamma}) ds\\ \\ = &&\frac{2T_2^{q_2-1} (T_2^{1-r}-T_1^{1-r})} {(1-r)\Gamma(q_2)}(c_1+c_2R^{\gamma})\\ \\ \leq&&\frac{2T_2^{q_2-r}} {(1-r)\Gamma(q_2)}(c_1+c_2R^{\gamma})\\ \\ \leq&&M(r, q)(T+1)^2(c_1+c_2RR^{\gamma-1})\\ \\ \leq&&\frac R2+\frac R2 = R, \end{eqnarray*}

    which means that T(\Omega)\subseteq \Omega . Then the Schauder fixed point theorem assures that operator T has one fixed point \widetilde{x}_2\in \Omega , which is one solution of the following integral equation, that is,

    \begin{align} \widetilde{x}_2(t)& = I_{0+}^{q_2}f(T_2, \widetilde{x}_2)(T_2-T_1)^{1-q_2} (t-T_1)^{q_2-1}\\ &-\frac 1{\Gamma(q_2)}\int_{T_1}^t(t-s)^{q_2-1} f(s, \widetilde{x}_2(s))ds, \quad T_1\leq t\leq T_2. \end{align} (3.11)

    Applying operator D_{T_1+}^{q_2} on both sides of (3.11), by Proposition 1.2 , we can obtain that

    D_{T_1+}^{q_2}\widetilde{x}_2(t)+f(t, \widetilde{x}_2) = 0, \quad T_1 \lt t\leq T_2,

    that is, \widetilde{x}_2(t) satisfies the following equation

    \begin{equation} \frac {d^2}{dt^2}\frac 1{\Gamma(2-q_2)} \int_{T_1}^t(t-s)^{1-q_2}\widetilde{x}_2(s)ds+f(t, \widetilde{x}_2) = 0, \quad T_1 \lt t\leq T_2. \end{equation} (3.12)

    We let

    \begin{equation} x_2(t) = \left\{ \begin{array}{ll} 0, \quad\quad \ \ 0\leq t\leq T_1, \\ \widetilde{x}_2(t), \quad T_1 \lt t\leq T_2 \end{array}\right. \end{equation} (3.13)

    hence, from (3.12), we know that x_2\in C[0, T_2] defined by (3.13) satisfies equation

    \begin{eqnarray*} \frac {d^2}{dt^2}\left (\int_0^{T_1}\frac{(t-s)^{1-q_1}} {\Gamma(2-q_1)}x_2(s)ds+\int_{T_1}^t\frac{(t-s)^{1-q_2}} {\Gamma(2-q_2)}x_2(s)ds\right)+f(t, x_2) = 0, \end{eqnarray*}

    which means that x_2\in C[0, T_2] is one solution of (3.4) with x_2(0) = 0, x_2(T_2) = \widetilde{x}_2(T_2) = 0 .

    Again, we have known that Eq (3.2) in the interval (T_2, T_3] can be written by (3.5). In order to consider the existence result of solution to Eq (3.5), for 0\leq s\leq T_2 , we take x(s)\equiv 0 , then, by (3.5), we get

    D_{T_2}^{q_3}x(t)+f(t, x) = 0, \; \; T_2 \lt t \lt T_3.

    Now, we consider the following boundary value problem

    \begin{equation} \left\{ \begin{array}{ll} D_{T_2+}^{q_3} x(t)+f(t, x) = 0, \ \ T_2 \lt t \lt T_3, \\ x(T_2) = 0, \; \; x(T_3) = 0. \end{array}\right. \end{equation} (3.14)

    By the standard way, we know that the boundary value problem (3.14) exists one solution \widetilde{x}_3\in \Omega . Since \widetilde{x}_3 satisfies equation

    D_{T_2+}^{q_3}\widetilde{x}_3(t)+f(t, \widetilde{x}_3) = 0, \quad T_2 \lt t\leq T_3,

    that is, \widetilde{x}_3(t) satisfies the following equation

    \begin{equation} \frac {d^2}{dt^2}\frac 1{\Gamma(2-q_3)} \int_{T_2}^t(t-s)^{1-q_3}\widetilde{x}_3(s)ds+f(t, \widetilde{x}_3) = 0, \quad T_2 \lt t\leq T_3. \end{equation} (3.15)

    We let

    \begin{equation} x_3(t) = \left\{ \begin{array}{ll} 0, \quad\quad \ \ 0\leq t\leq T_2, \\ \widetilde{x}_3(t), \quad \quad T_2 \lt t\leq T_3, \end{array}\right. \end{equation} (3.16)

    hence, from (3.15), we know that x_3\in C[0, T_3] defined by (3.16) satisfies equation

    \begin{align*} \frac {d^2}{dt^2}\bigg(\int_0^{T_1}\frac{(t-s)^{1-q_1}}{\Gamma(2-q_1)}x_3(s)ds &+ \int_{T_1}^{T_2}\frac{(t-s)^{1-q_2}} {\Gamma(2-q_2)}x_3(s)ds\\ &+ \int_{T_2}^t\frac{(t-s)^{1-q_3}}{\Gamma(2-q_3)}x_3(s)ds\bigg)+f(t, x_3) = 0, \end{align*}

    which means that x_3\in C[0, T_3] is one solution of (3.5) with x_3(0) = 0, x(T_3) = \widetilde{x}_3(T_3) = 0 .

    By the similar way, in order to consider the existence of solution to Eq (3.6) defined on [T_{i-1}, T_i] of (3.2), we can investigate the following two-point boundary value problem

    \begin{equation} \left\{ \begin{array}{ll} D_{T_{i-1}+}^{q_i} x(t)+f(t, x) = 0, \ \ T_{i-1} \lt t \lt T_i, \\ x(T_{i-1}) = 0, \; \; x(T_i) = 0. \end{array}\right. \end{equation} (3.17)

    By the same arguments previous, we obtain that the Eq (3.6) defined on [T_{i-1}, T_i] of (3.2) has solution

    \begin{equation} x_i(t) = \left\{ \begin{array}{ll} 0, \quad\quad \ \ 0\leq t\leq T_{i-1}, \\ \widetilde{x}_i(t), \quad T_{i-1} \lt t\leq T_i, \end{array}\right. \end{equation} (3.18)

    where \widetilde{x}_i\in \Omega with \widetilde{x}_i(T_{i-1}) = 0 = \widetilde{x}_i(T_i) , i = 4, 5, \cdots, n^{*}-1 .

    Similar to the above argument, in order to consider the existence result of solution to Eq (3.7), we may consider the following boundary value problem

    \begin{equation} \left\{ \begin{array}{ll} D_{T_{n^{*}-1}+}^{q_{n^{*}}} x(t)+f(t, x) = 0, \ \ T_{n^{*}-1} \lt t \lt T_{n^{*}} = T, \\ x(T_{n^{*}-1}) = 0, \; \; x(T) = 0. \end{array}\right. \end{equation} (3.19)

    So by the same considering, for T_{n^{*}-1}\leq t\leq T we get

    \begin{eqnarray*} x(t) = (T-T_{n^{*}-1})^{1-q_{n^{*}}}(t-T_{n^{*}-1})^ {q_{n^{*}}-1}I_{T_{n^{*}-1}+}^{q_{n^{*}}} f(T, x)-I_{T_{n^{*}-1}+}^{q_{n^{*}}}f(t, x). \end{eqnarray*}

    Define operator T:C[T_{n^{*}-1}, T]\rightarrow C[T_{n^{*}-1}, T] by

    \begin{align*} Tx(t)& = (T-T_{n^{*}-1})^{1-q_{n^{*}}}(t-T_{n^{*}-1})^{q_{n^{*}}-1} I_{T_{n^{*}-1}+}^{q_{n^{*}}}f(T, x)-\frac 1{\Gamma(q_{n^{*}})} \int_{T_{n^{*}-1}}^t(t-s)^{q_{n^{*}}-1}f(s, x(s))ds, \end{align*}

    T_{n^{*}-1}\leq t\leq T. It follows from the continuity assumption of function t^rf that operator T:C[T_{n^{*}-1}, T]\rightarrow C[T_{n^{*}-1}, T] is well defined. By the standard arguments, we note that T:C[T_{n^{*}-1}, T]\rightarrow C[T_{n^{*}-1}, T] is a completely continuous operator.

    For x\in \Omega and by (H_2) , we get

    \begin{eqnarray*} |Tx(t)|\leq&&\frac {(T-T_{n^{*}-1})^{1-q_{n^{*}}}(t-T_{n^{*}-1})^{q_{n^{*}}-1}}{\Gamma(q_{n^{*}})}\int_{T_{n^{*}-1}}^{T}(T-s)^{q_{n^{*}}-1}|f(s, x(s))|ds\\ \\ &&+\frac 1{\Gamma(q_{n^{*}})} \int_{T_{n^{*}-1}}^t(t-s)^{q_{n^{*}}-1}|f(s, x(s))|ds\\ \\ \leq&&\frac 2{\Gamma(q_{n^{*}})} \int_{T_{n^{*}-1}}^T(T-s)^{q_{n^{*}}-1}|f(s, x(s))|ds\\ \\ \leq&&\frac 2{\Gamma(q_{n^{*}})} \int_{T_{n^{*}-1}}^T(T-s)^{q_{n^{*}}-1}s^{-r}(c_1+c_2|x(s)|^{\gamma}) ds\\ \\ \leq&&\frac{ 2T^{q_{n^{*}}-1}}{\Gamma(q_{n^{*}})} \int_{T_{n^{*}-1}}^Ts^{-r}(c_1+c_2R^{\gamma}) ds\\ \\ \leq&&\frac{ 2T^{q_{n^{*}}-1}(T^{1-r}-T_{n^{*}-1}^{1-r})}{(1-r)\Gamma(q_{n^{*}})}(c_1+c_2R^{\gamma})\\ \\ \leq&&\frac{ 2(T+1)^2}{(1-r)\Gamma(q_{n^{*}})}(c_1+c_2R^{\gamma})\\ \\ \leq&&M(r, q)(T+1)^2(c_1+c_2RR^{\gamma-1})\\ \\ \leq&&\frac R2+\frac R2 = R, \end{eqnarray*}

    which means that T(\Omega)\subseteq \Omega . Then the Schauder fixed point theorem assures that operator T has one fixed point \widetilde{x}_{n^{*}}\in \Omega , which is one solution of the following integral equation, that is,

    \begin{align} \widetilde{x}_{n^{*}}(t)& = (T-T_{n^{*}-1})^{1-q_{n^{*}}} (t-T_{n^{*}-1})^{q_{n^{*}}-1} I_{T_{n^{*}-1}+}^{q_{n^{*}}}f(T, \widetilde{x}_{n^{*}}) \\ &-\frac 1{\Gamma(q_{n^{*}})}\int_{T_{n^{*}-1}}^t(t-s)^{q_{n^{*}}-1} f(s, \widetilde{x}_{n^{*}}(s))ds, T_{n^{*}-1}\leq t\leq T. \end{align} (3.20)

    Applying operator D_{T_{n^{*}-1}+}^{q_{n^{*}}} on both sides of (3.20), by Proposition 1.2, we can obtain that

    D_{T_{n^{*}-1}+}^{q_{n^{*}}}\widetilde{x}_{n^{*}}(t)+f(t, \widetilde{x}_{n^{*}}) = 0, \quad T_{n^{*}-1} \lt t\leq T,

    that is, \widetilde{x}_T(t) satisfies the following equation

    \begin{equation} \frac {d^2}{dt^2}\frac 1{\Gamma(2-q_{n^{*}})} \int_{T_{n^{*}-1}}^t(t-s)^{1-q_{n^{*}}}\widetilde{x}_{n^{*}}(s)ds+f(t, \widetilde{x}_{n^{*}}) = 0, \quad T_{n^{*}-1} \lt t\leq T. \end{equation} (3.21)

    We let

    \begin{equation} x_{n^{*}}(t) = \left\{ \begin{array}{ll} 0, \quad\quad \ \ 0\leq t\leq T_{n^{*}-1}, \\ \widetilde{x}_{n^{*}}(t), \quad T_{n^{*}-1} \lt t\leq T, \end{array}\right. \end{equation} (3.22)

    hence, from (3.21), we know that x_{n^{*}}\in C[0, T] defined by (3.22) satisfies equation

    \begin{align*} \frac {d^2}{dt^2}\bigg(\int_0^{T_1}\frac{(t-s)^{1-q_1}} {\Gamma(2-q_1)}&x_{n^{*}}(s)ds+\cdots\\&+\int_{T_{n^{*}-1}}^t\frac{(t-s)^{1-q_{n^{*}}}} {\Gamma(2-q_{n^{*}})}x_{n^{*}}(s)ds\bigg)+f(t, x_{n^{*}}) = 0. \end{align*}

    for T_{n^{*}-1} < t < T , which means that x_{n^{*}}\in C[0, T] is one solution of (3.7) with x_{n^{*}}(0) = 0, x_{n^{*}}(T) = \widetilde{x}_{n^{*}}(T) = 0 .

    As a result, we know that the boundary value problem (1.1) has a solution. Thus we complete the proof.

    Remark 3.4. For condition (H_2) , if \gamma\geq 1 , then using similar way, we can obtain the existence result of solution to the boundary value problem (1.1) provided that we impose some additional conditions on c_1, c_2 .

    In this section, we investigate the generalized Lyapunov-type inequalities for the boundary value problem (1.1).

    Now, we explore characters of Green functions to the boundary value problems (3.8), (3.10), (3.14), \cdots , (3.17) and (3.19).

    Proposition 4.1. Assume that t^rf:[0, T]\times \mathbb{R}\rightarrow \mathbb{R} , (0\leq r < 1) is continuous function, q(t):[0, T]\rightarrow (1, 2] satisfies (H_1) , then the Green functions

    \begin{equation} G_i(t, s) = \begin{cases} \frac 1{\Gamma(q_i)}[(T_i-T_{i-1})^{1-q_i}(t-T_{i-1})^{q_i-1} (T_i-s)^{q_i-1}-(t-s)^{q_i-1}], \\ \qquad\qquad T_{i-1}\leq s\leq t\leq T_i, \\ \frac 1{\Gamma(q_i)}(T_i-T_{i-1})^{1-q_i}(t-T_{i-1})^{q_i-1}(T_i-s)^{q_i-1}, \\ \qquad\qquad T_{i-1}\leq t\leq s\leq T_i, \end{cases} \end{equation} (4.1)

    of the boundary value problems (3.8), (3.10), (3.14), \cdots , (3.17) and (3.19) satisfy the following properties:

    (1) G_i(t, s)\geq 0 for all T_{i-1}\leq t, s\leq T_i ;

    (2) \max_{t\in [T_{i-1}, T_i]}G_i(t, s) = G_i(s, s) , s\in [T_{i-1}, T_i] ;

    (3) G_i(s, s) has one unique maximum given by

    \max\limits_{s\in [T_{i-1}, T_i]}G_i(s, s) = \frac 1{\Gamma(q_i)}(\frac{T_i-T_{i-1}}4)^{q_i-1},

    where i = 1, 2, \cdots, n^{*} , T_0 = 0, T_{n^{*}} = T .

    Proof. From the proof of Theorem 3.1, we know that Green functions of the boundary value problems (3.8), (3.10), (3.14), \cdots , (3.17) and (3.19) are given by (4.1).

    Using a similar way, we can verify these three results. In fact, let

    g(t, s) = (T_i-T_{i-1})^{1-q_i}(t-T_{i-1})^{q_i-1}(T_i-s)^{q_i-1}-(t-s)^{q_i-1}, T_{i-1}\leq s\leq t\leq T_i.

    We see that

    \begin{eqnarray*} g_t(t, s)&& = (q_i-1)[(T_i-T_{i-1})^{1-q_i}(t-T_{i-1})^{q_i-2}(T_i-s)^{q_i-1}-(t-s)^{q_i-2}]\\ \\ &&\leq(q_i-1)[(T_i-T_{i-1})^{1-q_i}(t-s)^{q_i-2}(T_i-T_{i-1})^{q_i-1}-(t-s)^{q_i-2}]\\ && = 0, \end{eqnarray*}

    which means that g(t, s) is nonincreasing with respect to t , so g(t, s)\geq g(T_i, s) = 0 for T_{i-1}\leq s\leq t\leq T_i . Thus, together this with the expression of G_i(t, s) , we get that G_i(t, s)\geq 0 for all T_{i-1}\leq t, s\leq T_i , i = 1, 2, \cdots, n^{*} , T_0 = 0, T_{n^{*}} = T .

    Since g(t, s) is nonincreasing with respect to t , it holds that g(t, s)\leq g(s, s) for T_{i-1}\leq s\leq t\leq T_i . On the other hand, for T_{i-1}\leq t\leq s\leq T_i , we have

    (T_i-T_{i-1})^{1-q_i}(t-T_{i-1})^{q_i-1}(T_i-s)^{q_i-1}\leq (T_i-T_{i-1})^{1-q_i}(s-T_{i-1})^{q_i-1}(T_i-s)^{q_i-1}.

    These assure that \max_{t\in [T_{i-1}, T_i]}G_i(t, s) = G_i(s, s) , s\in [T_{i-1}, T_i] , i = 1, 2, \cdots, n^{*} , T_0 = 0, T_{n^{*}} = T .

    Next, we verify (3) of Proposition 4.1. Obviously, the maximum points of G_i(s, s) are not T_{i-1} and T_i , i = 1, 2, \cdots, n^{*} , T_0 = 0, T_{n^{*}} = T . For s\in (T_{i-1}, T_i) , i = 1, 2, \cdots, n^{*} , T_0 = 0, T_{n^{*}} = T , we have that

    \begin{align*} \frac{d G_i(s, s)}{ds}& = \frac 1{\Gamma(q_i)}(T_i-T_{i-1})^{1-q_i}(q_i-1)[(s-T_{i-1})^{q_i-2}(T_i-s)^{q_i-1}\\ &\qquad- (s-T_{i-1})^{q_i-1}(T_i-s)^{q_i-2}]\\ = &\frac 1{\Gamma(q_i)}(T_i-T_{i-1})^{1-q_i}(q_i-1)(s-T_{i-1})^{q_i-2}(T_i-s)^{q_i-2}[T_i+T_{i-1}-2s], \end{align*}

    which implies that the maximum points of G_i(s, s) is s = \frac{T_{i-1}+T_i}2 , i = 1, 2, \cdots, n^{*} , T_0 = 0, T_{n^{*}} = T . Hence, for i = 1, 2, \cdots, n^{*}, T_0 = 0, T_{n^{*}} = T ,

    \max\limits_{s\in [T_{i-1}, T_i]}G_i(s, s) = G\bigg(\frac{T_{i-1}+T_i}2, \frac{T_{i-1}+T_i}2\bigg) = \frac 1{\Gamma(q_i)}(\frac{T_i-T_{i-1}}4)^{q_i-1} .

    Thus, we complete this proof.

    Theorem 4.2. Let (H_1) holds and t^rf:[0, T]\times \mathbb{R}\rightarrow \mathbb{R} , ( 0\leq r < 1 ) be a continuous function. Assume that there exists nonnegative continuous function h(t) defined on [0, T] such that

    t^r|f(t, x)|\leq h(t)|x(t)|, 0\leq t\leq T, x(t)\in R

    If the boundary value problem (1.1) has a nontrivial solution x , then

    \begin{equation} \int_{0}^{T}s^{-r}h(s)ds \gt \sum\limits_{i = 1}^{n^{*}}\Gamma(q_i)\bigg(\frac{4}{T_i-T_{i-1}}\bigg)^{q_i-1}. \end{equation} (4.2)

    Proof. Let x be a nontrivial solution of the boundary value problem (1.1). Using Definition 3.2 and the proof of Theorem 3.3, we know that

    \begin{equation} x(t) = \begin{cases} x_1(t), \quad 0\leq t\leq T_1\\ x_2(t) = \begin{cases} 0, \quad 0\leq t\leq T_1, \\ \widetilde{x}_1(t), \quad T_1 \lt t\leq T_2, \\ \end{cases} \\ \\ x_3(t) = \begin{cases} 0, \quad 0\leq t\leq T_2, \\ \widetilde{x}_2(t), \quad T_2 \lt t\leq T_3, \\ \end{cases} \\ \vdots\\ x_i(t) = \begin{cases} 0, \quad 0\leq t\leq T_{i-1}, \\ \widetilde{x}_i(t), \quad T_{i-1} \lt t\leq T_i, \\ \end{cases} \\ \vdots\\ x_{n^{*}}(t) = \begin{cases} 0, \quad 0\leq t\leq T_{n^{*}-1}, \\ \widetilde{x}_{n^{*}}(t), \quad T_{n^{*}-1} \lt t\leq T, \end{cases} \end{cases} \end{equation} (4.3)

    where x_1\in C[0, T_1] is nontrivial solution of the boundary value problem (3.8) with a_1 = 0 , \widetilde{x}_2\in C[T_1, T_2] is nontrivial solution of the boundary value problem (3.10) with a_2 = 0 , \widetilde{x}_3\in C[T_2, T_3] is nontrivial solution of the boundary value problem (3.14) with a_3 = 0 , \widetilde{x}_i\in C[T_{i-1}, T_i] is nontrivial solution of the boundary value problem (3.17) with a_i = 0 , \widetilde{x}_{n^{*}}\in C[T_{n^{*}-1}, T] is nontrivial solution of the boundary value problem (3.19). From (4.3) and Proposition 4.1, we have

    \begin{eqnarray*} \|x_1\|_{C[0, T_1]} = \max\limits_{0\leq t\leq T_1}|x_1(t)|\leq &&\max\limits_{0\leq t\leq T_1}\int_0^{T_1}G_1(t, s)|f(s, x_1(s))|ds\\ \\ \leq&& \int_0^{T_1}G_1(s, s)s^{-r}h(s)|x_1(s)|ds\\\\ \\ \lt &&\frac{\|x_1\|_{C[0, T_1]}}{\Gamma(q_1)}(\frac{T_1}4)^{q_1-1}\int_0^{T_1}s^{-r}h(s)ds, \ \end{eqnarray*}

    which implies that

    \begin{equation} \int_0^{T_1}s^{-r}h(s)ds \gt \Gamma(q_1)(\frac 4{T_1})^{q_1-1}. \end{equation} (4.4)
    \begin{eqnarray*} \|x_2\|_{C[0, T_2]} = \max\limits_{T_1\leq t\leq T_2}|\widetilde{x}_2(t)| = &&\max\limits_{T_1\leq t\leq T_2}\bigg|\int_{T_1}^{T_2}G_2(t, s)f(s, \widetilde{x}_2(s))ds\bigg|\\ \\ \leq&& \int_{T_1}^{T_2}G_2(s, s)s^{-r}h(s)|\widetilde{x}_2(s)|ds\\ \\ \lt &&\frac{\|\widetilde{x}_2\|_{C[T_1, T_2]}}{\Gamma(q_2)}(\frac{T_2-T_1}4)^{q_2-1}\int_{T_1}^{T_2}s^{-r}h(s)ds, \\ \\ = &&\frac{\|x_2\|_{C[0, T_2]}}{\Gamma(q_2)}(\frac{T_2-T_1}4)^{q_2-1}\int_{T_1}^{T_2}s^{-r}h(s)ds, \end{eqnarray*}

    which implies that

    \begin{equation} \int_{T_1}^{T_2}s^{-r}h(s)ds \gt \Gamma(q_2)(\frac 4{T_2-T_1})^{q_2-1}. \end{equation} (4.5)

    Similar, for i = 3, 4, \cdots, n^{*} ( T_{n^{*}} = T) , we have

    \begin{eqnarray*} \|x_i\|_{C[0, T_i]}&& = \max\limits_{T_{i-1}\leq t\leq T_i}|\widetilde{x}_i(t)| = \max\limits_{T_{i-1}\leq t\leq T_i}\bigg|\int_{T_{i-1}}^{T_i}G_i(t, s)f(s, \widetilde{x}_i(s))ds\bigg|\\ \\ \leq&& \int_{T_{i-1}}^{T_i}G_i(s, s)s^{-r}h(s)|\widetilde{x}_i(s)|ds\\ \\ \lt &&\frac{\|\widetilde{x}_i\|_{C[T_{i-1}, T_i]}}{\Gamma(q_i)}(\frac{T_i-T_{i-1}}4)^{q_i-1}\int_{T_{i-1}}^{T_i}s^{-r}h(s)ds, \\ \\ = &&\frac{\|x_i\|_{C[0, T_i]}}{\Gamma(q_i)}(\frac{T_i-T_{i-1}}4)^{q_i-1}\int_{T_{i-1}}^{T_i}s^{-r}h(s)ds, \end{eqnarray*}

    which implies that

    \begin{equation*} \int_{T_{i-1}}^{T_i}s^{-r}h(s)ds \gt \Gamma(q_i)\bigg(\frac 4{T_i-T_{i-1}}\bigg)^{q_i-1}. \end{equation*}

    So, we get

    \begin{equation*} \int_{0}^{T}s^{-r}h(s)ds \gt \sum\limits_{i = 1}^{n^{*}}\Gamma(q_i)\bigg(\frac{4}{T_i-T_{i-1}}\bigg)^{q_i-1}. \end{equation*}

    We complete the proof.

    Remark 4.3. We notice that if r = 0 and q(t) = q , q is a constant, i.e., BVP (1.1) is a fractional differential equation with constant order, then by similar arguments as done in [22], we get

    \begin{equation*} \int_{0}^{T}h(s)ds \gt \Gamma(q)\bigg(\frac{4}{T}\bigg)^{q-1}. \end{equation*}

    So, the inequalities (4.2) is a generalized Lyapunov-type inequality for the boundary value problem (1.1).

    Example 5.1. Let us consider the following nonlinear boundary value problem

    \begin{equation} \begin{cases} D_{0^+}^{q(t)}x(t)+t^{-0.5}\frac{|x|^{\frac 12}}{1+x^2} = 0, \; \; 0 \lt t \lt 2, \\ u(0) = u(2) = 0, \end{cases} \end{equation} (5.1)

    where

    q(t) = \begin{cases} 1.2, \ \ 0\leq t\leq 1, \\ 1.6, \ \ 1 \lt t\leq 2. \end{cases}

    We see that q(t) satisfies condition (H_1) ; t^{0.5}f(t, x(t)) = \frac{|x(t)|^{\frac 12}}{1+x(t)^2}:[0, 2]\times \mathbb{R}\rightarrow \mathbb{R} is continuous. Moreover, we have

    t^{0.5}|f(t, x(t))| = \frac{|x(t)|^{\frac 12}}{1+x(t)^2}\leq |x(t)|^{\frac 12}.

    Let r = 0.5 , c_1 = c_2 = 1 and \gamma = \frac 12 . We could verify that f(t, x) = t^{-0.5}\frac{|x|^{\frac 12}}{1+x^2} satisfies condition (H_2) . This suggests that the boundary value problem (5.1) has a solution by the conclusion of Theorem 3.3.

    Example 5.2. Let us consider the following linear boundary value problem

    \begin{equation} \begin{cases} D_{0^+}^{q(t)}x(t)+t^{0.4} = 0, \; \; 0 \lt t \lt 3, \\ u(0) = 0, \; u(3) = 0, \end{cases} \end{equation} (5.2)

    where

    q(t) = \begin{cases} 1.2, \ \ 0\leq t\leq 1, \\ 1.5, \ \ 1 \lt t\leq 2, \\ 1.8, \ \ 2 \lt t\leq 3.\end{cases}

    We see that q(t) satisfies condition (H_1) ; f(t, x(t)) = t^{0.4}:[0, 3]\times \mathbb{R}\rightarrow \mathbb{R} is continuous. Moreover, |f(t, x(t))| = t^{0.4}\leq 3^{0.4} , thus we could take suitable constants to verify f(t, x) = t^{0.4} satisfies condition (H_2) . Then Theorem 3.3 assures the boundary value problem (5.2) has a solution.

    In fact, we know that equation of (5.1) can been divided into three expressions as following

    \begin{equation} D_{0+}^{1.2} x(t)+t^{0.4} = 0, \ \ 0 \lt t\leq 1. \end{equation} (5.3)

    For 1 < t\leq 2 ,

    \begin{equation} \frac {d^2}{dt^2}\bigg(\int_0^1\frac{(t-s)^{-0.2}} {\Gamma(0.8)}x(s)ds+\int_1^t\frac{(t-s)^{-0.5}} {\Gamma(0.5)}x(s)ds\bigg)+t^{0.4} = 0. \end{equation} (5.4)

    For 2 < t\leq 3 ,

    \begin{equation} \frac {d^2}{dt^2} \bigg(\int_0^1\frac{(t-s)^{-0.2}} {\Gamma(0.8)}x(s)ds+\int_1^2\frac{(t-s)^{-0.5}} {\Gamma(0.5)}x(s)ds+\int_2^t\frac{(t-s)^{-0.8}} {\Gamma(0.2)}x(s)ds\bigg)+t^{0.4} = 0. \end{equation} (5.5)

    By [18], we can easily obtain that the following boundary value problems

    \begin{cases} D_{0+}^{1.2} x(t)+t^{0.4} = 0, \ \ 0 \lt t\leq 1, \\ x(0) = 0, x(1) = 0\end{cases}
    \begin{cases} D_{1+}^{1.5} x(t) = \frac {d^2}{dt^2}\int_1^t\frac{(t-s)^{-0.5}} {\Gamma(0.5)}x(s)ds+t^{0.4} = 0, \ \ 1 \lt t \lt 2, \\ x(1) = 0, x(2) = 0\end{cases}
    \begin{cases} D_{2+}^{1.8} x(t) = \frac {d^2}{dt^2}\int_2^t\frac{(t-s)^{-0.8}} {\Gamma(0.2)}x(s)ds+t^{0.4} = 0, \ \ 2 \lt t \lt 3, \\ x(2) = 0, x(3) = 0\end{cases}

    respectively have solutions

    \begin{align*} x_1(t)& = \frac{\Gamma(1.4)}{\Gamma(2.6)} \big(t^{0.2}-t^{1.6}\big)\in C[0, 1];\\ \widetilde{x}_2(t)& = \frac{\Gamma(1.4)}{\Gamma(2.9)} ((t-1)^{0.5}-(t-1)^{1.9})\in C[1, 2];\\ \widetilde{x}_3(t)& = \frac{\Gamma(1.4)}{\Gamma(3.2)} ((t-2)^{0.8}-(t-2)^{2.2})\in C[2, 3]. \end{align*}

    It is known by calculation that

    \begin{equation} x_1(t), 0\leq t\leq 1, \quad \quad\quad x_2(t) = \begin{cases} 0, \quad 0\leq t\leq 1, \\ \widetilde{x}_2(t), 1 \lt t\leq 2, \end{cases} x_3(t) = \begin{cases} 0, \quad 0\leq t\leq 2, \\ \widetilde{x}_3(t), 2 \lt t\leq 3, \end{cases} \end{equation} (5.6)

    are the solutions of (5.3)–(5.5), respectively. By Definition 3.2 and (5.6), we know that

    \begin{equation*} x(t) = \begin{cases} x_1(t) = \frac{\Gamma(1.4)}{\Gamma(2.6)} \big(t^{0.2}-t^{1.6}\big), \quad\quad\quad\quad \quad\quad 0\leq t\leq 1, \\ x_2(t) = \begin{cases} 0, \quad\quad\quad\quad \quad \; \; \quad\quad\quad\quad\quad\quad\quad \quad 0\leq t\leq 1, \\ \frac{\Gamma(1.4)}{\Gamma(2.9)} ((t-1)^{0.5}-(t-1)^{1.9}), \; \; \; 1 \lt t\leq 2, \\ \end{cases} \\ x_3(t) = \begin{cases} 0, \quad\quad \quad \; \; \quad\quad\quad\quad\quad\quad\quad\quad\quad \quad 0\leq t\leq 2, \\ \frac{\Gamma(1.4)}{\Gamma(3.2)} ((t-2)^{0.8}-(t-2)^{2.2}), \; \; \; 2 \lt t\leq 3 \end{cases} \end{cases} \end{equation*}

    is one solution of the boundary value problem (5.2).

    In this paper, we consider a two-points boundary value problem of differential equations of variable order, which is a piecewise constant function. Based the essential difference about the variable order fractional calculus (derivative and integral) and the integer order and the constant fractional order calculus (derivative and integral), we carry on essential analysis to the boundary value problem (1.1). According to our analysis, we give the definition of solution to the boundary value problem (1.1). The existence result of solution to the boundary value problem (1.1) is derived. We present a Lyapunov-type inequality for the boundary value problems (1.1). Since the variable order fractional calculus (derivative and integral) and the integer order and the constant fractional order calculus (derivative and integral) has the essential difference, it is interesting and challenging about the existence, uniqueness of solutions, Lyapunov-type inequality, etc, to the boundary value problems of differential equations of variable order.

    This research is supported by the Natural Science Foundation of China (11671181). The authors are thankful to the referees for their careful reading of the manuscript and insightful comments.

    The author declares no conflicts of interest in this paper.



    [1] S. U. S. Choi, J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, Conference: International mechanical engineering congress and exhibition, San Francisco, CA, 1995, 12–17.
    [2] V. W. Kaufui, D. L. Omar, Applications of nanofluids: Current and future, Adv. Mech. Eng., 11 (2010), 105–132.
    [3] O. Mahian, L. Kolsi, M. Amani, P. Estellé, G. Ahmadi, C. Kleinstreuer, et al., Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory, Phys. Rep., 790 (2019), 1–48. https://doi.org/10.1016/j.physrep.2018.11.004
    [4] J. A. Eastman, U. S. Choi, S. P. Li, L. J. Thompson, S. Lee, Enhanced thermal conductivity through the development of nanofluids, Cambridge University Press, 457 (1996). https://doi.org/10.1557/PROC-457-3
    [5] J. A. Eastman, U. S. Choi, S. P. Li, W. Yu, L. J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78 (2001), 718–720. https://doi.org/10.1063/1.1341218 doi: 10.1063/1.1341218
    [6] N. A. Sheikh, D. L. C. Ching, H. Sakidin, I. Khan, Fractional model for the flow of Brinkman-type fluid with mass transfer, J. Adv. Res. Fluid Mech. Therm. Sci., 93 (2022), 76–85. https://doi.org/10.37934/arfmts.93.2.7685 doi: 10.37934/arfmts.93.2.7685
    [7] N. Sene, Analytical investigations of the fractional free convection flow of Brinkman type fluid described by the Caputo fractional derivative, Results Phys., 37 (2022), 105555. https://doi.org/10.1016/j.rinp.2022.105555 doi: 10.1016/j.rinp.2022.105555
    [8] M. M. Ghalib, A. A. Zafar, M. Farman, A. Akgül, M. O. Ahmad, A. Ahmad, Unsteady MHD flow of Maxwell fluid with Caputo-Fabrizio non-integer derivative model having slip/non-slip fluid flow and Newtonian heating at the boundary, Indian J. Phys., 96 (2022), 127–136. https://doi.org/10.1007/s12648-020-01937-7 doi: 10.1007/s12648-020-01937-7
    [9] N. Iftikhar, S. T. Saeed, M. B. Riaz, Fractional study on heat and mass transfer of MHD Oldroyd-B fluid with ramped velocity and temperature, J. Comput. Method. Appl. Math., 10 (2021), 372–395. https://doi.org/10.22034/cmde.2021.39703.1739 doi: 10.22034/cmde.2021.39703.1739
    [10] A. Raza, S. U. Khan, K. Al-Khaled, M. I. Khan, A. U. Haq, F. Alotaibi, et al., A fractional model for the kerosene oil and water-based Casson nanofluid with inclined magnetic force, Chem. Phys. Lett., 787 (2022), 139277. https://doi.org/10.1016/j.cplett.2021.139277
    [11] I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1991. Available from: http://www.sciepub.com/reference/3051.
    [12] N. Sene, Fractional SIRI model with delay in context of the generalized Liouville-Caputo fractional derivative, Math. Model. Comput., 2020,107–125.
    [13] M. A. Imran, N. A. Shah, I. Khan, M. Aleem, Applications of non-integer Caputo time fractional derivatives to natural convection flow subject to arbitrary velocity and Newtonian heating, Neural Comput. Appl., 30 (2018), 1589–1599. https://doi.org/10.1007/s00521-016-2741-6 doi: 10.1007/s00521-016-2741-6
    [14] I. Khan, N. A. Shah, D. Vieru, Unsteady flow of generalized Casson fluid with fractional derivative due to an infinite plate, Eur. Phys. J. Plus, 131 (2016), 1–12. https://doi.org/10.1140/epjp/i2016-16181-8 doi: 10.1140/epjp/i2016-16181-8
    [15] A. Khalid, I. Khan, A. Khan, S. Shafie, Unsteady MHD free convection flow of Casson fluid past over an oscillating vertical plate embedded in a porous medium, Eng. Sci. Technol. Int. J., 18 (2015), 309–317. https://doi.org/10.1016/j.jestch.2014.12.006 doi: 10.1016/j.jestch.2014.12.006
    [16] F. Ali, M. Saqib, I. Khan, N. A. Sheikh, Application of Caputo-Fabrizio derivatives to MHD free convection flow of generalized Walters'-B fluid model, Eur. Phys. J. Plus., 131 (2016), 1–10. https://doi.org/10.1140/epjp/i2016-16377-x doi: 10.1140/epjp/i2016-16377-x
    [17] S. Qureshi, A. Yusuf, A. A. Shaikh, M. Inc, Transmission dynamics of varicella zoster virus modeled by classical and novel fractional operators using real statistical data, Phys. A, 534 (2019), 122149. https://doi.org/10.1016/j.physa.2019.122149 doi: 10.1016/j.physa.2019.122149
    [18] F. Ali, N. A. Sheikh, I. Khan, M. Saqib, Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: A fractional model, J. Magn. Magn. Mater., 423 (2017), 327–336. https://doi.org/10.1016/j.jmmm.2016.09.125 doi: 10.1016/j.jmmm.2016.09.125
    [19] B. Steinfeld, J. Scott, G. Vilander, L. Marx, M. Quirk, J. Lindberg, K. Koerner, The role of lean process improvement in implementation of evidence-based practices in behavioral health care, J. Behav. Health Ser. R., 42 (2015), 504–518. https://doi.org/10.1007/s11414-013-9386-3 doi: 10.1007/s11414-013-9386-3
    [20] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [21] B. S. T. Alkahtani, A. Atangana, Analysis of non-homogeneous heat model with new trend of derivative with fractional order, Chaos Soliton. Fract., 89 (2016), 566–571. https://doi.org/10.1016/j.chaos.2016.03.027 doi: 10.1016/j.chaos.2016.03.027
    [22] K. Diethelm, N. J. Ford, A. D. Freed, Y. Luchko, Algorithms for the fractional calculus: a selection of numerical methods, Comput. Method. Appl. M., 194 (2005), 743–773. https://doi.org/10.1016/j.cma.2004.06.006 doi: 10.1016/j.cma.2004.06.006
    [23] S. Aman, I. Khan, Z. Ismail, M. Z. Salleh, I. Tlili, A new Caputo time fractional model for heat transfer enhancement of water based graphene nanofluid: An application to solar energy, Result. Phys., 9 (2018), 1352–1362. https://doi.org/10.1016/j.rinp.2018.04.007 doi: 10.1016/j.rinp.2018.04.007
    [24] N. A. Shah, A. Wakif, R. Shah, S. J. Yook, B. Salah, Y. Mahsud, et al., Effects of fractional derivative and heat source/sink on MHD free convection flow of nanofluids in a vertical cylinder: A generalized Fourier's law model, Case Stud. Therm. Eng., 28 (2021), 101518. https://doi.org/10.1016/j.csite.2021.101518
    [25] Al. Raza, I. Khan, S. Farid, C. A. My, A. Khan, H. Alotaibi, Non-singular fractional approach for natural convection nanofluid with Damped thermal analysis and radiation, Case Stud. Therm. Eng., 28 (2021), 101373. https://doi.org/10.1016/j.csite.2021.101373 doi: 10.1016/j.csite.2021.101373
    [26] M. D. Ikram, M. I. Asjad, A. Akgül, D. Baleanu, Effects of hybrid nanofluid on novel fractional model of heat transfer flow between two parallel plates, Alex. Eng. J., 60 (2021), 3593–3604. https://doi.org/10.1016/j.aej.2021.01.054 doi: 10.1016/j.aej.2021.01.054
    [27] M. B. Riaz, J. Awrejcewicz, D. Baleanu, Exact solutions for thermomagetized unsteady non-singularized jeffrey fluid: Effects of ramped velocity, concentration with newtonian heating, Result. Phys., 26 (2021), 104367. https://doi.org/10.1016/j.rinp.2021.104367
    [28] A. U. Rehman, M. B. Riaz, A. Akgül, S. T. Saeed, D. Baleanu, Heat and mass transport impact on MHD second‐grade fluid: A comparative analysis of fractional operators, Heat Transf., 50 (2021), 7042–7064. https://doi.org/10.1002/htj.22216 doi: 10.1002/htj.22216
    [29] J. Zhang, A. Raza, U. Khan, Q. Ali, A. Zaib, W. Weera, et al., Thermophysical study of Oldroyd-B hybrid nanofluid with sinusoidal conditions and permeability: A prabhakar fractional approach, Fractal Fract., 6 (2022), 357. https://doi.org/10.3390/fractalfract6070357
    [30] M. B. Riaz, A. U. Rehman, J. Awrejcewicz, F. Jarad, Double diffusive magneto-free-convection flow of Oldroyd-B fluid over a vertical plate with heat and mass flux, Symmetry, 14 (2022), 209. https://doi.org/10.3390/sym14020209 doi: 10.3390/sym14020209
    [31] H. Elhadedy, H. Abass, A. Kader, S. Mohamed, A. Latif, Investigating heat conduction in a sphere with heat absorption using generalized Caputo fractional derivative, Heat Transf., 50 (2021), 6955–6963. https://doi.org/10.1002/htj.22211 doi: 10.1002/htj.22211
    [32] A. H. A. Kader, S. Mohamed, A. Latif, D. Baleanu, Studying heat conduction in a sphere considering hybrid fractional derivative operator, Therm. Sci., 26 (2022), 1675–1683. https://doi.org/10.2298/TSCI200524332K doi: 10.2298/TSCI200524332K
    [33] M. Khan, A. Rasheed, M. S. Anwar, Z. Hussain, T. Shahzad, Modelling charge carrier transport with anomalous diffusion and heat conduction in amorphous semiconductors using fractional calculus, Phys. Scr., 96 (2021), 045204. https://doi.org/10.1088/1402-4896/abde0f doi: 10.1088/1402-4896/abde0f
    [34] M. Irfan, K. Rafiq, M. S. Anwar, M. Khan, W. A. Khan, K. Iqbal, Evaluating the performance of new mass flux theory on Carreau nanofluid using the thermal aspects of convective heat transport, Pramana, 95 (2021), 1–9. https://doi.org/10.1007/s12043-021-02217-7 doi: 10.1007/s12043-021-02217-7
    [35] I. Ali, A. Rasheed, M. S. Anwar, M. Irfan, Z. Hussain, Fractional calculus approach for the phase dynamics of Josephson junction, Chaos Soliton. Fract., 143 (2021), 110572. https://doi.org/10.1016/j.chaos.2020.110572 doi: 10.1016/j.chaos.2020.110572
    [36] Z. Hussain, A. Hussain, M. S. Anwar, M. Farooq, Analysis of Cattaneo-Christov heat flux in Jeffery fluid flow with heat source over a stretching cylinder, J. Therm. Anal. Calorim., 147 (2022), 3391–3402. https://doi.org/10.1007/s10973-021-10573-0 doi: 10.1007/s10973-021-10573-0
    [37] N. S. Akbar, D. Tripathi, Z. H. Khan, O. A. Bég, A numerical study of magnetohydrodynamic transport of nanofluids over a vertical stretching sheet with exponential temperature-dependent viscosity and buoyancy effects, Chem. Phys. Lett., 661 (2016), 20–30. https://doi.org/10.1016/j.cplett.2016.08.043 doi: 10.1016/j.cplett.2016.08.043
    [38] N. Sene, Analytical solutions of a class of fluids models with the Caputo fractional derivative, Fractal Fract., 6 (2022), 35. https://doi.org/10.3390/fractalfract6010035 doi: 10.3390/fractalfract6010035
    [39] S. Aman, I. Khan, Z. Ismail, M. Z. Salleh, I. Tlili, A new Caputo time fractional model for heat transfer enhancement of water based graphene nanofluid: An application to solar energy, Result. Phys., 9 (2018), 1352–1362. https://doi.org/10.1016/j.rinp.2018.04.007 doi: 10.1016/j.rinp.2018.04.007
    [40] T. Anwar, P. Kumam, Z. Shah, W. Watthayu, P. Thounthong, Unsteady radiative natural convective MHD nanofluid flow past a porous moving vertical plate with heat source/sink, Molecules, 25 (2020), 854. https://doi.org/10.3390/molecules25040854
    [41] F. Shen, W. C. Tan, Y. H. Zhao, T. Masuoka, The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model, Nonlinear Anal.-Real, 7 (2006), 1072–1080. https://doi.org/10.1016/j.nonrwa.2005.09.007 doi: 10.1016/j.nonrwa.2005.09.007
    [42] A. Raza, S. U. Khan, S. Farid, M. I. Khan, T. C. Sun, A. Abbasi, et al., Thermal activity of conventional Casson nanoparticles with ramped temperature due to an infinite vertical plate via fractional derivative approach, Case Stud. Therm. Eng., 27 (2021), 101191. https://doi.org/10.1016/j.csite.2021.101191
    [43] S. Aman, I. Khan, Z. Ismail, M. Z. Salleh, Applications of fractional derivatives to nanofluids: Exact and numerical solutions, Math. Model. Nat. Pheno., 13 (2018), 2. https://doi.org/10.1051/mmnp/2018013 doi: 10.1051/mmnp/2018013
  • This article has been cited by:

    1. Ibtesam Alshammari, Islam M. Taha, On fuzzy soft \beta -continuity and \beta -irresoluteness: some new results, 2024, 9, 2473-6988, 11304, 10.3934/math.2024554
    2. D. I. Taher, R. Abu-Gdairi, M. K. El-Bably, M. A. El-Gayar, Decision-making in diagnosing heart failure problems using basic rough sets, 2024, 9, 2473-6988, 21816, 10.3934/math.20241061
    3. Fahad Alsharari, Ahmed O. M. Abubaker, Islam M. Taha, On r -fuzzy soft \gamma -open sets and fuzzy soft \gamma -continuous functions with some applications, 2025, 10, 2473-6988, 5285, 10.3934/math.2025244
    4. Fahad Alsharari, Hind Y. Saleh, Islam M. Taha, Some Characterizations of k-Fuzzy γ-Open Sets and Fuzzy γ-Continuity with Further Selected Topics, 2025, 17, 2073-8994, 678, 10.3390/sym17050678
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2075) PDF downloads(104) Cited by(8)

Figures and Tables

Figures(13)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog