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Studies involving integral inequalities are important in several areas of science: mathematics,
physics, engineering, among others, in particular we mention: initial value problem, linear transforma-
tion stability, integral-differential equations, and impulse equations [1, 2].

The space of p-integrable functions Lp(a, b) plays a relevant role in the study of inequalities in-
volving integrals and sums. Further, it is possible to extend this space of p-integrable functions, to
the space of the measurable Lebesgue functions, denoted by Xp

c (a, b), in which the space Lp(a, b) is
contained [3]. Thus, new results involving integral inequalities have been possible and consequently,
some applications have been made [1, 2]. We mention few of them, the inequalities of: Minkowski,
Hölder, Hardy, Hermite-Hadamard, Jensen, among others [4, 5, 6, 7, 12, 13, 14].

On the other hand, when we consider the non-integer order calculus or fractional calculus, as widely
known, we are able in some cases adapt the theoretical model to the experimental data, in addition, it
is used to generalize integrals and derivatives, in integrating inequalities. There are many definitions
of fractional integrals, for example: Riemann-Liouville, Hadamard, Liouville, Weyl, Erdélyi-Kober
and Katugampola [3, 15, 16, 17, 18]. Recently, Khalil et al. [19] and Adeljawad [20], introduced
the local conformable fractional integrals and derivatives. From such fractional integrals, one obtains
generalizations of the inequalities: Hadamard, Hermite-Hadamard, Opial, Grüss, Ostrowski, Gronwall
among others [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32].

Recently, Katugampola [33] proposed a fractional integral unifying other well known ones:
Riemann-Liouville, Hadamard, Weyl, Liouville and Erdélyi-Kober. Motivated by this formulation,
we present a generalization of the reverse Minkowski’s inequality [34, 35, 36], using the fractional
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integral introduced by Katugampola. We point out that studies in this direction, involving fractional
integrals, are growing in several branches of mathematics [23, 37, 38].

The work is organized as follows: In section 1, we present the definition of the fractional integral, as
well as its particular cases. We present the main theorems involving the reverse Minkowski’s inequality,
as well as the suitable spaces for such definitions. In section 2, our main result, we propose the
reverse Minkowski’s inequality using the fractional integral. In section 3, we discuss other inequalities
involving this fractional integral. Concluding remarks close the article.

1. Prelimiaries

In this section, we present the reverse Minkowski’s inequality theorem associated with the classical
Riemann integral and its respective generalization via Riemann-Liouville and Hadamard fractional
integrals. In addition, we present the fractional integral introduced by Katugampola, and we conclude
with a theorem in order to recover particular cases.

Erhan et al. [5] address the inequalities of Hermite-Hadamard and reverse Minkowski for two
functions f and g by means of the classical Riemann integral. On the other hand, Lazhar [7] also
proposed a work related to the inequality involving integrals, that is, Hardy’s inequality and the reverse
Minkowski’s inequality. Two theorems below have been motivation for the works performed so far,
via the Riemann-Liouville and Hadamard integrals, involving the reverse Minkowski’s inequality.

Definition 1. [3] The space Xp
c (a, b) (c ∈ R, 1 ≤ p ≤ ∞) consists of those complex-valued Lebesgue

measurable functions f on (a, b), for which ‖ f ‖Xp
c
< ∞ with

‖ f ‖Xp
c

=

(∫ b

a
|xc f (x)|p

dx
x

)1/p

(1 ≤ p < ∞)

and
‖ f ‖X∞c = sup essx∈(a,b) [xc| f (x)|].

In particular, when c = 1/p the space Xp
c (a, b) coincides with the space Lp(a, b). Note that, the

regularity of the function, can be obtained by the inequality of the norms below,

‖ f ‖Xp
c (a,b) ≤ C‖ f ‖Lp(a,b).

On the other hand, we can also note that space Xp
c (a, b), implicitly involves the fractional Sobolev

space W1,p
X [8, 9, 10, 11].

Theorem 1. [5] Let f , g ∈ Lp(a, b) be two positive functions, with 1 ≤ p ≤ ∞. If 0 < m ≤
f (t)
g (t)

≤ M,

for m,M ∈ R∗+ and ∀t ∈ [a, b], then(∫ b

a
f p (t) dt

) 1
p

+

(∫ b

a
gp (t) dt

) 1
p

≤ c1

(∫ b

a
( f p + gp) (t) dt

) 1
p

, (1)

with c1 =
M (m + 1) + (M + 1)

(m + 1) (M + 1)
.
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Theorem 2. [5] Let f , g ∈ Lp(a, b) be two positive functions, with 1 ≤ p ≤ ∞. If 0 < m ≤
f (t)
g (t)

≤ M,

for m,M ∈ R∗+ and ∀t ∈ [a, b], then(∫ b

a
f p (t) dt

) 2
p

+

(∫ b

a
gp (t) dt

) 2
p

≥ c2

(∫ b

a
f p (t) dt

) 1
p
(∫ b

a
gp (t) dt

) 1
p

, (2)

with c2 =
(M + 1) (m + 1)

M
− 2.

We present the definitions of the fractional integrals that will be useful in the development of the ar-
ticle: Riemann-Liouville fractional integral, Hadamard integral, Erdélyi-Kober integral, Katugampola
integral, Weyl integral and Liouville integral.

Definition 2. [3, 16] Let [a, b] (−∞ < a < b < ∞) be a finite interval on the real-axis R. The Riemann-
Liouville fractional integrals (left-sided and right-sided) of order α ∈ C, Re(α) > 0 of a real function
f ∈ Lp(a, b), are defined by

Jαa+ f (x) :=
1

Γ (α)

∫ x

a

f (t)
(x − t)1−αdt, a < x < b (3)

and

Jαb− f (x) :=
1

Γ (α)

∫ b

x

f (t)
(t − x)1−αdt, a < x < b, (4)

respectively.

Definition 3. [3, 16] Let (a, b) (0 ≤ a < b < ∞) be a finite or infinite interval on the half-axis R+. The
Hadamard fractional integrals (left-sided and right-sided) of order α ∈ C, Re(α) > 0 of a real function
f ∈ Lp(a, b) are defined by

Hα
a+ f (x) :=

1
Γ (α)

∫ x

a

(
log

x
t

)α−1 f (t)
t

dt, a < x < b (5)

and

Hα
b− f (x) :=

1
Γ (α)

∫ b

x

(
log

t
x

)α−1 f (t)
t

dt, a < x < b (6)

respectively.

Definition 4. [3, 16] Let (a, b) (−∞ ≤ a < b ≤ ∞) be a finite or infinite interval or half-axis R+. Also
let Re(α) > 0, σ > 0 and η ∈ C. The Erdélyi-Kober fractional integrals (left-sided and right-sided) of
order α ∈ C of a real function f ∈ Lp(a, b) are defined by

Iαa+,σ,η f (x) :=
σx−σ(α+η)

Γ (α)

∫ x

a

tσ(η+1)−1

(xσ − tσ)1−α f (t) dt, a < x < b (7)

and

Iαb−,σ,η f (x) :=
σxση

Γ (α)

∫ b

x

tσ(1−η−α)−1

(tσ − xσ)1−α f (t) dt, a < x < b, (8)

respectively.
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Definition 5. [17] Let [a, b] ⊂ R be a finite interval. The Katugampola fractional integrals
(left-sided and right-sided) of order α ∈ C, ρ > 0, Re(α) > 0 of a real function f ∈ Xp

c (a, b) are
defined by

ρIαa+ f (x) :=
ρ1−α

Γ (α)

∫ x

a

tρ−1

(xρ − tρ)1−α f (t) dt, x > a (9)

and
ρIαb− f (x) :=

ρ1−α

Γ (α)

∫ b

x

tρ−1

(tρ − xρ)1−α f (t) dt, x < b, (10)

respectively.

Definition 6. [39] The Weyl fractional integrals of order α ∈ C, Re(α) > 0 of a real function f locally
integrable into (−∞,∞) being −∞ ≤ x ≤ ∞ are defined by

xWα
∞ =x Iα∞ f (x) :=

1
Γ (α)

∫ x

−∞

f (t)
(x − t)1−αdt (11)

and

−∞Wα
x =−∞ Iαx f (x) :=

1
Γ (α)

∫ ∞

x

f (t)
(t − x)1−αdt, (12)

respectively.

Definition 7. [3, 16] Let a continuous function by parts in R = (−∞,∞). The Liouville fractional
integrals (left-sided and right-sided) of order α ∈ C, Re(α) > 0 of a real function f , are defined by

Iα+ f (x) :=
1

Γ (α)

∫ x

−∞

f (t)
(x − t)1−αdt (13)

and

Iα− f (x) :=
1

Γ (α)

∫ ∞

x

f (t)
(t − x)1−αdt, (14)

respectively.

Zoubir [35] established the reverse Minkowski’s inequality and another result that refers to the
inequality via Riemann-Liouville fractional integral according to the following two theorems.

Theorem 3. [35] Let α > 0, p ≥ 1 and f , g two positive functions in [0,∞), such that ∀x > 0,

Jα f p (x) < ∞ and Jαgp (x) < ∞. If 0 < m ≤
f (t)
g (t)

≤ M, for m,M ∈ R∗+ and ∀t ∈ [0, x], then

(Jα f p (x))
1
p + (Jαgp (x))

1
p ≤ c1 (Jα ( f + g)p (x))

1
p , (15)

where c1 =
M (m + 1) + (M + 1)

(m + 1) (M + 1)
.

Theorem 4. [35] Let α > 0, p ≥ 1 and f , g two positive functions in [0,∞), such that ∀x > 0,

Jα f p (x) < ∞ and Jαgp (x) < ∞. If 0 < m ≤
f (t)
g (t)

≤ M, for m,M ∈ R∗+ and ∀t ∈ [0, x], then

(Jα f p (x))
2
p + (Jαgp (x))

2
p ≥ c2 (Jα f p (x))

1
p (Jαgp (x))

1
p , (16)

where c2 =
(M + 1) (m + 1)

M
− 2.
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In 2014, Chinchane et al. [36] and Taf et al. [40] also established the reverse Minkowski’s inequality
via Hadamard fractional integral as in two theorems below.

Theorem 5. [36, 40] Let α > 0, p ≥ 1 and f , g two positive functions in [0,∞), such that ∀x > 0,

Hα
1 f p (x) < ∞ and Hα

1 gp (x) < ∞. If 0 < m ≤
f (t)
g (t)

≤ M, for m,M ∈ R∗+ and ∀t ∈ [0, x], then

(
Hα

1 f p (x)
) 1

p +
(
Hα

1 gp (x)
) 1

p ≤ c1
(
Hα

1 ( f + g)p (x)
) 1

p , (17)

where c1 =
M (m + 1) + (M + 1)

(m + 1) (M + 1)
.

Theorem 6. [36, 40] Let α > 0, p ≥ 1 and f , g two positive functions in [0,∞), such that ∀x > 0,

Hα
1 f p (x) < ∞ and Hα

1 gp (x) < ∞. If 0 < m ≤
f (t)
g (t)

≤ M, for m,M ∈ R∗+ and ∀t ∈ [0, x], then

(
Hα

1 f p (x)
) 2

p +
(
Hα

1 gp (x)
) 2

p ≥ c2
(
Hα

1 f p (x)
) 1

p
(
Hα

1 gp (x)
) 1

p (18)

where c2 =
(M + 1) (m + 1)

M
− 2.

In 2014 Chinchane et al. [41] and recently Chinchane [42], established the reverse Minkowski’s
inequality via fractional integral of Saigo and the k-fractional integral, respectively.

In 2017, Katugampola [33] introduced a fractional integral that unifies the six fractional integrals
above mentioned. Finally, we introduce this integral and with a theorem we study their respective
particular cases.

Definition 8. [33] Let ϕ ∈ Xp
c (a, b), α > 0 and β, ρ, η, κ ∈ R. Then, the fractional integrals of a function

f , left and right, are given by

ρI
α,β
a+,η,κϕ (x) :=

ρ1−βxκ

Γ (α)

∫ x

a

τρ(η+1)−1

(xρ − τρ)1−αϕ (τ) dτ, 0 ≤ a < x < b ≤ ∞ (19)

and
ρI

α,β
b−,η,κϕ (x) :=

ρ1−βxρη

Γ (α)

∫ b

x

τκ+ρ−1

(τρ − xρ)1−αϕ (τ) dτ, 0 ≤ a < x < b ≤ ∞ (20)

respectively, if integrals exist.

From now on, let’s work only with the left integral, Eq.(19), because with the right integral we have
a similar treatment.

Remark 1. Let α > 0 and β, ρ, η, κ ∈ R. Then for f ∈ Xp
c (a, b), with a < x < b, we have [33]:

1. For κ = 0, η = 0 and the limit ρ→ 1, in Eq.(19), we get the Riemann-Liouville fractional integral,
i.e; Eq.(3).

2. With β = α, κ = 0, η = 0, we take the limit ρ → 0+ and using the `’Hospital role, in Eq.(19), we
get the Hadamard fractional integral, i.e; Eq.(5).

3. In the case β = 0 and κ = −ρ(α + η), in Eq.(19), we get the Erdélyi-Kober fractional integral, i.e;
Eq.(7).
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4. For β = α, κ = 0 and η = 0, in Eq.(19), we get Katugampola fractional integral, i.e; Eq.(9).
5. With κ = 0, η = 0, a = −∞ and take the limit ρ → 1, in Eq.(19), we get Weyl fractional integral,

i.e; Eq.(11).
6. With κ = 0, η = 0, a = 0 and take the limit ρ→ 1, in Eq.(19), we get Liouville fractional integral,

i.e; Eq.(13).

2. Reverse Minkowski fractional integral inequality

In this section, our main contribution, we establish and prove the reverse Minkowski’s inequality via
generalized fractional integral Eq.(19) and a theorem that refers to the reverse Minkowski’s inequality.

Theorem 7. Let α > 0, ρ, η, κ, β ∈ R and p ≥ 1. Let f , g ∈ Xp
c (a, x) be two positive functions in [0,∞),

∀x > a. If 0 < m ≤
f (t)
g (t)

≤ M, for m,M ∈ R∗+ and ∀t ∈ [a, x], then

(
ρI

α,β
a+,η,κ f p (x)

) 1
p

+
(
ρI

α,β
a+,η,κg

p (x)
) 1

p
≤ c1

(
ρI

α,β
a+,η,κ ( f + g)p (x)

) 1
p
, (21)

with c1 =
M (m + 1) + (M + 1)

(m + 1) (M + 1)
.

Proof 1. Using the condition
f (t)
g (t)

≤ M, t ∈ [a, x], we can write

f (t) ≤ M ( f (t) + g (t)) − M f (t) ,

which implies,
(M + 1)p f p (t) ≤ Mp ( f (t) + g (t))p . (22)

Multiplying by
ρ1−βxκtρ(η+1)−1

Γ (α) (xρ − tρ)1−α both sides of Eq.(22) and integrating with respect to the variable

t, we have

(M + 1)p ρ1−βxκ

Γ (α)

∫ x

a

tρ(η+1)−1

(xρ − tρ)1−α f p (t) dt ≤
Mpρ1−βxκ

Γ (α)

∫ x

a

tρ(η+1)−1

(xρ − tρ)1−α ( f + g)p (t) dt. (23)

Consequently, we can write(
ρI

α,β
a+,η,κ f p (x)

) 1
p
≤

M
M + 1

(
ρI

α,β
a+,η,κ ( f + g)p (x)

) 1
p
. (24)

On the other hand, as mg (t) ≤ f (t), follows(
1 +

1
m

)p

gp (t) ≤
(

1
m

)p

( f (t) + g (t))p . (25)

Further, multiplying by
ρ1−βxκtρ(η+1)−1

Γ (α) (xρ − tρ)1−α both sides of Eq.(25) and integrating with respect to the

variable t, we have (
ρI

α,β
a+,η,κg

p (t)
) 1

p
≤

1
m + 1

(
ρI

α,β
a+,η,κ ( f + g)p (t)

) 1
p
. (26)

From Eq.(24) and Eq.(26), the result follows.
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Eq.(21) is the so-called reverse Minkowski’s inequality associated with the Katugampola fractional
integral.

Theorem 8. Let α > 0, ρ, η, κ, β ∈ R and p ≥ 1. Let f , g ∈ Xp
c (a, x) be two positive functions in [0,∞),

∀x > a. If 0 < m ≤
f (t)
g (t)

≤ M, for m,M ∈ R∗+ and ∀t ∈ [a, x], then

(
ρI

α,β
a+,η,κ f p (x)

) 2
p

+
(
ρI

α,β
a+,η,κg

p (x)
) 2

p
≥ c2

(
ρI

α,β
a+,η,κ f p (x)

) 1
p
(
ρI

α,β
a+,η,κg

p (x)
) 1

p (27)

with c2 =
(M + 1) (m + 1)

M
− 2.

Proof 2. Carrying out the product between Eq.(24) and Eq.(26), we have

(M + 1) (m + 1)
M

(
ρI

α,β
a+,η,κ f p (x)

) 1
p
(
ρI

α,β
a+,η,κg

p (x)
) 1

p
≤

(
ρI

α,β
a+,η,κ ( f + g)p (x)

) 2
p
. (28)

Using the Minkowski’s inequality, on the right side of Eq.(28), we have

(M + 1) (m + 1)
M

(
ρI

α,β
a+,η,κ f p (x)

) 1
p
(
ρI

α,β
a+,η,κg

p (x)
) 1

p (29)

≤

((
ρI

α,β
a+,η,κ f p (x)

) 1
p

+
(
ρI

α,β
a+,η,κg

p (x)
) 1

p
)2

.

So, from Eq.(29), we conclude that(
(M + 1) (m + 1)

M
− 2

) (
ρI

α,β
a+,η,κ f p (x)

) 1
p
(
ρI

α,β
a+,η,κg

p (x)
) 1

p

≤
(
ρI

α,β
a+,η,κ f p (x)

) 2
p

+
(
ρI

α,β
a+,η,κg

p (x)
) 2

p
.

Note that, if β = α, κ = 0, η = 0 and the limit ρ → 1, in Eq.(19), we recover Riemann-Liouville
fractional integral, Eq.(3). In this sense, choosing a+ = 0, and substituting in Theorem 8 and Theorem
9, we obtain, as particular cases, the respective Theorem 3 and Theorem 4, which correspond to the
inequality via Riemann-Liouville fractional integral. On the other hand, if β = α, κ = 0, η = 0,
and the limit ρ → 0+ and using the L’Hôpital rule, in Eq.(19), we obtain the Hadamard fractional
integral, Eq.(5). Similarly, choosing a = 1 and substituting in Theorem 8 and Theorem 9, we obtain,
as particular cases, the Theorem 5 and Theorem 6, respectively.

3. Other fractional integral inequalities

In this section we generalize the results discussed by Chinchane [42], Sulaiman [43] and Sroysang
[44] on the reverse Minkowski’s inequality via Riemann integral, using the fractional integral proposed
by Katugampola [33].

Theorem 9. Let α > 0, ρ, η, κ, β ∈ R, p ≥ 1 and 1
p + 1

q = 1. Let f , g ∈ Xp
c (a, x) be two positive functions

in [0,∞), ∀x > a. If 0 < m ≤
f (t)
g (t)

≤ M, for m,M ∈ R∗+ and ∀t ∈ [a, x], then

(
ρI

α,β
a+,η,κ f (x)

) 1
p
(
ρI

α,β
a+,η,κg (x)

) 1
q
≤

(M
m

) 1
pq (

ρI
α,β
a+,η,κ f

1
p (x) g

1
q (x)

)
. (30)
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Proof 3. Using the condition
f (t)
g (t)

≤ M, t ∈ [a, x] with x > a, we have

f (t) ≤ Mg (t)⇒ g
1
q (t) ≥ M− 1

q f
1
q (t) . (31)

Multiplying by f
1
p (t) both sides of Eq.(31), we can rewrite it as follows

f
1
p (t) g

1
q (t) ≥ M− 1

q f (t) . (32)

Now, multiplying by
ρ1−βxκtρ(η+1)−1

Γ (α) (xρ − tρ)1−α both sides of Eq.(32) and integrating with respect to the

variable t, we have∫ x

a

ρ1−βxκtρ(η+1)−1

Γ (α) (xρ − tρ)1−α M− 1
q f (t) dt ≤

∫ x

a

ρ1−βxκtρ(η+1)−1

Γ (α) (xρ − tρ)1−α f
1
p (t) g

1
q (t) dt. (33)

So, the inequality follows

M− 1
pq

(
ρI

α,β
a+,η,κ f (x)

) 1
p
≤

(
ρI

α,β
a+,η,κ f

1
p (x) g

1
q (x)

) 1
p
. (34)

On the order hand, we have
m

1
p g

1
p (t) ≤ f

1
p (t) , x > a. (35)

Multiplying by g
1
q (t) both sides of Eq.(35) and using the relation 1

p + 1
q = 1, we have

m
1
p g (t) ≤ f

1
p (t) g

1
q (t) . (36)

Multiplying by
ρ1−βxκtρ(η+1)−1

Γ (α) (xρ − tρ)1−α both sides of Eq.(36) and integrating with respect to the variable

t, we have

m
1
pq

(
ρI

α,β
a+,η,κg (x)

) 1
q
≤

(
ρI

α,β
a+,η,κ f

1
p (x) g

1
q (x)

) 1
q
. (37)

Evaluating the product between Eq.(34) and Eq.(37) and using the relation 1
p + 1

q = 1, we conclude
that (

ρI
α,β
a+,η,κ f (x)

) 1
p
(
ρI

α,β
a+,η,κg (x)

) 1
q
≤

(M
m

) 1
pq (

ρI
α,β
a+,η,κ f

1
p (x) g

1
q (x)

) 1
p
.

Theorem 10. Let α > 0, ρ, η, κ, β ∈ R, p ≥ 1 and 1
p + 1

q = 1. Let f , g ∈ Xp
c (a, x) be two positive

functions in [0,∞), ∀x > a. If 0 < m ≤
f (t)
g (t)

≤ M, for m,M ∈ R∗+ and ∀t ∈ [a, x], then

ρI
α,β
a+,η,κ f (x) g (x) ≤ c3

(
ρI

α,β
a+,η,κ ( f p + gp) (x)

)
+ c4

(
ρI

α,β
a+,η,κ ( f q + gq) (x)

)
, (38)

with c3 =
2p−1Mp

p (M + 1)p and c4 =
2p−1

q (m + 1)q .
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Proof 4. Using the hypothesis, we have the following identity

(M + 1)p f p (t) ≤ Mp ( f + g)p (t) . (39)

Multiplying by
ρ1−βxκtρ(η+1)−1

Γ (α) (xρ − tρ)1−α both sides of Eq.(39) and integrating with respect to the variable

t, we get ∫ x

a

ρ1−βxκtρ(η+1)−1

Γ (α) (xρ − tρ)1−α (M + 1)p f p (t) dt ≤
∫ x

a

ρ1−βxκtρ(η+1)−1

Γ (α) (xρ − tρ)1−α Mp ( f + g)p (t) dt.

In this way, we have

ρI
α,β
a+,η,κ f p (x) ≤

Mp

(M + 1)p
ρI

α,β
a+,η,κ ( f + g)p (x) . (40)

On the other hand, as 0 < m < f (t)
g(t) , t ∈ (a, x), we have

(m + 1)q gq (t) ≤ ( f + g)q (t) . (41)

Again, multiplying by
ρ1−βxκtρ(η+1)−1

Γ (α) (xρ − tρ)1−α both sides of Eq.(41) and integrating with respect to the

variable t, we get
ρI

α,β
a+,η,κg

q (x) ≤
1

(m + 1)q
ρI

α,β
a+,η,κ ( f + g)q (x) . (42)

Considering Young’s inequality, [45]

f (t) g (t) ≤
f p (t)

p
+

gq (t)
q

, (43)

multiplying by
ρ1−βxκtρ(η+1)−1

Γ (α) (xρ − tρ)1−α both sides of Eq.(43) and integrating with respect to the variable t, we

have
ρI

α,β
a+,η,κ ( f g) (x) ≤

1
p

(
ρI

α,β
a+,η,κ f p (x)

)
+

1
q

(
ρI

α,β
a+,η,κg

q (x)
)
. (44)

Thus, using Eq.(40), Eq.(42) and Eq.(44), we get

ρI
α,β
a+,η,κ ( f g) (x) ≤

1
p

(
ρI

α,β
a+,η,κ f p (x)

)
+

1
q

(
ρI

α,β
a+,η,κg

q (x)
)

≤
(
ρI

α,β
a+,η,κ f p (x)

)
+

(
ρI

α,β
a+,η,κg

q (x)
)

≤
Mp

p (M + 1)p

(
ρI

α,β
a+,η,κ ( f + g)p (x)

)
+

1
q (m + 1)q

(
ρI

α,β
a+,η,κ ( f + g)q (x)

)
. (45)

Using the following inequality, (a + b)r
≤ 2p−1 (ar + br), r > 1, a, b ≥ 0, we get

ρI
α,β
a+,η,κ ( f + g)p (x) ≤ 2p−1ρI

α,β
a+,η,κ ( f p + gp) (x) (46)
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and
ρIa+, η, κα,β ( f + g)q (x) ≤ 2q−1ρI

α,β
a+,η,κ ( f q + gq) (x) . (47)

Thus, replacing Eq.(46) and Eq.(47) at Eq.(45), we conclude that

ρI
α,β
a+,η,κ ( f g) (x) ≤

2p−1Mp

p (M + 1)p

(
ρI

α,β
a+,η,κ ( f p + gp) (x)

)
+

2q−1

q (m + 1)q

(
ρI

α,β
a+,η,κ ( f q + gq) (x)

)
.

Theorem 11. Let α > 0, ρ, η, κ, β ∈ R and p ≥ 1. Let f , g ∈ Xp
c (a, x) be two positive functions in

[0,∞), ∀x > a. If 0 < m ≤
f (t)
g (t)

≤ M, for m,M ∈ R∗+ and ∀t ∈ [a, x], then

M + 1
M − c

(
ρI

α,β
a+,η,κ ( f (x) − cg (x))

) 1
p
≤

(
ρI

α,β
a+,η,κ f p (x)

) 1
p

+
(
ρI

α,β
a+,η,κg

p (x)
) 1

p

≤
m + 1
m − c

(
ρI

α,β
a+,η,κ ( f (x) − cg (x))

) 1
p (48)

Proof 5. Considering 0 < c < m ≤ M, we can write

mc ≤ Mc⇒ mc + m ≤ mc + M ≤ Mc + M ⇒ (M + 1) (m − c) ≤ (m + 1) (M − c) .

Thus, we conclude that
M + 1
M − c

≤
m + 1
m − c

.

Also, we have

m − c ≤
f (t) − cg (t)

g (t)
≤ M − c

which implies,
( f (t) − cg (t))p

(M − c)p ≤ gp (t) ≤
( f (t) − cg (t))p

(m − c)p . (49)

Again, we have
1
M
≤

g (t)
f (t)

≤
1
m
⇒

m − c
cm

≤
f (t) − cg (t)

c f (t)
≤

M − c
cM

,

which implies, ( M
M − c

)p

( f (t) − cg (t))p
≤ f p (t) ≤

( m
m − c

)p
( f (t) − cg (t))p . (50)

Multiplying by
ρ1−βxκtρ(η+1)−1

Γ (α) (xρ − tρ)1−α both sides of Eq.(49) and integrating with respect to the variable

t, we have∫ x

a

ρ1−βxκtρ(η+1)−1

Γ (α) (xρ − tρ)1−α

( f (t) − cg (t))p

(M − c)p dt ≤
∫ x

a

ρ1−βxκtρ(η+1)−1

Γ (α) (xρ − tρ)1−αgp (t) dt

≤

∫ x

a

ρ1−βxκtρ(η+1)−1

Γ (α) (xρ − tρ)1−α

( f (t) − cg (t))p

(m − c)p dt.

In this way, we obtain

1
M − c

(
ρI

α,β
a+,η,κ ( f (x) − cg (x))p

) 1
p
≤

(
ρI

α,β
a+,η,κg

p (x)
) 1

p (51)
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≤
1

m − c

(
ρI

α,β
a+,η,κ ( f (x) − cg (x))p

) 1
p
.

Realizing the same procedure as in Eq.(50), we have

M
M − c

(
ρI

α,β
a+,η,κ ( f (x) − cg (x))p

) 1
p
≤

(
ρI

α,β
a+,η,κ f p (x)

) 1
p (52)

≤
m

m − c

(
ρI

α,β
a+,η,κ ( f (x) − cg (x))p

) 1
p
.

Adding Eq.(51) and Eq.(52), we conclude that

M + 1
M − c

(
ρI

α,β
a+,η,κ ( f (x) − cg (x))p

) 1
p
≤

(
ρI

α,β
a+,η,κ f p (x)

) 1
p

+
(
ρI

α,β
a+,η,κg

p (x)
) 1

p

≤
m + 1
m − c

(
ρI

α,β
a+,η,κ ( f (x) − cg (x))p

) 1
p
.

Theorem 12. Let α > 0, ρ, η, κ, β ∈ R and p ≥ 1. Let f , g ∈ Xp
c (a, x) be two positive functions in

[0,∞), ∀x > a. If 0 ≤ a ≤ f (t) ≤ A and 0 ≤ b ≤ g(t) ≤ B, ∀t ∈ [a, x], then(
ρI

α,β
a+,η,κ f p (x)

) 1
p

+
(
ρI

α,β
a+,η,κg

p (x)
) 1

p
≤ c5

(
ρI

α,β
a+,η,κ ( f + g)p (x)

) 1
p
, (53)

with c5 =
A (a + B) + B (A + b)

(A + b) (a + B)
.

Proof 6. By hypothesis, it follows that
1
B
≤

1
g (t)

≤
1
b
. (54)

Realizing the product between Eq.(54) and 0 < a ≤ f (t) ≤ A, we have

a
B
≤

f (t)
g (t)

≤
A
b
. (55)

From Eq.(55), we get

gp (t) ≤
( B
a + B

)p

( f (t) + g (t))p (56)

and
f p (t) ≤

( A
b + A

)p

( f (t) + g (t))p . (57)

Multiplying by
ρ1−βxκtρ(η+1)−1

Γ (α) (xρ − tρ)1−α both sides of Eq.(56) and integrating with respect to the variable

t, we have ∫ x

a

ρ1−βxκtρ(η+1)−1

Γ (α) (xρ − tρ)1−αgp (t) dt ≤
∫ x

a

ρ1−βxκtρ(η+1)−1

Γ (α) (xρ − tρ)1−α

( B
a + B

)p

( f (t) + g (t))p dt.

Thus, it follows that (
ρI

α,β
a+,η,κg

p (x)
) 1

p
≤

B
a + B

(
ρI

α,β
a+,η,κ ( f + g)p (x)

) 1
p
. (58)
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Similarly, we perform the calculations for Eq.(57), we get(
ρI

α,β
a+,η,κ f p (x)

) 1
p
≤

A
b + A

(
ρI

α,β
a+,η,κ ( f + g)p (x)

) 1
p
. (59)

Adding Eq.(58) and Eq.(59), we conclude that(
ρI

α,β
a+,η,κ f p (x)

) 1
p

+
(
ρI

α,β
a+,η,κg

p (x)
) 1

p
≤

A (a + B) + B (b + A)
(a + B) (b + A)

(
ρI

α,β
a+,η,κ ( f + g)p (x)

) 1
p
.

Theorem 13. Let α > 0 and ρ, η, κ, β ∈ R. Let f , g ∈ Xp
c (a, x) be two positive functions in [0,∞),

∀x > a. If 0 < m ≤
f (t)
g (t)

≤ M, for m,M ∈ R∗+ and ∀t ∈ [a, x], then

1
M

(
ρI

α,β
a+,η,κ f (x) g (x)

)
≤

1
(m + 1) (M + 1)

(
ρI

α,β
a+,η,κ ( f + g)2 (x)

)
≤

1
m

(
ρI

α,β
a+,η,κ f (x) g (x)

)
. (60)

Proof 7. Taking 0 < m ≤
f (t)
g (t)

≤ M, ∀t ∈ [a, x], we have

g (t) (m + 1) ≤ g (t) + f (t) ≤ g (t) (M + 1) . (61)

Also, it follows that
1
M
≤

g (t)
f (t)

≤
1
m

, which implies,

g (t)
(

M + 1
M

)
≤ g (t) + f (t) ≤ g (t)

(
m + 1

m

)
. (62)

Evaluating the product between Eq.(61) and Eq.(62), we have

f (t) g (t)
M

≤
(g (t) + f (t))2

(m + 1) (M + 1)
≤

f (t) g (t)
m

. (63)

Multiplying by
ρ1−βxκtρ(η+1)−1

Γ (α) (xρ − tρ)1−α both sides of Eq.(63) and integrating with respect to the variable

t, we have

ρ1−βxκ

MΓ (α)

∫ x

a

tρ(η+1)−1

(xρ − tρ)1−α f (t) g (t) dt ≤ c6
ρ1−βxκ

Γ (α)

∫ x

a

tρ(η+1)−1

(xρ − tρ)1−α (g (t) + f (t))2 dt

≤
ρ1−βxκ

mΓ (α)

∫ x

a

tρ(η+1)−1

(xρ − tρ)1−α f (t) g (t) dt,

with c6 =
1

(m + 1) (M + 1)
.

Thus, we conclude that

1
M

(
ρI

α,β
a+,η,κ f (x) g (x)

)
≤

1
(m + 1) (M + 1)

(
ρI

α,β
a+,η,κ (g (x) + f (x))2

)
≤

1
m

(
ρI

α,β
a+,η,κ f (x) g (x)

)
.
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Theorem 14. Let α > 0, ρ, η, κ, β ∈ R and p ≥ 1. Let f , g ∈ Xp
c (a, x) be two positive functions in

[0,∞), ∀x > a. If 0 < m ≤
f (t)
g (t)

≤ M, for m,M ∈ R∗+ and ∀t ∈ [a, x], then

(
ρI

α,β
a+,η,κ f p (x)

) 1
p

+
(
ρI

α,β
a+,η,κg

p (x)
) 1

p
≤ 2

(
ρI

α,β
a+,η,κh

p ( f (x) , g (x))
) 1

p
,

with h ( f (x) , g (x)) = max
{

M
[(M

m
+ 1

)
f (x) − Mg (x)

]
,

(m + M) g (x) − f (x)
m

}
.

Proof 8. From the hypothesis, 0 < m ≤
f (t)
g (t)

≤ M, ∀t ∈ [a, x], we have

0 < m ≤ M + m −
f (t)
g (t)

(64)

and

M + m −
f (t)
g (t)

≤ M. (65)

Thus, using Eq.(64) and Eq.(65), we get

g (t) <
(M + m) g (t) − f (t)

m
≤ h ( f (t) , g (t)) , (66)

where h ( f (t) , g (t)) = max
{

M
[(

M
m + 1

)
f (t) − Mg (t)

]
,

(M + m) g (t) − f (t)
m

}
.

Using the hypothesis, it follows that 0 <
1
M
≤

g (t)
f (t)

≤
1
m

. In this way, we obtain

1
M
≤

1
M

+
1
m
−

g (t)
f (t)

(67)

and
1
M

+
1
m
−

g (t)
f (t)

≤
1
m
. (68)

Then, from Eq.(67) and Eq.(68), we have

1
M
≤

(
1
m + 1

M

)
f (t) − g (t)

f (t)
≤

1
m
,

which can be rewritten as

f (t) ≤ M
(

1
m

+
1
M

)
f (t) − Mg (t)

=
M (M + m) f (t) − M2mg (t)

Mm

=

(M
m

+ 1
)

f (t) − Mg (t)
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≤ M
[(M

m
+ 1

)
f (t) − Mg (t)

]
≤ h ( f (t) , g (t)) . (69)

Thus, using Eq.(66) and Eq.(69), we can write

f p (t) ≤ hp ( f (t) , g (t)) (70)

and
gp (t) ≤ hp ( f (t) , g (t)) . (71)

Multiplying by
ρ1−αxκtρ(η+1)−1

Γ (α) (xρ − tρ)1−α both sides of Eq.(70) and integrating with respect to the variable

t, we have ∫ x

a

ρ1−αxκtρ(η+1)−1

Γ (α) (xρ − tρ)1−α f p (t) dt ≤
∫ x

a

ρ1−αxκtρ(η+1)−1

Γ (α) (xρ − tρ)1−αhp ( f (t) , g (t)) dt.

In this way, we obtain (
ρI

α,β
a+,η,κ f p (x)

) 1
p
≤

(
ρI

α,β
a+,η,κh

p ( f (x) , g (x))
) 1

p
. (72)

Using the same procedure as above, for Eq.(71), we have(
ρI

α,β
a+,η,κg

p (x)
) 1

p
≤

(
ρI

α,β
a+,η,κh

p ( f (x) , g (x))
) 1

p
. (73)

Thus, using Eq.(72) and Eq.(73), we conclude that(
ρI

α,β
a+,η,κ f p (x)

) 1
p

+
(
ρI

α,β
a+,η,κg

p (x)
) 1

p
≤ 2

(
ρIα,βa+,η,κh

p ( f (x) , g (x))
) 1

p
.

Using Eq.(19) and Theorem 7 with the convenient conditions for each respective fractional integral,
we have the previous theorems, that is, Theorem 10 to Theorem 15 introduced and demonstrated above,
contain as particular cases, each result involving the following fractional integrals: Riemann-Liouville,
Hadamard, Liouville, Weyl, Erdélyi-Kober, and Katugampola.

4. Concluding remarks

After a brief introduction to the fractional integral, proposed by Katugampola and fractional in-
tegrals in the sense of Riemann-Liouville and Hadamard, we generalize the reverse Minkowski’s in-
equality obtaining, as a particular case, the inequality involving the fractional integral in the Riemann-
Liouville sense and Hadamard sense [33]. We also show other inequalities using the Katugampola
fractional integral. The application of this fractional integral can be used to generalize several in-
equalities, among them, we mention the Grüss-type inequality, recently introduced and proved [46].
A continuation of this work, with this formulation of fractional integral, consists in generalize the
inequalities of Hermite-Hadamard and Hermite-Hadamard-Féjer [27, 28, 29, 30]. Moreover, we will
discuss inequalities via M-fractional integral according to [47].
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23. M. E. Özdemir, M. Avci, H. Kavurmaci, Hermite-Hadamard-type inequalities via (α, m)-
convexity, Comput. Math. Appl., 61 (2011), 2614–2620.

24. F. Chen, Extensions of the Herminte–Hadamard inequality for convex functions via fractional
integrals, J. Math. Inequal., 10 (2016), 75–81.

25. J. Wang, X. Li, M. Fekan, et al. Hermite-Hadamard-type inequalities for Riemann-Liouville frac-
tional integrals via two kinds of convexity, Appl. Anal., 92 (2013), 2241–2253.

26. H. Chen, U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejér type inequali-
ties for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274–1291.
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