
The mathematical formulation of fluid flow problems often results in coupled nonlinear partial differential equations (PDEs); hence, their solutions remain a challenging task for researchers. The present study offers a solution for the flow differential equations describing a bio-inspired flow field of non-Newtonian fluid with gyrotactic microorganisms. A methanol-based nanofluid with ferrous ferric oxide, copper, and silver nanoparticles was considered in a stretching permeable cylinder. The chemical reaction, activation energy, viscous dissipation, and convective boundary conditions were considered. The Casson fluid, a non-Newtonian fluid model, was used as flowing over a cylinder. The fundamental PDEs were established using boundary layer theory in a cylindrical coordinate system for concentration, mass, momentum, and microorganisms' field. These PDEs were then transformed into nonlinear ODEs by applying transforming variables. ODEs were then numerically solved in MATLAB software using the built-in solver bvp4c algorithm. We established an artificial neural network (ANN) model, incorporating Tan-Sig and Purelin transfer functions, to enhance the accuracy of predicting skin friction coefficient (SFC) values along the surface. The networks were trained using the Levenberg–Marquardt method. Quantitative results show that the ferrous ferric oxide nanofluid is superior in increasing Nusselt number, Sherwood number, velocity, and microorganism density number; silver nanofluid is superior in increasing skin friction coefficient, temperature, and concentration. Interestingly, heat transfer rate decreases with the magnetic and curvature parameters and Eckert number, whereas the skin friction coefficient increases with the magnetic parameter and Darcy–Forchheimer number. The present results are validated with the previous existing studies.
Citation: Khalil Ur Rehman, Nosheen Fatima, Wasfi Shatanawi, Nabeela Kousar. Mathematical solutions for coupled nonlinear equations based on bioconvection in MHD Casson nanofluid flow[J]. AIMS Mathematics, 2025, 10(1): 598-633. doi: 10.3934/math.2025027
[1] | Zongcheng Li, Jin Li . Linear barycentric rational collocation method for solving a class of generalized Boussinesq equations. AIMS Mathematics, 2023, 8(8): 18141-18162. doi: 10.3934/math.2023921 |
[2] | Jin Li . Barycentric rational collocation method for semi-infinite domain problems. AIMS Mathematics, 2023, 8(4): 8756-8771. doi: 10.3934/math.2023439 |
[3] | Jin Li . Barycentric rational collocation method for fractional reaction-diffusion equation. AIMS Mathematics, 2023, 8(4): 9009-9026. doi: 10.3934/math.2023451 |
[4] | Haoran Sun, Siyu Huang, Mingyang Zhou, Yilun Li, Zhifeng Weng . A numerical investigation of nonlinear Schrödinger equation using barycentric interpolation collocation method. AIMS Mathematics, 2023, 8(1): 361-381. doi: 10.3934/math.2023017 |
[5] | Kareem T. Elgindy, Hareth M. Refat . A direct integral pseudospectral method for solving a class of infinite-horizon optimal control problems using Gegenbauer polynomials and certain parametric maps. AIMS Mathematics, 2023, 8(2): 3561-3605. doi: 10.3934/math.2023181 |
[6] | Qasem M. Tawhari . Mathematical analysis of time-fractional nonlinear Kuramoto-Sivashinsky equation. AIMS Mathematics, 2025, 10(4): 9237-9255. doi: 10.3934/math.2025424 |
[7] | Yunmei Zhao, Yinghui He, Huizhang Yang . The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264 |
[8] | Yangfang Deng, Zhifeng Weng . Barycentric interpolation collocation method based on Crank-Nicolson scheme for the Allen-Cahn equation. AIMS Mathematics, 2021, 6(4): 3857-3873. doi: 10.3934/math.2021229 |
[9] | M. Mossa Al-Sawalha, Safyan Mukhtar, Albandari W. Alrowaily, Saleh Alshammari, Sherif. M. E. Ismaeel, S. A. El-Tantawy . Analytical solutions to time-space fractional Kuramoto-Sivashinsky Model using the integrated Bäcklund transformation and Riccati-Bernoulli sub-ODE method. AIMS Mathematics, 2024, 9(5): 12357-12374. doi: 10.3934/math.2024604 |
[10] | Sunyoung Bu . A collocation methods based on the quadratic quadrature technique for fractional differential equations. AIMS Mathematics, 2022, 7(1): 804-820. doi: 10.3934/math.2022048 |
The mathematical formulation of fluid flow problems often results in coupled nonlinear partial differential equations (PDEs); hence, their solutions remain a challenging task for researchers. The present study offers a solution for the flow differential equations describing a bio-inspired flow field of non-Newtonian fluid with gyrotactic microorganisms. A methanol-based nanofluid with ferrous ferric oxide, copper, and silver nanoparticles was considered in a stretching permeable cylinder. The chemical reaction, activation energy, viscous dissipation, and convective boundary conditions were considered. The Casson fluid, a non-Newtonian fluid model, was used as flowing over a cylinder. The fundamental PDEs were established using boundary layer theory in a cylindrical coordinate system for concentration, mass, momentum, and microorganisms' field. These PDEs were then transformed into nonlinear ODEs by applying transforming variables. ODEs were then numerically solved in MATLAB software using the built-in solver bvp4c algorithm. We established an artificial neural network (ANN) model, incorporating Tan-Sig and Purelin transfer functions, to enhance the accuracy of predicting skin friction coefficient (SFC) values along the surface. The networks were trained using the Levenberg–Marquardt method. Quantitative results show that the ferrous ferric oxide nanofluid is superior in increasing Nusselt number, Sherwood number, velocity, and microorganism density number; silver nanofluid is superior in increasing skin friction coefficient, temperature, and concentration. Interestingly, heat transfer rate decreases with the magnetic and curvature parameters and Eckert number, whereas the skin friction coefficient increases with the magnetic parameter and Darcy–Forchheimer number. The present results are validated with the previous existing studies.
Lots of physical phenomena can be expressed by non-linear partial differential equations (PDE), including, inter alia, dissipative and dispersive PDE. In this paper, we consider the Kuramoto-Sivashinsky (KS) equation
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ∂ϕ∂s=φ(s,t)0≤s≤1,0≤t≤T,γ>0, | (1.1) |
ϕ(0,t)=0,ϕ(1,t)=0,ϕss(0,t)=0,ϕss(1,t)=0,0<t<T, | (1.2) |
ϕ(s,0)=φ(s),0≤s≤1, | (1.3) |
where γ∈R is the constant.
The KS equation plays an important role in physics such as in diffusion, convection and so on. Lots of attention has been paid by researchers in recent years. An H1-Galerkin mixed finite element method for the KS equation was proposed in [1], lattice Boltzmann models for the Kuramoto-Sivashinsky equation were studied in [2], Backward difference formulae (BDF) methods for the KS equation were investigate in [3]. Stability regions and results for the Korteweg-de Vries-Burgers and Kuramoto-Sivashinsky equations were given in [4,5], respectively. In [6], an improvised quintic B-spline extrapolated collocation technique was used to solve the KS equation, and the stability of the technique was analyzed using the von Neumann scheme, which was found to be unconditionally stable. In [7], a septic Hermite collocation method (SHCM) was proposed to simulate the KS equation, and the nonlinear terms of the KS equation were linearized using the quasi-linearization process. In [8], a semidiscrete approach was presented to solve the variable-order (VO) time fractional 2D KS equation, and the differentiation operational matrices and the collocation technique were used to get a linear system of algebraic equations. In [9] the discrete Legendre polynomials (LPs) and the collocation scheme for nonlinear space-time fractional KdV-Burgers-Kuramoto equation were presented.
In order to avoid the Runge's phenomenon, barycentric interpolation [10,11,12] was developed. In recent years, linear rational interpolation (LRI) was proposed by Floater [13,14,15], and error of linear rational interpolation was also proved. The barycentric interpolation collocation method (BICM) has been developed by Wang et al.[22,23,24,25], and the algorithm of BICM has been used for linear/non-linear problems [21]. Volterra integro-differential equation (VIDE)[16,20], heat equation (HE) [17], biharmonic equation (BE) [18], the Kolmogorov-Petrovskii-Piskunov (KPP) equation [19], fractional differential equations [20], fractional reaction-diffusion equation [28], semi-infinite domain problems [27] and biharmonic equation [26], plane elastic problems [29] have been studied by the linear barycentric interpolation collocation method (LBICM), and their convergence rates also have been proved.
In order to solve the KS equation efficiently, the LBRIM is presented. Because the nonlinear part of the KS equation cannot be solved directly, three kinds of linearization methods, including direct linearization, partial linearization and Newton linearization, are presented. Then, the nonlinear part of the KS equation is translated into the linear part, three kinds of iterative schemes are presented, and matrix equation of the linearization schemes are constructed. The convergence rate of the LBRCM for the KS equation is also given. At last, two numerical examples are presented to validate the theoretical analysis.
In the following, the KS equation is changed into the linear equation by the linearization scheme, including direct linearization, partial linearization and Newton linearization.
For the Kuramoto-Sivashinskyr equation with the initial value of nonlinear term ϕ∂ϕ∂s is changed to ϕ0∂ϕ0∂s,
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ0∂ϕ0∂s=φ(s,t), | (2.1) |
and then we get the linear scheme as
∂ϕn∂t+γ∂4ϕn∂s4+∂2ϕn∂s2=−ϕn−1∂ϕn−1∂s+φ(s,t),a≤s≤b,0≤t≤T. | (2.2) |
By the partial linearization, nonlinear term ϕ∂ϕ∂s is changed to ϕ0∂ϕ∂s,
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ0∂ϕ∂s=φ(s,t), | (2.3) |
and then we have
∂ϕn∂t+γ∂4ϕn∂s4+∂2ϕn∂s2+ϕn−1∂ϕn∂s=φ(s,t),a≤s≤b,0≤t≤T. | (2.4) |
For the initial value ϕ∂ϕ∂s=ϕ0∂ϕ0∂s+(∂ϕ0∂s+ϕ0∂ϕ0∂s)(ϕ−ϕ0), we have
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ∂ϕ0∂s+ϕ0∂ϕ0∂sϕ=φ(s,t)+ϕ0∂ϕ0∂sϕ0, | (2.5) |
and then we have
∂ϕn∂t+γ∂4ϕn∂s4+∂2ϕn∂s2+ϕn∂ϕn−1∂s+ϕn−1∂ϕn−1∂sϕn=φ(s,t)+ϕn−1∂ϕn−1∂sϕn−1, | (2.6) |
where n=1,2,⋯.
Interval [a,b] is divided into a=s0<s1<s2<⋯<sm−1<sm=b, for uniform partition with hs=b−am and nonuniform partition to be the second kind of Chebychev point. Time [0,T] is divided into 0=t0<t1<t2<⋯<tn−1<tn=T and ht=Tn for uniform partition. Then, we take ϕnm(s,t) to approximate ϕ(s,t) as
ϕnm(s,t)=m∑i=0n∑j=0ri(s)rj(t)ϕij | (3.1) |
where ϕij=ϕ(si,tj),
ri(s)=wis−sim∑j=0wjs−sj,rj(t)=wjt−tjn∑i=0wit−ti | (3.2) |
is the barycentric interpolation basis [26], and
wi=∑k∈Ji(−1)kk+ds∏j=k,j≠i1si−sj,wj=∑k∈Jj(−1)kk+dt∏i=k,k≠j1tj−ti | (3.3) |
where Ji={k∈I,i−ds≤k≤i},I={0,1,⋯,m−ds}. See [26]. We get the barycentric rational interpolation.
For the case
wi=1∏i≠k(si−sk),wj=1∏j≠k(tj−tk), | (3.4) |
we get the barycentric Lagrange interpolation.
So,
r′j(si)=wj/wisi−sj,j≠i,r′i(si)=−∑j≠ir′j(si), | (3.5) |
r(k)j(si)=k(r(k−1)i(si)r′i(sj)−r(k−1)i(sj)si−sj),j≠i, | (3.6) |
r(k)i(si)=−∑j≠ir(k)j(si). | (3.7) |
Then, we have
D(0,1)ij=r′i(tj), | (3.8) |
D(1,0)ij=r′i(sj), | (3.9) |
D(k,0)ij=r(k)i(sj),k=2,3,⋯. | (3.10) |
Combining (3.1) and (2.2), we have
[Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In]ϕn=Ψ−diag(ϕn−1)D(1,0)⊗In⋅ϕn−1, | (3.11) |
and then we have
Lϕn=Ψn−1 | (3.12) |
where
L=Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In, |
Ψn−1=Ψ−diag(ϕn−1)D(1,0)⊗In⋅ϕn−1 |
and ⊗ is the Kronecher product [17].
Combining (3.1) and (2.4), we have
[Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In+diag(ϕn−1)D(1,0)⊗In]ϕn=Ψ, | (3.13) |
n=1,2,⋯, and then we have
Lϕ=Ψ | (3.14) |
where L=Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In+diag(ϕn−1)D(1,0)⊗In.
Combining (3.1) and (2.6), we have
[Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In+diag(ϕn−1)D(1,0)⊗In]ϕn=Ψ+[diag(ϕn)−diag(ϕn−1)]D(1,0)⊗In⋅ϕn−1, | (3.15) |
and then we get
Lϕ=Ψn−1 | (3.16) |
where
L=Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In+diag(ϕn−1)D(1,0)⊗In, |
and
Ψn−1=Ψ+[diag(ϕn)−diag(ϕn−1)]D(1,0)⊗In⋅ϕn−1. |
In this part, an error estimate of the KS equation is given with rn(s)=n∑i=0ri(s)ϕi to replace ϕ(s), where ri(s) is defined as (3.2), and ϕi=ϕ(si). We also define
e(s):=ϕ(s)−rn(s)=(s−si)⋯(s−si+d)ϕ[si,si+1,…,si+d,s]. | (4.1) |
Then, we have the following.
Lemma 1. For e(s) defined by (4.1) and ϕ(s)∈Cd+2[a,b], there is
|e(k)(s)|≤Chd−k+1,k=0,1,⋯. | (4.2) |
For KS equation, rational interpolation function of ϕ(s,t) is defined as rmn(s,t)
rmn(s,t)=m+ds∑i=0n+dt∑j=0wi,j(s−si)(t−tj)ϕi,jm+ds∑i=0n+dt∑j=0wi,j(s−si)(t−tj) | (4.3) |
where
wi,j=(−1)i−ds+j−dt∑k1∈Jik1+ds∏h1=k1,h1≠j1|si−sh1|∑k2∈Jik2+dt∏h2=k2,h2≠j1|tj−th2|. | (4.4) |
We define e(s,t) to be the error of ϕ(s,t) as
e(s,t):=ϕ(s,t)−rmn(s,t)=(s−si)⋯(s−si+ds)ϕ[si,si+1,…,si+d1,s,t]+(t−tj)⋯(t−tj+dt)ϕ[s,tj,tj+1,…,tj+d2,t]. | (4.5) |
With similar analysis of Lemma 1, we have the following
Theorem 1. For e(s,t) defined as (4.5) and ϕ(s,t)∈Cds+2[a,b]×Cdt+2[0,T], we have
|e(k1,k2)(s,t)|≤C(hds−k1+1s+hdt−k2+1t),k1,k2=0,1,⋯. | (4.6) |
We take the direct linearization of the KS equation as an example prove the convergence rate. Let ϕ(sm,tn) be the approximate function of ϕ(s,t) and L be a bounded operator. There holds
Lϕ(sm,tn)=φ(sm,tn), | (4.7) |
and
limm,n→∞ϕ(sm,tn)=ϕ(s,t). | (4.8) |
Then, we get the following
Theorem 2. For ϕ(sm,tn):Lϕ(sm,tn)=φ(s,t) and L defined as (4.7), there
|ϕ(s,t)−ϕ(sm,tn)|≤C(hds−3+τdt). |
Proof. As
Lϕ(s,t)−Lϕ(sm,tn)=∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2−ϕ0∂ϕ0∂s−φ(s,t)−[∂ϕ(sm,tn)∂t+γ∂4ϕ(sm,tn)∂s4+∂2ϕ(sm,tn)∂s2+ϕ0(sm,tn)∂ϕ0(sm,tn)∂s−φ(s,t)]=∂ϕ∂t−∂ϕ∂t(sm,tn)+γ[∂4ϕ∂s4−∂4ϕ∂s4(sm,tn)]+∂2ϕ∂s2−∂2ϕ∂s2(sm,tn)+[ϕ0∂ϕ0∂s−ϕ0(sm,tn)∂ϕ0∂s(sm,tn)]:=E1(s,t)+E2(s,t)+E3(s,t)+E4(s,t). | (4.9) |
Here,
E1(s,t)=∂ϕ∂t−∂ϕ∂t(sm,tn), |
E2(s,t)=γ[∂4ϕ∂s4−∂4ϕ∂s4(sm,tn)], |
E3(s,t)=∂2ϕ∂s2−∂2ϕ∂s2(sm,tn), |
E4(s,t)=ϕ0∂ϕ0∂s−ϕ0(sm,tn)∂ϕ0∂s(sm,tn). |
With E2(s,t), we have
E2(s,t)=γ[∂4ϕ∂s4−∂4ϕ∂s4(sm,tn)]=γ[∂4ϕ∂s4−∂4ϕ∂s4(sm,t)+∂4ϕ∂s4(sm,t)−∂4ϕ∂s4(sm,tn)]=m−ds∑i=0(−1)i∂4ϕ∂s4[si,si+1,…,si+d1,sm,t]m−ds∑i=0λi(s)+n−dt∑j=0(−1)j∂4ϕ∂s4[tj,tj+1,…,tj+d2,sm,tn]n−dt∑j=0λj(t)=∂4e∂s4(sm,t)+∂4e∂s4(sm,tn). |
For E2(s,t) we get
|E2(s,t)|≤|∂4e∂s4(sm,x)+∂4e∂s4(sm,tn)|≤C(hds−3+τdt+1). | (4.10) |
Then, we have
|E1(s,t)|≤|∂e∂t(sm,t)+∂e∂t(sm,tn)|≤C(hds+1+τdt). | (4.11) |
Similarly, for E3(s,t) we have
E3(s,t)=∂2ϕ∂s2(s,t)−∂2ϕ∂s2(sm,tn)=∂2e∂s2(s,tn)+∂2e∂s2(sm,tn), | (4.12) |
and
|E3(s,t)|≤|∂2e∂s2(s,tn)+∂2e∂s2(sm,tn)|≤C(hds−1+τdt+1). | (4.13) |
For E4(s,t) we get
|E4(s,t)|=|ϕ0∂ϕ∂s−ϕ0(sm,tn)∂ϕ∂s(sm,tn)|≤|∂e∂t(sm,t)+∂e∂t(sm,tn)|≤C(hds+1+τdt). | (4.14) |
Combining (4.9) and (4.11)–(4.14) together, the proof of Theorem 2 is completed.
All the examples are carried on a computer with Intel(R) Core(TM) i5-8265U CPU @ 1.60 GHz 1.80 GHz operating system, 16 G radon access running memory and a 512 G solid state disk memory. All simulation experiments were realized by the software Matlab (Version: R2016a). In this part, two examples are presented to test the theorem.
Example 1. Consider the KS equation
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ∂ϕ∂s=φ(s,t) |
with the condition is
ϕ(0,t)=0,ϕ(1,t)=0, |
and
ϕ(s,0)=sin(2πs). |
ϕss(0,t)=0,ϕss(1,t)=0, |
and
φ(s,t)=e−tsin(2πs)[2πe−tcos(2πs)−1+16π4−4π2]. |
The solution of the KS equation is
ϕ(s,t)=e−tsin(2πs). |
In Figures 1–3, errors of unform partition with direct linearization, partial linearization, Newton linearization for the KS equation are presented. In Figures 4–6, errors of non-uniform partition with direct linearization, partial linearization, Newton linearization for the KS equation are presented.
In Tables 1 and 2, errors of LBCM and LBRCM for the KS equation with boundary condition dealt with by the method of substitution and method of addition are given. From Table 1, we know that the accuracy of LBCM is higher than LBRCM, and from Table 2 the accuracy of the method of additional is higher than the method of substitution.
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 1.3278e-07 | 5.6616e-10 | 1.7050e-08 | 4.6293e-10 |
partial | 5.5563e-07 | 2.6381e-09 | 1.1492e-07 | 5.0974e-10 |
Newton | 6.6705e-07 | 4.8875e-10 | 8.8609e-08 | 2.5867e-11 |
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 4.4575e-06 | 3.2280e-08 | 4.1010e-08 | 2.2749e-09 |
partial | 4.4573e-06 | 3.2245e-08 | 5.4191e-07 | 1.5951e-07 |
Newton | 4.4560e-06 | 3.2215e-08 | 1.2972e-06 | 3.5137e-07 |
In Table 3, we choose the Newton linearization to solve the KS equation, and the error of LBRCM for uniform and nonuniform partitions are presented with t=0.3,0.9,2,4,8,16.
Uniform partition | Nonuniform partition | |||
t | (8,8)ds=dt=7 | (16,16)ds=dt=15 | (8,8)ds=dt=7 | (16,16)ds=dt=15 |
0.3 | 1.5449e-01 | 1.3163e-06 | 6.2692e-02 | 2.4769e-08 |
0.9 | 1.4211e-01 | 1.1737e-06 | 6.1721e-02 | 2.3846e-08 |
2 | 1.2162e-01 | 1.0785e-06 | 5.8680e-02 | 2.3685e-08 |
4 | 9.1544e-02 | 9.4383e-07 | 5.3241e-02 | 2.3353e-08 |
8 | 5.1798e-02 | 7.2283e-07 | 4.3721e-02 | 2.2440e-08 |
16 | 1.6540e-02 | 4.1712e-07 | 2.9435e-02 | 1.9220e-08 |
The errors of LBRCM of uniform and Chebyshev partitions are presented with (m,n,ds,dt)=(8,8,7,7),(16,16,15,15). From the table, comparing (m,n)=(8,8) with (m,n)=(16,16), the accuracy was higher when the number became bigger.
In the following table, we take Newton linearization to present numerical results. From Tables 4 and 5, with errors of Newton linearization for uniform partition dt=6;t=1 are given and convergence rate is O(hds). From Table 5, with space variable s,ds=6, and there is superconvergence rate O(hds−1) at t=1.
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 4.1317e-01 | 3.2652e-03 | 3.3180e-01 | |||
16, 16 | 1.8608e-01 | 1.1508 | 3.1257e-02 | - | 3.3919e-02 | 3.2902 |
32, 32 | 9.5437e-02 | 0.9633 | 1.0198e-02 | 1.6159 | 3.3873e-03 | 3.3239 |
64, 64 | 4.7221e-02 | 1.0151 | 2.6490e-03 | 1.9448 | 3.5472e-04 | 3.2554 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 1.3997e-01 | 1.4004e-01 | 1.4008e-01 | |||
16, 16 | 5.4923e-03 | 4.6716 | 5.4957e-03 | 4.6714 | 5.4973e-03 | 4.6714 |
32, 32 | 1.2850e-04 | 5.4176 | 1.2883e-04 | 5.4148 | 1.2891e-04 | 5.4143 |
64, 64 | 2.9976e-06 | 5.4218 | 3.0728e-06 | 5.3898 | 3.0798e-06 | 5.3874 |
For Tables 6 and 7, the errors of Chebyshev partition for Newton linearization with s and t are presented. For dt=6, the convergence rate is O(hds) in Table 6, while in Table 7, there are also superconvergence phenomena.
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 5.4754e-01 | 2.9399e-02 | 8.5922e-02 | |||
16, 16 | 1.0318e-01 | 2.4078 | 4.6815e-03 | 2.6507 | 1.2658e-03 | 6.0849 |
32, 32 | 9.6912e-02 | 0.0904 | 8.0675e-04 | 2.5368 | 1.9577e-05 | 6.0148 |
64, 64 | 4.8014e-01 | - | 1.7672e-03 | - | 2.2716e-05 | - |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 6.1344e-02 | 6.1386e-02 | 6.1415e-02 | |||
16, 16 | 8.1492e-05 | 9.5561 | 8.1163e-05 | 9.5629 | 8.0977e-05 | 9.5669 |
32, 32 | 1.4204e-07 | 9.1642 | 1.4183e-07 | 9.1606 | 1.5487e-07 | 9.0303 |
64, 64 | 6.3190e-06 | - | 3.8960e-06 | - | 1.4861e-06 | - |
Example 2. Consider the KS equation
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ∂ϕ∂s=0, |
with the analytic solution
ϕ(s,t)=c+15√1119√19[−3tanh√112√19(s−ct+s0)+tanh3√112√19(s−ct+s0)], |
and boundary condition
ϕ(−10,t)=c+15√1119√19[−3tanh√112√19(−10−ct+s0)+tanh3√112√19(−10−ct+s0)], |
ϕ(10,t)=c+15√1119√19[−3tanh√112√19(10−ct+s0)+tanh3√112√19(10−ct+s0)], |
and initial condition
ϕ(s,0)=c+15√1119√19[−3tanh√112√19(s+s0)+tanh3√112√19(s+s0)], |
with c=2,x0=10.
In Figures 7–9, errors of direct linearization, partial linearization, Newton linearization with m=n=19 KS equation are presented, respectively.
In the following table, direct linearization is chosen to present numerical results. From Tables 8 and 9, errors of direct linearization for uniform partition dt=7 with different ds are given and the convergence rate is O(hds−1). From Table 9, with space variable s,ds=7, and there are also superconvergence phenomena.
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 1.3587e+00 | 8.9361e-01 | 6.3703e-01 | |||
16, 16 | 2.1617e-01 | 2.6520 | 2.7467e-01 | 1.7019 | 2.5682e-01 | 1.3106 |
32, 32 | 6.7743e-02 | 1.6740 | 6.8822e-02 | 1.9967 | 4.7078e-02 | 2.4476 |
64, 64 | 2.5175e-02 | 1.4281 | 1.3216e-02 | 2.3806 | 4.3739e-03 | 3.4281 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 3.6253e-01 | 3.6380e-01 | 3.6446e-01 | |||
16, 16 | 1.8147e-01 | 0.9984 | 1.8124e-01 | 1.0052 | 1.8121e-01 | 1.0081 |
32, 32 | 6.4076e-02 | 1.5019 | 6.4158e-02 | 1.4982 | 6.4141e-02 | 1.4983 |
64, 64 | 8.9037e-04 | 6.1692 | 8.9840e-04 | 6.1581 | 8.9863e-04 | 6.1574 |
For Tables 10 and 11, the errors of Chebyshev partition for direct linearization with s and t are presented. For dt=7, the convergence rate is O(hds) in Table 10, while in Table 11, there are also superconvergence phenomena.
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 6.5990e-01 | 4.0742e-01 | 3.6175e-01 | |||
16, 16 | 1.1154e-01 | 2.5646 | 1.7539e-01 | 1.2160 | 2.1752e-01 | 0.7338 |
32, 32 | 4.3052e-02 | 1.3735 | 8.6654e-03 | 4.3391 | 1.2511e-03 | 7.4418 |
64, 64 | 3.9204e-02 | 0.1351 | 2.3776e-03 | 1.8658 | 3.5682e-04 | 1.8099 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 4.3760e-01 | 4.3745e-01 | 4.3739e-01 | |||
16, 16 | 1.1801e-01 | 1.8908 | 1.1801e-01 | 1.8902 | 1.1801e-01 | 1.8900 |
32, 32 | 9.9842e-04 | 6.8850 | 9.9854e-04 | 6.8849 | 9.9801e-04 | 6.8857 |
64, 64 | 2.5749e-06 | 8.5990 | 2.5052e-06 | 8.6388 | 4.8401e-06 | 7.6879 |
In this paper, LBRCM is used to solve the (1+1) dimensional SK equation. Three kinds of linearization methods are taken to translate the nonlinear part into a linear part. Matrix equations of the discrete SK equation are obtained from corresponding linearization schemes. The convergence rate of LBRCM is also presented. In the future work, LBRCM can be developed for the (2+1) dimensional SK equation and other partial differential equations classes, including Kolmogorov-Petrovskii-Piskunov (KPP) equation and, fractional reaction-diffusion equation and so on.
The work of Jin Li was supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2022MA003).
The authors also gratefully acknowledges the helpful comments and suggestions of the reviewers, which have improved the presentation.
The author declares no conflict of interest.
[1] | S. U. S. Choi, J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, Argonne National Lab. (ANL), Argonne, IL (United States), 1995. |
[2] |
P. Valipour, F. S. Aski, M. Mirparizi, Influence of magnetic field on CNT-Polyethylene nanofluid flow over a permeable cylinder, J. Mol. Liq., 225 (2017), 592−597. https://doi.org/10.1016/j.molliq.2016.11.111 doi: 10.1016/j.molliq.2016.11.111
![]() |
[3] |
A. Mishra, M. Kumar, Velocity and thermal slip effects on MHD nanofluid flow past a stretching cylinder with viscous dissipation and Joule heating, SN Appl. Sci., 2 (2020), 1350. https://doi.org/10.1007/s42452-020-3156-7 doi: 10.1007/s42452-020-3156-7
![]() |
[4] |
M. Ramzan, N. Shaheen, J. D. Chung, S. Kadry, Y. M. Chu, F. Howari, Impact of Newtonian heating and Fourier and Fick's laws on a magnetohydrodynamic dusty Casson nanofluid flow with variable heat source/sink over a stretching cylinder, Sci. Rep., 11 (2021), 1−19. https://doi.org/10.1038/s41598-021-81747-x doi: 10.1038/s41598-021-81747-x
![]() |
[5] |
A. S. Rashed, T. A. Mahmoud, A. M. Wazwaz, Axisymmetric forced flow of nonhomogeneous nanofluid over heated permeable cylinders, Wave. Random Complex, 2022, 1−29. https://doi.org/10.1080/17455030.2022.2053611 doi: 10.1080/17455030.2022.2053611
![]() |
[6] |
S. Gouran, S. Mohsenian, S. E. Ghasemi, Theoretical analysis on MHD nanofluid flow between two concentric cylinders using efficient computational techniques, Alex. Eng. J., 61 (2022), 3237−3248. https://doi.org/10.1016/j.aej.2021.08.047 doi: 10.1016/j.aej.2021.08.047
![]() |
[7] |
F. Hussain, A. Hussain, S. Nadeem, Unsteady shear-thinning behaviour of nanofluid flow over exponential stretching/shrinking cylinder, J. Mol. Liq., 345 (2022), 117894. https://doi.org/10.1016/j.molliq.2021.117894 doi: 10.1016/j.molliq.2021.117894
![]() |
[8] |
P. Kumar, H. Poonia, L. Ali, S. Areekara, A. Mathew, Effects of different nanoparticles Cu, TiO2, and Ag on fluid flow and heat transfer over cylindrical surface subject to non-fourier heat flux model, Numer. Heat Tr. B-Fund., 85 (2024), 1−19. https://doi.org/10.1080/10407790.2023.2235077 doi: 10.1080/10407790.2023.2235077
![]() |
[9] |
K. L. Hsiao, Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature, Int. J. Heat Mass Tr., 112 (2017), 983−990. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.042 doi: 10.1016/j.ijheatmasstransfer.2017.05.042
![]() |
[10] |
F. Shahzad, W. Jamshed, K. S. Nisar, M. M. Khashan, A. H. Abdel-Aty, Computational analysis of Ohmic and viscous dissipation effects on MHD heat transfer flow of Cu-PVA Jeffrey nanofluid through a stretchable surface, Case Stud. Therm. Eng., 26 (2021), 101148. https://doi.org/10.1016/j.csite.2021.101148 doi: 10.1016/j.csite.2021.101148
![]() |
[11] |
S. M. Zokri, N. S. Arifin, M. K. A. Mohamed, A. R. M. Kasim, N. F. Mohammad, M. Z. Salleh, Mathematical model of mixed convection boundary layer flow over a horizontal circular cylinder filled in a Jeffrey fluid with viscous dissipation effect, Sains Malays., 47 (2018), 1607−1615. https://doi.org/10.17576/jsm-2018-4707-32 doi: 10.17576/jsm-2018-4707-32
![]() |
[12] |
H. U. Rasheed, Z. Khan, E. R. El-Zahar, N. A. Shah, S. Islam, T. Abbas, Homotopic solutions of an unsteady magnetohydrodynamic flow of Casson nanofluid flow by a vertical cylinder with Brownian and viscous dissipation effects, Wave. Random Complex, 2022, 1−14. https://doi.org/10.1080/17455030.2022.2105979 doi: 10.1080/17455030.2022.2105979
![]() |
[13] |
S. Nandi, B. Kumbhakar, Entropy generation in MHD nanofluid flow induced by a slendering stretching sheet with activation energy, viscous dissipation and Joule heating impacts, Indian J. Phys., 96 (2022), 2873−2892. https://doi.org/10.1007/s12648-021-02206-x doi: 10.1007/s12648-021-02206-x
![]() |
[14] |
G. R. Ganesh, W. Sridhar, K. Al-Farhany, S. E. Ahmed, Electrically MHD Casson nanofluid flow and entropy exploration under the influence of the viscous dissipation, radiation, and higher-order chemical reaction, Phys. Scripta, 97 (2022), 065208. https://doi.org/10.1088/1402-4896/ac6e51 doi: 10.1088/1402-4896/ac6e51
![]() |
[15] |
S. K. Saini, R. Agrawal, P. Kaswan, Activation energy and convective heat transfer effects on the radiative Williamson nanofluid flow over a radially stretching surface containing Joule heating and viscous dissipation, Numer. Heat Tr. A-Appl., 85 (2024), 1−24. https://doi.org/10.1080/10407782.2023.2226815 doi: 10.1080/10407782.2023.2226815
![]() |
[16] |
R. Bestman, Natural convection boundary layer with suction and mass transfer in a porous medium, Int. J. Energ. Res., 14 (1990), 389−396. https://doi.org/10.1002/er.4440140403 doi: 10.1002/er.4440140403
![]() |
[17] |
M. Azam, T. Xu, F. Mabood, M. Khan, Non-linear radiative bioconvection flow of cross nano-material with gyrotatic microorganisms and activation energy, Int. Commun. Heat Mass, 127 (2021), 105530. https://doi.org/10.1016/j.icheatmasstransfer.2021.105530 doi: 10.1016/j.icheatmasstransfer.2021.105530
![]() |
[18] |
S. A. A. Shah, N. A. Ahammad, B. Ali, K. Guedri, A. U. Awan, F. Gamaoun, et al., Significance of bio-convection, MHD, thermal radiation and activation energy across Prandtl nanofluid flow: A case of stretching cylinder, Int. Commun. Heat Mass, 137 (2022), 106299. https://doi.org/10.1016/j.icheatmasstransfer.2022.106299 doi: 10.1016/j.icheatmasstransfer.2022.106299
![]() |
[19] |
A. Ali, S. Sarkar, S. Das, R. N. Jana, A report on entropy generation and Arrhenius kinetics in magneto-bioconvective flow of Cross nanofluid over a cylinder with wall slip, Int. J. Ambient Energy, 2022, 1−16. https://doi.org/10.1080/01430750.2022.2031292 doi: 10.1080/01430750.2022.2031292
![]() |
[20] |
E. Sangeetha, D. Poulomi, Gyrotactic microorganisms suspended in MHD nanofluid with activation energy and binary chemical reaction over a non-Darcian porous medium, Wave. Random Complex, 2022, 1−17. https://doi.org/10.1080/17455030.2022.2112114 doi: 10.1080/17455030.2022.2112114
![]() |
[21] |
Y. S. Kumar, S. Hussain, K. Raghunath, F. Ali, K. Guedri, S. M. Eldin, et al., Numerical analysis of magnetohydrodynamics Casson nanofluid flow with activation energy, Hall current and thermal radiation, Sci. Rep., 13 (2023), 4021. https://doi.org/10.1038/s41598-023-28379-5 doi: 10.1038/s41598-023-28379-5
![]() |
[22] |
N. Fatima, N. Kousar, K. U. Rehman, W. Shatanawi, Computational analysis of heat and mass transfer in magnetized Darcy-Forchheimer hybrid nanofluid flow with porous medium and slip effects, CMES-Comput. Model. Eng., 137 (2023). https://doi.org/10.32604/cmes.2023.026994 doi: 10.32604/cmes.2023.026994
![]() |
[23] |
M. S. Plesset, H. Winet, Bioconvection patterns in swimming microorganism cultures as an example of Rayleigh-Taylor instability, Nature, 248 (1974), 441−443. https://doi.org/10.1038/248441a0 doi: 10.1038/248441a0
![]() |
[24] |
Z. Abdelmalek, S. U. Khan, H. Waqas, A. Riaz, I. A. Khan, I. Tlili, A mathematical model for bioconvection flow of Williamson nanofluid over a stretching cylinder featuring variable thermal conductivity, activation energy and second-order slip, J. Therm. Anal. Calorim., 144 (2021), 205−217. https://doi.org/10.1007/s10973-020-09450-z doi: 10.1007/s10973-020-09450-z
![]() |
[25] |
M. Imran, U. Farooq, H. Waqas, A. E. Anqi, M. R. Safaei, Numerical performance of thermal conductivity in Bioconvection flow of cross nanofluid containing swimming microorganisms over a cylinder with melting phenomenon, Case Stud. Therm. Eng., 26 (2021), 101181. https://doi.org/10.1016/j.csite.2021.101181 doi: 10.1016/j.csite.2021.101181
![]() |
[26] |
H. A. Nabwey, S. I. Alshber, A. M. Rashad, A. E. N. Mahdy, Influence of bioconvection and chemical reaction on magneto—Carreau nanofluid flow through an inclined cylinder, Mathematics, 10 (2022), 504. https://doi.org/10.3390/math10030504 doi: 10.3390/math10030504
![]() |
[27] |
T. Muhammad, H. Waqas, U. Manzoor, U. Farooq, Z. F. Rizvi, On doubly stratified bioconvective transport of Jeffrey nanofluid with gyrotactic motile microorganisms, Alex. Eng. J., 61 (2022), 1571−1583. https://doi.org/10.1016/j.aej.2021.06.059 doi: 10.1016/j.aej.2021.06.059
![]() |
[28] |
E. M. A. Elbashbeshy, H. G. Asker, B. Nagy, The effects of heat generation absorption on boundary layer flow of a nanofluid containing gyrotactic microorganisms over an inclined stretching cylinder, Ain Shams Eng. J., 13 (2022), 101690. https://doi.org/10.1016/j.asej.2022.101690 doi: 10.1016/j.asej.2022.101690
![]() |
[29] |
M. S. Alqarni, H. Waqas, U. Manzoor, T. Muhammad, Marangoni transport of Jeffrey nanofluid due to circular horizontal cylinder with motile microorganisms, Wave. Random Complex, 2022, 1−20. https://doi.org/10.1080/17455030.2022.2067368 doi: 10.1080/17455030.2022.2067368
![]() |
[30] | N. Casson, Flow equation for pigment-oil suspensions of the printing ink-type, Rheol. Disperse Syst., 1959, 84−104. |
[31] |
A. Zeeshan, O. U. Mehmood, F. Mabood, F. Alzahrani, Numerical analysis of hydromagnetic transport of Casson nanofluid over permeable linearly stretched cylinder with Arrhenius activation energy, Int. Commun. Heat Mass, 130 (2022), 105736. https://doi.org/10.1016/j.icheatmasstransfer.2021.105736 doi: 10.1016/j.icheatmasstransfer.2021.105736
![]() |
[32] | G. Kumar, S. M. K. Rizvi, Casson fluid flow past on vertical cylinder in the presence of chemical reaction and magnetic field, Appl. Appl. Math., 16 (2021), 28. |
[33] |
S. Nandi, B. Kumbhakar, S. Sarkar, MHD stagnation point flow of Fe3O4/Cu/Ag-CH3OH nanofluid along a convectively heated stretching sheet with partial slip and activation energy: Numerical and statistical approach, Int. Commun. Heat Mass, 130 (2022), 105791. https://doi.org/10.1016/j.icheatmasstransfer.2021.105791 doi: 10.1016/j.icheatmasstransfer.2021.105791
![]() |
[34] |
S. M. Hussain, Dynamics of ethylene glycol-based graphene and molybdenum disulfide hybrid nanofluid over a stretchable surface with slip conditions, Sci. Rep., 12 (2022), 1751. https://doi.org/10.1038/s41598-022-05703-z doi: 10.1038/s41598-022-05703-z
![]() |
[35] |
S. M. Hussain, R. Sharma, M. K. Mishra, G. S. Seth, Radiative magneto-nanofluid over an accelerated moving ramped temperature plate with Hall effects, J. Nanofluids, 6 (2017), 840−851. https://doi.org/10.1166/jon.2017.1381 doi: 10.1166/jon.2017.1381
![]() |
[36] |
Y. Nawaz, M. S. Arif, K. Abodayeh, A. H. Soori, A two-stage multi-step numerical scheme for mixed convective Williamson nanofluid flow over flat and oscillatory sheets, Int. J. Mod. Phys. B, 38 (2024), 2450298. https://doi.org/10.1142/S0217979224502989 doi: 10.1142/S0217979224502989
![]() |
[37] |
S. Ullah, I. Ullah, A. Ali, K. Shah, T. Abdeljawad, Investigation of cross-diffusion effect on radiative Jeffery-Hamel flow in convergent/divergent stretchable channel with Lorentz force and Joule heating, Alex. Eng. J., 86 (2024), 289−297. https://doi.org/10.1016/j.aej.2023.11.054 doi: 10.1016/j.aej.2023.11.054
![]() |
[38] |
S. Shaheen, H. Huang, F. A. M. Al-Yarimi, M. B. Arain, Theoretical analysis of Ellis fluid flow in two layers due to metachronal propulsion subject to heat and mass transfer: Application in biological function, Case Stud. Therm. Eng., 59 (2024), 104446. https://doi.org/10.1016/j.csite.2024.104446 doi: 10.1016/j.csite.2024.104446
![]() |
[39] |
M. B. Arain, S. Shaheen, F. A. M. Al-Yarimi, N. Ijaz, J. Hu, Sensitivity analysis for acoustic-driven gas bubble dynamics in tangent hyperbolic fluid, J. Mol. Liq., 395 (2024), 123894. https://doi.org/10.1016/j.molliq.2023.123894 doi: 10.1016/j.molliq.2023.123894
![]() |
[40] |
S. M. Isa, R. Mahat, N. M. Katbar, B. S. Goud, I. Ullah, W. Jamshed, Thermal radiative and Hall current effects on magneto-natural convective flow of dusty fluid: Numerical Runge–Kutta–Fehlberg technique, Numer. Heat Tr. B-Fund., 2024, 1−23. https://doi.org/10.1080/10407790.2024.2318452 doi: 10.1080/10407790.2024.2318452
![]() |
[41] |
W. A. Khan, I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet, Int. J. Heat Mass Tran., 53 (2010), 2477−2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032 doi: 10.1016/j.ijheatmasstransfer.2010.01.032
![]() |
[42] |
K. Ali, S. Ahmad, K. S. Nisar, A. A. Faridi, M. Ashraf, Simulation analysis of MHD hybrid CuAl2O3/H2O nanofluid flow with heat generation through a porous media, Int. J. Energy Res., 45 (2021), 19165−19179. https://doi.org/10.1002/er.7016 doi: 10.1002/er.7016
![]() |
[43] |
S. Ahmad, S. Akhter, M. I. Shahid, K. Ali, M. Akhtar, M. Ashraf, Novel thermal aspects of hybrid nanofluid flow comprising of manganese zinc ferrite MnZnFe2O4, nickel zinc ferrite NiZnFe2O4 and motile microorganisms, Ain Shams Eng. J., 13 (2022), 101668. https://doi.org/10.1016/j.asej.2021.101668 doi: 10.1016/j.asej.2021.101668
![]() |
[44] |
Z. Said, P. Sharma, R. M. Elavarasan, A. K. Tiwari, M. K. Rathod, Exploring the specific heat capacity of water-based hybrid nanofluids for solar energy applications: A comparative evaluation of modern ensemble machine learning techniques, J. Energy Storage, 54 (2022), 105230. https://doi.org/10.1016/j.est.2022.105230 doi: 10.1016/j.est.2022.105230
![]() |
[45] |
K. U. Rehman, W. Shatanawi, Non-newtonian mixed convection magnetized flow with heat generation and viscous dissipation effects: A prediction application of artificial intelligence, Processes, 11 (2023), 986. https://doi.org/10.3390/pr11040986 doi: 10.3390/pr11040986
![]() |
[46] |
A. S. Baazeem, M. S. Arif, K. Abodayeh, An efficient and accurate approach to electrical boundary layer nanofluid flow simulation: A use of artificial intelligence, Processes, 11 (2023), 2736. https://doi.org/10.3390/pr11092736 doi: 10.3390/pr11092736
![]() |
1. | Jin Li, Yongling Cheng, Barycentric rational interpolation method for solving 3 dimensional convection–diffusion equation, 2024, 304, 00219045, 106106, 10.1016/j.jat.2024.106106 |
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 1.3278e-07 | 5.6616e-10 | 1.7050e-08 | 4.6293e-10 |
partial | 5.5563e-07 | 2.6381e-09 | 1.1492e-07 | 5.0974e-10 |
Newton | 6.6705e-07 | 4.8875e-10 | 8.8609e-08 | 2.5867e-11 |
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 4.4575e-06 | 3.2280e-08 | 4.1010e-08 | 2.2749e-09 |
partial | 4.4573e-06 | 3.2245e-08 | 5.4191e-07 | 1.5951e-07 |
Newton | 4.4560e-06 | 3.2215e-08 | 1.2972e-06 | 3.5137e-07 |
Uniform partition | Nonuniform partition | |||
t | (8,8)ds=dt=7 | (16,16)ds=dt=15 | (8,8)ds=dt=7 | (16,16)ds=dt=15 |
0.3 | 1.5449e-01 | 1.3163e-06 | 6.2692e-02 | 2.4769e-08 |
0.9 | 1.4211e-01 | 1.1737e-06 | 6.1721e-02 | 2.3846e-08 |
2 | 1.2162e-01 | 1.0785e-06 | 5.8680e-02 | 2.3685e-08 |
4 | 9.1544e-02 | 9.4383e-07 | 5.3241e-02 | 2.3353e-08 |
8 | 5.1798e-02 | 7.2283e-07 | 4.3721e-02 | 2.2440e-08 |
16 | 1.6540e-02 | 4.1712e-07 | 2.9435e-02 | 1.9220e-08 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 4.1317e-01 | 3.2652e-03 | 3.3180e-01 | |||
16, 16 | 1.8608e-01 | 1.1508 | 3.1257e-02 | - | 3.3919e-02 | 3.2902 |
32, 32 | 9.5437e-02 | 0.9633 | 1.0198e-02 | 1.6159 | 3.3873e-03 | 3.3239 |
64, 64 | 4.7221e-02 | 1.0151 | 2.6490e-03 | 1.9448 | 3.5472e-04 | 3.2554 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 1.3997e-01 | 1.4004e-01 | 1.4008e-01 | |||
16, 16 | 5.4923e-03 | 4.6716 | 5.4957e-03 | 4.6714 | 5.4973e-03 | 4.6714 |
32, 32 | 1.2850e-04 | 5.4176 | 1.2883e-04 | 5.4148 | 1.2891e-04 | 5.4143 |
64, 64 | 2.9976e-06 | 5.4218 | 3.0728e-06 | 5.3898 | 3.0798e-06 | 5.3874 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 5.4754e-01 | 2.9399e-02 | 8.5922e-02 | |||
16, 16 | 1.0318e-01 | 2.4078 | 4.6815e-03 | 2.6507 | 1.2658e-03 | 6.0849 |
32, 32 | 9.6912e-02 | 0.0904 | 8.0675e-04 | 2.5368 | 1.9577e-05 | 6.0148 |
64, 64 | 4.8014e-01 | - | 1.7672e-03 | - | 2.2716e-05 | - |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 6.1344e-02 | 6.1386e-02 | 6.1415e-02 | |||
16, 16 | 8.1492e-05 | 9.5561 | 8.1163e-05 | 9.5629 | 8.0977e-05 | 9.5669 |
32, 32 | 1.4204e-07 | 9.1642 | 1.4183e-07 | 9.1606 | 1.5487e-07 | 9.0303 |
64, 64 | 6.3190e-06 | - | 3.8960e-06 | - | 1.4861e-06 | - |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 1.3587e+00 | 8.9361e-01 | 6.3703e-01 | |||
16, 16 | 2.1617e-01 | 2.6520 | 2.7467e-01 | 1.7019 | 2.5682e-01 | 1.3106 |
32, 32 | 6.7743e-02 | 1.6740 | 6.8822e-02 | 1.9967 | 4.7078e-02 | 2.4476 |
64, 64 | 2.5175e-02 | 1.4281 | 1.3216e-02 | 2.3806 | 4.3739e-03 | 3.4281 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 3.6253e-01 | 3.6380e-01 | 3.6446e-01 | |||
16, 16 | 1.8147e-01 | 0.9984 | 1.8124e-01 | 1.0052 | 1.8121e-01 | 1.0081 |
32, 32 | 6.4076e-02 | 1.5019 | 6.4158e-02 | 1.4982 | 6.4141e-02 | 1.4983 |
64, 64 | 8.9037e-04 | 6.1692 | 8.9840e-04 | 6.1581 | 8.9863e-04 | 6.1574 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 6.5990e-01 | 4.0742e-01 | 3.6175e-01 | |||
16, 16 | 1.1154e-01 | 2.5646 | 1.7539e-01 | 1.2160 | 2.1752e-01 | 0.7338 |
32, 32 | 4.3052e-02 | 1.3735 | 8.6654e-03 | 4.3391 | 1.2511e-03 | 7.4418 |
64, 64 | 3.9204e-02 | 0.1351 | 2.3776e-03 | 1.8658 | 3.5682e-04 | 1.8099 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 4.3760e-01 | 4.3745e-01 | 4.3739e-01 | |||
16, 16 | 1.1801e-01 | 1.8908 | 1.1801e-01 | 1.8902 | 1.1801e-01 | 1.8900 |
32, 32 | 9.9842e-04 | 6.8850 | 9.9854e-04 | 6.8849 | 9.9801e-04 | 6.8857 |
64, 64 | 2.5749e-06 | 8.5990 | 2.5052e-06 | 8.6388 | 4.8401e-06 | 7.6879 |
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 1.3278e-07 | 5.6616e-10 | 1.7050e-08 | 4.6293e-10 |
partial | 5.5563e-07 | 2.6381e-09 | 1.1492e-07 | 5.0974e-10 |
Newton | 6.6705e-07 | 4.8875e-10 | 8.8609e-08 | 2.5867e-11 |
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 4.4575e-06 | 3.2280e-08 | 4.1010e-08 | 2.2749e-09 |
partial | 4.4573e-06 | 3.2245e-08 | 5.4191e-07 | 1.5951e-07 |
Newton | 4.4560e-06 | 3.2215e-08 | 1.2972e-06 | 3.5137e-07 |
Uniform partition | Nonuniform partition | |||
t | (8,8)ds=dt=7 | (16,16)ds=dt=15 | (8,8)ds=dt=7 | (16,16)ds=dt=15 |
0.3 | 1.5449e-01 | 1.3163e-06 | 6.2692e-02 | 2.4769e-08 |
0.9 | 1.4211e-01 | 1.1737e-06 | 6.1721e-02 | 2.3846e-08 |
2 | 1.2162e-01 | 1.0785e-06 | 5.8680e-02 | 2.3685e-08 |
4 | 9.1544e-02 | 9.4383e-07 | 5.3241e-02 | 2.3353e-08 |
8 | 5.1798e-02 | 7.2283e-07 | 4.3721e-02 | 2.2440e-08 |
16 | 1.6540e-02 | 4.1712e-07 | 2.9435e-02 | 1.9220e-08 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 4.1317e-01 | 3.2652e-03 | 3.3180e-01 | |||
16, 16 | 1.8608e-01 | 1.1508 | 3.1257e-02 | - | 3.3919e-02 | 3.2902 |
32, 32 | 9.5437e-02 | 0.9633 | 1.0198e-02 | 1.6159 | 3.3873e-03 | 3.3239 |
64, 64 | 4.7221e-02 | 1.0151 | 2.6490e-03 | 1.9448 | 3.5472e-04 | 3.2554 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 1.3997e-01 | 1.4004e-01 | 1.4008e-01 | |||
16, 16 | 5.4923e-03 | 4.6716 | 5.4957e-03 | 4.6714 | 5.4973e-03 | 4.6714 |
32, 32 | 1.2850e-04 | 5.4176 | 1.2883e-04 | 5.4148 | 1.2891e-04 | 5.4143 |
64, 64 | 2.9976e-06 | 5.4218 | 3.0728e-06 | 5.3898 | 3.0798e-06 | 5.3874 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 5.4754e-01 | 2.9399e-02 | 8.5922e-02 | |||
16, 16 | 1.0318e-01 | 2.4078 | 4.6815e-03 | 2.6507 | 1.2658e-03 | 6.0849 |
32, 32 | 9.6912e-02 | 0.0904 | 8.0675e-04 | 2.5368 | 1.9577e-05 | 6.0148 |
64, 64 | 4.8014e-01 | - | 1.7672e-03 | - | 2.2716e-05 | - |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 6.1344e-02 | 6.1386e-02 | 6.1415e-02 | |||
16, 16 | 8.1492e-05 | 9.5561 | 8.1163e-05 | 9.5629 | 8.0977e-05 | 9.5669 |
32, 32 | 1.4204e-07 | 9.1642 | 1.4183e-07 | 9.1606 | 1.5487e-07 | 9.0303 |
64, 64 | 6.3190e-06 | - | 3.8960e-06 | - | 1.4861e-06 | - |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 1.3587e+00 | 8.9361e-01 | 6.3703e-01 | |||
16, 16 | 2.1617e-01 | 2.6520 | 2.7467e-01 | 1.7019 | 2.5682e-01 | 1.3106 |
32, 32 | 6.7743e-02 | 1.6740 | 6.8822e-02 | 1.9967 | 4.7078e-02 | 2.4476 |
64, 64 | 2.5175e-02 | 1.4281 | 1.3216e-02 | 2.3806 | 4.3739e-03 | 3.4281 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 3.6253e-01 | 3.6380e-01 | 3.6446e-01 | |||
16, 16 | 1.8147e-01 | 0.9984 | 1.8124e-01 | 1.0052 | 1.8121e-01 | 1.0081 |
32, 32 | 6.4076e-02 | 1.5019 | 6.4158e-02 | 1.4982 | 6.4141e-02 | 1.4983 |
64, 64 | 8.9037e-04 | 6.1692 | 8.9840e-04 | 6.1581 | 8.9863e-04 | 6.1574 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 6.5990e-01 | 4.0742e-01 | 3.6175e-01 | |||
16, 16 | 1.1154e-01 | 2.5646 | 1.7539e-01 | 1.2160 | 2.1752e-01 | 0.7338 |
32, 32 | 4.3052e-02 | 1.3735 | 8.6654e-03 | 4.3391 | 1.2511e-03 | 7.4418 |
64, 64 | 3.9204e-02 | 0.1351 | 2.3776e-03 | 1.8658 | 3.5682e-04 | 1.8099 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 4.3760e-01 | 4.3745e-01 | 4.3739e-01 | |||
16, 16 | 1.1801e-01 | 1.8908 | 1.1801e-01 | 1.8902 | 1.1801e-01 | 1.8900 |
32, 32 | 9.9842e-04 | 6.8850 | 9.9854e-04 | 6.8849 | 9.9801e-04 | 6.8857 |
64, 64 | 2.5749e-06 | 8.5990 | 2.5052e-06 | 8.6388 | 4.8401e-06 | 7.6879 |