Research article

The Minkowski’s inequality by means of a generalized fractional integral

  • Received: 19 December 2017 Accepted: 23 February 2018 Published: 07 March 2018
  • We use the definition of a fractional integral, recently proposed by Katugampola, to establish a generalization of the reverse Minkowski's inequality. We show two new theorems associated with this inequality, as well as state and show other inequalities related to this fractional operator.

    Citation: J. Vanterler da C. Sousa, E. Capelas de Oliveira. The Minkowski’s inequality by means of a generalized fractional integral[J]. AIMS Mathematics, 2018, 3(1): 131-147. doi: 10.3934/Math.2018.1.131

    Related Papers:

  • We use the definition of a fractional integral, recently proposed by Katugampola, to establish a generalization of the reverse Minkowski's inequality. We show two new theorems associated with this inequality, as well as state and show other inequalities related to this fractional operator.



    加载中
    [1] C. Bandle, A. Gilányi, L. Losonczi, et al. Inequalities and Applications: Conference on Inequalities and Applications Noszvaj (Hungary), vol. 157, Springer Science & Business Media, 2008.
    [2] D. Bainov, P. Simeonov, Integral Inequalities and Applications, vol. 57, Springer Science & Business Media, 2013.
    [3] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204, North-Holland Mathematics Studies, Elsevier, Amsterdam, 2006.
    [4] O. Hutník, On Hadamard type inequalities for generalized weighted quasi-arithmetic means, Journal of Inequalities in Pure and Applied Mathematics, 7 (2006), 1–10.
    [5] E. Set, M. Özdemir, S. Dragomir, On the Hermite-Hadamard inequality and other integral inequalities involving two functions, J. Inequal. Appl., 2010 (2010), 148102.
    [6] W. Szeligowska, M. Kaluszka, On Jensen's inequality for generalized Choquet integral with an application to risk aversion, eprint arXiv: 1609. 00554,2016.
    [7] L. Bougoffa, On Minkowski and Hardy integral inequalities, Journal of Inequalities in Pure and Applied Mathematics, 7 (2006), 1–3.
    [8] R. A. Adams, J. J. F. Fournier, Sobolev spaces, vol. 140, Academic press, 2003.
    [9] D. Idczak, S. Walczak, Fractional Sobolev spaces via Riemann-Liouville derivatives, J. Funct. Space. Appl., 2013 (2013), 1–15.
    [10] T. Krainer, B. W. Schulze, Weighted Sobolev spaces, vol. 138, Springer, 1985.
    [11] V. Gol'dshtein, A. Ukhlov, Weighted Sobolev spaces and embedding theorems, T. Am. Math. Soc., 361 (2009), 3829–3850.
    [12] O. Hutnök, Some integral inequalities of H¨older and Minkowski type, Colloq. Math-Warsaw, 108 (2007), 247–261.
    [13] P. R. Beesack, Hardys inequality and its extensions, Pac. J. Math., 11 (1961), 39–61.
    [14] C. O. Imoru, New generalizations of Hardy's integral inequality, J. Math. Anal. Appl., 241 (1987), 73–82.
    [15] R. Herrmann, Fractional calculus: An Introduction for Physicists, World Scientific Publishing Company, Singapore, 2001.
    [16] I. Podlubny, Fractional Differential Equation, vol. 198, Mathematics in Science and Engineering, Academic Press, San Diego, 1999.
    [17] U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1–15.
    [18] J. Vanterler da C. Sousa, E. Capelas de Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci., 60 (2018), 72–91.
    [19] R. Khalil, M. Al Horani, A. Yousef, et al. A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70.
    [20] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66.
    [21] M. Bohner, T. Matthews, The Grüss inequality on time scales, Commun. Math. Anal., 3 (2007), 1–8.
    [22] D. R. Anderson, Taylors Formula and Integral Inequalities for Conformable Fractional Derivatives, Contr. Math. Eng., 2014 (2016), 25–43.
    [23] M. E. Özdemir, M. Avci, H. Kavurmaci, Hermite-Hadamard-type inequalities via (α, m)-convexity, Comput. Math. Appl., 61 (2011), 2614–2620.
    [24] F. Chen, Extensions of the Herminte–Hadamard inequality for convex functions via fractional integrals, J. Math. Inequal., 10 (2016), 75–81.
    [25] J. Wang, X. Li, M. Fekan, et al. Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Appl. Anal., 92 (2013), 2241–2253.
    [26] H. Chen, U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274–1291.
    [27] I. İşcan, On generalization of different type inequalities for harmonically quasi-convex functions via fractional integrals, Appl. Math. Comput., 275 (2016), 287–298.
    [28] I. İşcan, S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 238 (2014), 237–244.
    [29] F. Chen, Extensions of the Hermite-Hadamard inequality for harmonically convex functions via fractional integrals, Appl. Math. Comput., 268 (2015), 121–128.
    [30] H. Shiow-Ru, Y. Shu-Ying and T. Kuei-Lin, Refinements and similar extensions of Hermite-Hadamard inequality for fractional integrals and their applications, Appl. Math. Comput., 249 (2014), 103–113.
    [31] M. Z. Sarikaya, H. Budak, New inequalities of Opial type for conformable fractional integrals, Turk. J. Math., 41 (2017), 1164–1173.
    [32] J. Vanterler da C. Sousa and E. Capelas de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator, arXiv: 1709. 03634,2017.
    [33] U. N. Katugampola, New fractional integral unifying six existing fractional integrals, arXiv. org/abs/1612. 08596,2016.
    [34] E. Set, M. Özdemir, S. Dragomir, On the Hermite-Hadamard Inequality and Other Integral Inequalities Involving Two Functions, J. Inequal. Appl., 2010 (2010), 148102.
    [35] Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal., 1 (2010), 51–58.
    [36] V. L. Chinchane, D. B. Pachpatte, New fractional inequalities via Hadamard fractional integral, Internat. J. Functional Analysis, Operator Theory and Application, 5 (2013), 165–176.
    [37] S. S. Dragomir, Hermite-Hadamards type inequalities for operator convex functions, Appl. Math. Comput., 218 (2011), 766–772.
    [38] H. Yildirim, Z. Kirtay, Ostrowski inequality for generalized fractional integral and related inequalities, Malaya Journal of Matematik, 2 (2014), 322–329.
    [39] R. F. Camargo, E. Capelas de Oliveira, Fractional Calculus (In Portuguese), Editora Livraria da Física, São Paulo, 2015.
    [40] S. Taf, K. Brahim, Some new results using Hadamard fractional integral, Int. J. Nonlinear Anal. Appl., 7 (2015), 103–109.
    [41] V. L. Chinchane, D. B. Pachpatte, New fractional inequalities involving Saigo fractional integral operator, Math. Sci. Lett., 3 (2014), 133–139.
    [42] V. L. Chinchane, New approach to Minkowski's fractional inequalities using generalized kfractional integral operator, arXiv: 1702. 05234,2017.
    [43] W. T. Sulaiman, Reverses of Minkowski's, Hölders, and Hardys integral inequalities, Int. J. Mod. Math. Sci., 1 (2012), 14–24.
    [44] B. Sroysang, More on Reverses of Minkowski's Integral Inequality, Math. Aeterna, 3 (2013), 597–600.
    [45] E. Kreyszig, Introductory Functional Analysis with Applications, vol. 1, Wiley, New York, 1989.
    [46] J. Vanterler da C. Sousa, D. S. Oliveira, E. Capelas de Oliveira, Grüss-type inequality by mean of a fractional integral, arXiv: 1705. 00965,2017.
    [47] J. Vanterler da C. Sousa, E. Capelas de Oliveira, A new truncated M-fractional derivative unifying some fractional derivatives with classical properties, International Journal of Analysis and Applications, 16 (2018), 83–96.
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2012) PDF downloads(1235) Cited by(10)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog