Research article Special Issues

Wave solution for time fractional geophysical KdV equation in uncertain environment

  • Published: 13 March 2025
  • This work aims to develop an approximate analytical solution for the geophysical Korteweg-de Vries (GeoKdV) equation with time-fractional derivatives defined in the Caputo sense. This equation is relevant to shallow water wave (SWW) propagation, which may have uses in mathematical physics and engineering sciences. In real-world scenarios, factors such as environmental or climate changes or the dynamics of air and water waves introduce uncertainty or ambiguity into parameters like the Coriolis effect and initial or boundary conditions. Unlike previous studies that solely focused on either integer-order or fractional-order models, this research introduces fractional dynamics with fuzzy uncertainty. To deal with such uncertainty, this work aims to find the approximate fuzzy solution to the said physical problem by applying a double parametric approach with the help of an effective method called the fractional reduced differential transform method (FRDTM). This approach has been shown to be highly effective, thereby efficiently addressing both fractional calculus and fuzzy initial conditions. Furthermore, to validate the obtained solution, we conduct a comparison between the special case of the current fuzzy solution, thereby considering the fractional order of the index with the existing precise (crisp) solutions of the integer order governing equation. The solutions are presented in both fuzzy and precise formats, and graphical representations are provided to enhance the understanding of their physical significance across various parameter values.

    Citation: Mrutyunjaya Sahoo, Dhabaleswar Mohapatra, S. Chakraverty. Wave solution for time fractional geophysical KdV equation in uncertain environment[J]. Mathematical Modelling and Control, 2025, 5(1): 61-72. doi: 10.3934/mmc.2025005

    Related Papers:

  • This work aims to develop an approximate analytical solution for the geophysical Korteweg-de Vries (GeoKdV) equation with time-fractional derivatives defined in the Caputo sense. This equation is relevant to shallow water wave (SWW) propagation, which may have uses in mathematical physics and engineering sciences. In real-world scenarios, factors such as environmental or climate changes or the dynamics of air and water waves introduce uncertainty or ambiguity into parameters like the Coriolis effect and initial or boundary conditions. Unlike previous studies that solely focused on either integer-order or fractional-order models, this research introduces fractional dynamics with fuzzy uncertainty. To deal with such uncertainty, this work aims to find the approximate fuzzy solution to the said physical problem by applying a double parametric approach with the help of an effective method called the fractional reduced differential transform method (FRDTM). This approach has been shown to be highly effective, thereby efficiently addressing both fractional calculus and fuzzy initial conditions. Furthermore, to validate the obtained solution, we conduct a comparison between the special case of the current fuzzy solution, thereby considering the fractional order of the index with the existing precise (crisp) solutions of the integer order governing equation. The solutions are presented in both fuzzy and precise formats, and graphical representations are provided to enhance the understanding of their physical significance across various parameter values.



    加载中


    [1] D. J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Lond. Edinb. Dublin Philos. Mag. J. Sci., 39 (1895), 422–443. https://doi.org/10.1080/14786435.2010.547337 doi: 10.1080/14786435.2010.547337
    [2] A. Geyer, R. Quirchmayr, Shallow water equations for equatorial tsunami waves, Philos. Trans. R. Soc. A, 376 (2018), 20170100. https://doi.org/10.1098/rsta.2017.0100 doi: 10.1098/rsta.2017.0100
    [3] T. Ak, A. Saha, S. Dhawan, A. H. Kara, Investigation of Coriolis effect on oceanic flows and its bifurcation via geophysical Korteweg-de Vries equation, Numer. Methods Partial Differ. Equations, 36 (2020), 1234–1253. https://doi.org/10.1002/num.22469 doi: 10.1002/num.22469
    [4] S. T. R. Rizvi, A. R. Seadawy, F. Ashraf, M. Younis, H. Iqbal, D. Baleanu, Lump and interaction solutions of a geophysical Korteweg-de Vries equation, Results Phys., 19 (2020), 103661. https://doi.org/10.1016/j.rinp.2020.103661 doi: 10.1016/j.rinp.2020.103661
    [5] K. Hosseini, A. Akbulut, D. Baleanu, S. Salahshour, M. Mirzazadeh, L. Akinyemi, The geophysical KdV equation: its solitons, complexiton, and conservation laws, GEM, 13 (2022), 12. https://doi.org/10.1007/s13137-022-00203-8 doi: 10.1007/s13137-022-00203-8
    [6] A. R. Alharbi, M. B. Almatrafi, Exact solitary wave and numerical solutions for geophysical KdV equation, J. King Saud Univ. Sci., 34 (2022), 102087. https://doi.org/10.1016/j.jksus.2022.102087 doi: 10.1016/j.jksus.2022.102087
    [7] S. Saifullah, N. Fatima, S. A. M. Abdelmohsen, M. M. Alanazi, S. Ahmad, D. Baleanu, Analysis of a conformable generalized geophysical KdV equation with Coriolis effect, Alex. Eng. J., 73 (2023), 651–663. https://doi.org/10.1016/j.aej.2023.04.058 doi: 10.1016/j.aej.2023.04.058
    [8] I. Podlubny, Fractional differential equations, Academic Press, 1999.
    [9] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: models and numerical methods, World Scientific Publishing Company, 2016. https://doi.org/10.1142/10044
    [10] S. Chakraverty, R. M. Jena, S. K. Jena, Time-fractional order biological systems with uncertain parameters, Synthesis Lectures on Mathematics and Statistics 12 (2020), 1–160. https://doi.org/10.2200/s00976ed1v01y201912mas03
    [11] Y. Qin, A. Khan, I. Ali, M. A. Qurashi, H. Khan, R. Shah, et al., An efficient analytical approach for the solution of certain fractional-order dynamical systems, Energies, 13 (2020), 2725. https://doi.org/10.3390/en13112725 doi: 10.3390/en13112725
    [12] A. A. Alderremy, R. Shah, N. Iqbal, S. Aly, K. Nonlaopon, Fractional series solution construction for nonlinear fractional reaction-diffusion brusselator model utilizing laplace residual power series, Symmetry, 14, (2022), 1944. https://doi.org/10.3390/sym14091944 doi: 10.3390/sym14091944
    [13] S. Alshammari, M. M. Al-Sawalha, R. Shah, Approximate analytical methods for a fractional-order nonlinear system of Jaulent-Miodek equation with energy-dependent Schrödinger potential, Fractal Fract., 7 (2023), 140. https://doi.org/10.3390/fractalfract7020140 doi: 10.3390/fractalfract7020140
    [14] D. Mohapatra, S. Chakraverty, Legendre wavelets based approach for the solution of type-2 fuzzy uncertain smoking model of fractional order, Eng. Comput., 40 (2023), 868–920. https://doi.org/10.1108/EC-08-2022-0540 doi: 10.1108/EC-08-2022-0540
    [15] D. Mohapatra, S. Chakraverty, M. Alshammari, Time fractional heat equation of $n$+1-dimension in type-1 and type-2 fuzzy environment, Int. J. Fuzzy Syst., 26 (2023), 1–16. https://doi.org/10.1007/s40815-023-01569-z doi: 10.1007/s40815-023-01569-z
    [16] M. Sahoo, S. Chakraverty, Solitary wave solution for time-fractional SMCH equation in fuzzy environment, In: S. Chakraverty, R. M. Jena, Computation and modeling for fractional order systems, Elsvier, 2024,227–239. https://doi.org/10.1016/B978-0-44-315404-1.00019-9
    [17] P. Karunakar, S. Chakraverty, Solutions of time-fractional third- and fifth-order Korteweg-de-Vries equations using homotopy perturbation transform method, Eng. Comput., 36 (2019), 2309–2326. https://doi.org/10.1108/EC-01-2019-0012 doi: 10.1108/EC-01-2019-0012
    [18] R. Shah, U. Farooq, H. Khan, D. Baleanu, P. Kumam, M. Arif, Fractional view analysis of third order Kortewege-de Vries equations, using a new analytical technique, Front. Phys., 7 (2020), 00244. https://doi.org/10.3389/fphy.2019.00244 doi: 10.3389/fphy.2019.00244
    [19] R. M. Jena, S. Chakraverty, D. Baleanu, Solitary wave solution for a generalized Hirota-Satsuma coupled KdV and MKdV equations: a semi-analytical approach, Alex. Eng. J., 59 (2020), 2877–2889. https://doi.org/10.1016/j.aej.2020.01.002 doi: 10.1016/j.aej.2020.01.002
    [20] M. M. Al-Sawalha, R. Shah, A. Khan, O. Y. Ababneh, T. Botmart, Fractional view analysis of Kersten-Krasil'shchik coupled KdV-mKdV systems with non-singular kernel derivatives, AIMS Math., 7 (2022), 18334–18359. https://doi.org/10.3934/math.20221010 doi: 10.3934/math.20221010
    [21] X. Cao, B. Liu, M. Liu, K. Peng, W. Tian, Variational principles for two kinds of non-linear geophysical KdV equation with fractal derivatives, Therm. Sci., 26 (2022), 2505–2515. https://doi.org/10.2298/TSCI2203505C doi: 10.2298/TSCI2203505C
    [22] K. Shehzada, A. Ullah, S. Saifullah, A. Akgül, Fractional generalized perturbed KdV equation with a power Law kernel: a computational study, Results Control Optim., 12 (2023), 100298. https://doi.org/10.1016/j.rico.2023.100298 doi: 10.1016/j.rico.2023.100298
    [23] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [24] P. Karunakar, S. Chakraverty, Comparison of solutions of linear and non-linear shallow water wave equations using homotopy perturbation method, Int. J. Numer. Methods Heat Fluid Flow, 27 (2017), 2015–2029. https://doi.org/10.1108/hff-09-2016-0329 doi: 10.1108/hff-09-2016-0329
    [25] M. Sahoo, S. Chakraverty, Sawi fransform based homotopy perturbation method for solving shallow water wave equations in fuzzy environment, Mathematics, 10 (2022), 2900. https://doi.org/10.3390/math10162900 doi: 10.3390/math10162900
    [26] M. Sahoo, S. Chakraverty, Dynamics of tsunami wave propagation in uncertain environment, Comput. Appl. Math., 43 (2024), 266. https://doi.org/10.1007/s40314-024-02776-6 doi: 10.1007/s40314-024-02776-6
    [27] M. Sahoo, S. Chakraverty, Influence of uncertain coriolis parameter on wave solution of Korteweg-de Vries equation, Int. J Geomath., 15 (2024), 10. https://doi.org/10.1007/s13137-024-00252-1 doi: 10.1007/s13137-024-00252-1
    [28] D. Behera, S. Chakraverty, New approach to solve fully fuzzy system of linear equations using single and double parametric form of fuzzy numbers, Sadhana, 40 (2015), 35–49. https://doi.org/10.1007/s12046-014-0295-9 doi: 10.1007/s12046-014-0295-9
    [29] S. Chakraverty, D. M. Sahoo, N. R. Mahato, Concepts of soft computing, Springer, 2019, 53–69. https://doi.org/10.1007/978-981-13-7430-2
    [30] R. M. Jena, S. Chakraverty, D. Baleanu, On new solutions of time-fractional wave equations arising in shallow water wave propagation, Mathematics, 7 (2019), 722. https://doi.org/10.3390/math7080722 doi: 10.3390/math7080722
    [31] Y. Keskin, G. Oturanç, Reduced differential transform method for generalized KdV equations, Math. Comput. Appl., 15 (2010), 382–393. https://doi.org/10.3390/mca15030382 doi: 10.3390/mca15030382
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1083) PDF downloads(58) Cited by(0)

Article outline

Figures and Tables

Figures(11)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog