This paper focused on the finite-time synchronization problem of complex dynamical networks (CDNs) with time-varying delay under sampled-data control schemes. A pinning control approach based on sampled-data was designed to achieve synchronization criteria. Developing a new looped Lyapunov functional with delayed information and sampling instants yielded sufficient conditions as linear matrix inequalities. The suggested CDNs were synchronized with one another since the derived criteria guaranteed the error CDN's asymptotic stability. A numerical example and corresponding simulation results confirmed the proposed control scheme's effectiveness.
Citation: M. Haripriya, A. Manivannan, S. Dhanasekar, S. Lakshmanan. Finite-time synchronization of delayed complex dynamical networks via sampled-data controller[J]. Mathematical Modelling and Control, 2025, 5(1): 73-84. doi: 10.3934/mmc.2025006
This paper focused on the finite-time synchronization problem of complex dynamical networks (CDNs) with time-varying delay under sampled-data control schemes. A pinning control approach based on sampled-data was designed to achieve synchronization criteria. Developing a new looped Lyapunov functional with delayed information and sampling instants yielded sufficient conditions as linear matrix inequalities. The suggested CDNs were synchronized with one another since the derived criteria guaranteed the error CDN's asymptotic stability. A numerical example and corresponding simulation results confirmed the proposed control scheme's effectiveness.
| [1] |
S. H. Strogatz, Exploring complex networks, Nature, 410 (2001), 268–276. https://doi.org/10.1038/35065725 doi: 10.1038/35065725
|
| [2] |
X. Wang, G. Chen, Complex networks: small-world, scale-free and beyond, IEEE Circuits Syst. Mag., 3 (2003), 6–20. https://doi.org/10.1109/MCAS.2003.1228503 doi: 10.1109/MCAS.2003.1228503
|
| [3] |
C. Long, G. Zhang, Z. Zeng, J. Hu, Finite-time stabilization of complex-valued neural networks with proportional delays and inertial terms: a non-separation approach, Neural Networks, 148 (2022), 86–95. https://doi.org/10.1016/j.neunet.2022.01.005 doi: 10.1016/j.neunet.2022.01.005
|
| [4] |
N. Zhang, X. Wang, W. Li, Stability for multi-linked stochastic delayed complex networks with stochastic hybrid impulses by dupire it${\hat{o}}$'s formula, Nonlinear Anal., 45 (2022), 101200. https://doi.org/10.1016/j.nahs.2022.101200 doi: 10.1016/j.nahs.2022.101200
|
| [5] |
J. Lu, D. W. C. Ho, Globally exponential synchronization and synchronizability for general dynamical networks, IEEE Trans. Syst. Man Cybern., 40 (2009), 350–361. https://doi.org/10.1109/TSMCB.2009.2023509 doi: 10.1109/TSMCB.2009.2023509
|
| [6] |
Z. Wang, Y. Wang, Y. Liu, Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays, IEEE Trans. Neural Networks, 21 (2009), 11–25. https://doi.org/10.1109/TNN.2009.2033599 doi: 10.1109/TNN.2009.2033599
|
| [7] |
V. Milanović, M. E. Zaghloul, Synchronization of chaotic neural networks and applications to communications, Int. J. Bifurcation Chaos, 6 (1996), 2571–2585. https://doi.org/10.1142/S0218127496001648 doi: 10.1142/S0218127496001648
|
| [8] |
Y. Dong, J. Chen, J. Cao, Fixed-time pinning synchronization for delayed complex networks under completely intermittent control, J. Franklin Inst., 359 (2022), 7708–7732. https://doi.org/10.1016/j.jfranklin.2022.08.010 doi: 10.1016/j.jfranklin.2022.08.010
|
| [9] |
J. Xiao, X. Guo, Y. Li, S. Wen, K. Shi, Y. Tang, Extended analysis on the global Mittag-Leffler synchronization problem for fractional-order octonion-valued BAM neural networks, Neural Networks, 154 (2022), 491–507. https://doi.org/10.1016/j.neunet.2022.07.031 doi: 10.1016/j.neunet.2022.07.031
|
| [10] |
Y. Shen, Y. Huang, J. Gu, Global finite-time observers for Lipschitz nonlinear systems, IEEE Trans. Autom. Control, 56 (2010), 418–424. https://doi.org/10.1109/TAC.2010.2088610 doi: 10.1109/TAC.2010.2088610
|
| [11] |
H. Yu, X. Xia, Adaptive consensus of multi-agents in networks with jointly connected topologies, Automatica, 48 (2012), 1783–1790. https://doi.org/10.1016/j.automatica.2012.05.068 doi: 10.1016/j.automatica.2012.05.068
|
| [12] |
J. H. Park, Synchronization of cellular neural networks of neutral type via dynamic feedback controller, Chaos Solitons Fract., 42 (2009), 1299–1304. https://doi.org/10.1016/j.chaos.2009.03.024 doi: 10.1016/j.chaos.2009.03.024
|
| [13] |
Q. Song, J. Cao, On pinning synchronization of directed and undirected complex dynamical networks, IEEE Trans. Circuits Syst. I, 57 (2009), 672–680. https://doi.org/10.1109/TCSI.2009.2024971 doi: 10.1109/TCSI.2009.2024971
|
| [14] |
R. O. Grigoriev, M. C. Cross, H. G. Schuster, Pinning control of spatiotemporal chaos, Phys. Rev. Lett., 79 (1997), 2795. https://doi.org/10.1103/PhysRevLett.79.2795 doi: 10.1103/PhysRevLett.79.2795
|
| [15] |
W. Yu, G. Chen, J. Lü, On pinning synchronization of complex dynamical networks, Automatica, 45 (2009), 429–435. https://doi.org/10.1016/j.automatica.2008.07.016 doi: 10.1016/j.automatica.2008.07.016
|
| [16] |
Y. Sun, L. Li, D. W. Ho, Synchronization control of complex dynamical networks: invariant pinning impulsive controller with asynchronous actuation, IEEE Trans. Network Sci. Eng., 9 (2022), 4255–4265. https://doi.org/10.1109/TNSE.2022.3196805 doi: 10.1109/TNSE.2022.3196805
|
| [17] |
S. Liu, Z. Wang, L. Wang, G. Wei, ${H}_{\infty}$ pinning control of complex dynamical networks under dynamic quantization effects: a coupled backward Riccati equation approach, IEEE Trans. Cybern., 52 (2020), 7377–7387. https://doi.org/10.1109/TCYB.2020.3021982 doi: 10.1109/TCYB.2020.3021982
|
| [18] |
J. Zhou, X. Wu, W. Yu, M. Small, J. Lu, Pinning synchronization of delayed neural networks, Chaos, 18 (2008), 043111. https://doi.org/10.1063/1.2995852 doi: 10.1063/1.2995852
|
| [19] |
X. Yang, J. Cao, Adaptive pinning synchronization of coupled neural networks with mixed delays and vector-form stochastic perturbations, Acta Math. Sci., 32 (2012), 955–977. https://doi.org/10.1016/S0252-9602(12)60072-1 doi: 10.1016/S0252-9602(12)60072-1
|
| [20] |
N. Li, Y. Zhang, J. Hu, Z. Nie, Synchronization for general complex dynamical networks with sampled-data, Neurocomputing, 74 (2011), 805–811. https://doi.org/10.1016/j.neucom.2010.11.007 doi: 10.1016/j.neucom.2010.11.007
|
| [21] |
E. Fridman, A. Seuret, J. P. Richard, Robust sampled-data stabilization of linear systems: an input delay approach, Automatica, 40 (2004), 1441–1446. https://doi.org/10.1016/j.automatica.2004.03.003 doi: 10.1016/j.automatica.2004.03.003
|
| [22] |
K. Liu, E. Fridman, Networked-based stabilization via discontinuous Lyapunov functionals, Int. J. Robust Nonlinear Control, 22 (2012), 420–436. https://doi.org/10.1002/rnc.1704 doi: 10.1002/rnc.1704
|
| [23] |
P. Zhang, J. Wang, S. Lee, Y. Liu, Sampled-data based asynchronous control for persistent dwell-time switched systems: a delay-dependent Lyapunov functional approach, J. Franklin Inst., 361 (2024), 106789. https://doi.org/10.1016/j.jfranklin.2024.106789 doi: 10.1016/j.jfranklin.2024.106789
|
| [24] |
Y. Cheng, R. Zhang, Y. Liu, J. Xiao, Secure synchronization control for a class of complex time-delay dynamic networks against denial-of-service attacks, J. Franklin Inst., 360 (2023), 7535–7558. https://doi.org/10.1016/j.jfranklin.2023.05.035 doi: 10.1016/j.jfranklin.2023.05.035
|
| [25] |
Q. Wu, H. Zhang, L. Xu, Q. Yan, Finite-time synchronization of general complex dynamical networks, Asian J. Control, 17 (2015), 1643–1653. https://doi.org/10.1002/asjc.985 doi: 10.1002/asjc.985
|
| [26] |
J. Mei, M. Jiang, W. Xu, B. Wang, Finite-time synchronization control of complex dynamical networks with time delay, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2462–2478. https://doi.org/10.1016/j.cnsns.2012.11.009 doi: 10.1016/j.cnsns.2012.11.009
|
| [27] |
A. Abdurahman, H. Jiang, Z. Teng, Finite-time synchronization for fuzzy cellular neural networks with time-varying delays, Fuzzy Sets Syst., 297 (2016), 96–111. https://doi.org/10.1016/j.fss.2015.07.009 doi: 10.1016/j.fss.2015.07.009
|
| [28] |
N. Gunasekaran, R. Saravanakumar, Y. H. Joo, H. S. Kim, Finite-time synchronization of sampled-data T-S fuzzy complex dynamical networks subject to average dwell-time approach, Fuzzy Sets Syst., 374 (2019), 40–59. https://doi.org/10.1016/j.fss.2019.01.007 doi: 10.1016/j.fss.2019.01.007
|
| [29] |
N. Gunasekaran, M. S. Ali, S. Arik, H. A. Ghaffar, A. A. Z. Diab, Finite-time and sampled-data synchronization of complex dynamical networks subject to average dwell-time switching signal, Neural Networks, 149 (2022), 137–145. https://doi.org/10.1016/j.neunet.2022.02.013 doi: 10.1016/j.neunet.2022.02.013
|
| [30] |
X. Yang, J. Cao, Synchronization of complex networks with coupling delay via pinning control, IMA J. Math. Control Inf., 34 (2017), 579–596. https://doi.org/10.1093/imamci/dnv065 doi: 10.1093/imamci/dnv065
|
| [31] | K. Gu, V. L. Kharitonov, J. Chen, Introduction to time-delay systems, Stability of time-delay systems, 2003. |
| [32] |
J. Chen, S. Xu, B. Zhang, Single/multiple integral inequalities with applications to stability analysis of time-delay systems, IEEE Trans. Autom. Control, 62 (2016), 3488–3493. https://doi.org/10.1109/TAC.2016.2617739 doi: 10.1109/TAC.2016.2617739
|
| [33] |
Y. Zou, E. Tian, H. Chen, Finite-time synchronization of neutral-type coupled systems via event-triggered control with controller failure, IEEE Trans. Control Network Syst., 11 (2023), 1214–1224. https://doi.org/10.1109/TCNS.2023.3336594 doi: 10.1109/TCNS.2023.3336594
|
| [34] |
R. Tang, X. Yang, P. Shi, Z. Xiang, L. Qing, Finite-time $\mathcal{L}_2 $ stabilization of uncertain delayed T-S fuzzy systems via intermittent control, IEEE Trans. Fuzzy Syst., 32 (2023), 116–125. https://doi.org/10.1109/TFUZZ.2023.3292233 doi: 10.1109/TFUZZ.2023.3292233
|
| [35] |
R. Tang, X. Yang, G. Wen, J. Lu, Finite-time synchronization of fractional-order memristive fuzzy neural networks: event-based control with linear measurement error, IEEE Trans. Neural Networks Learn. Syst., 2024. https://doi.org/10.1109/TNNLS.2024.3424519 doi: 10.1109/TNNLS.2024.3424519
|
| [36] |
R. Tang, H. Su, Y. Zou, X. Yang, Finite-time synchronization of Markovian coupled neural networks with delays via intermittent quantized control: linear programming approach, IEEE Trans. Neural Networks Learn. Syst., 33 (2021), 5268–5278. https://doi.org/10.1109/TNNLS.2021.3069926 doi: 10.1109/TNNLS.2021.3069926
|
| [37] |
C. He, R. Tang, H. K. Lam, J. Cao, X. Yang, Mode-dependent event-triggered output control for switched T-S fuzzy systems with stochastic switching, IEEE Trans. Fuzzy Syst., 31 (2022), 2581–2592. https://doi.org/10.1109/TFUZZ.2022.3229748 doi: 10.1109/TFUZZ.2022.3229748
|