Processing math: 100%
Research article Special Issues

Enhancing synchronization criteria for fractional-order chaotic neural networks via intermittent control: an extended dissipativity approach

  • In this paper, a recurrent intermittent control (RIC) for the synchronization of fractional-order chaotic neural networks (FOCNNs) is proposed in view of the extended dissipativity-based approach. Successively, standard linear matrix inequalites (LMIs)-based extended dissipative criteria are derived through differential inclusions and inequality mechanisms. Several sufficient conditions are obtained to ensure the synchronization of FOCNNs. Furthermore, RIC is generated to solve the synchronization problem for the considered FOCNNs. Based on the piecewise Lyapunov functional, this paper derives a exponentially stable criterion in connection with linear matrix inequalities using the Matlab toolbox. Extended dissipativity can be employed to precisely define L2L, H, passivity, and (Q,S,R)-ϑ dissipative performance. This is achieved by modifying the weighting matrices to achieve the desired performance level. The successful application of the stability criterion that was planned is demonstrated by the outcomes of the simulation.

    Citation: Saravanan Shanmugam, R. Vadivel, S. Sabarathinam, P. Hammachukiattikul, Nallappan Gunasekaran. Enhancing synchronization criteria for fractional-order chaotic neural networks via intermittent control: an extended dissipativity approach[J]. Mathematical Modelling and Control, 2025, 5(1): 31-47. doi: 10.3934/mmc.2025003

    Related Papers:

    [1] Hüseyin Budak, Fatma Ertuğral, Muhammad Aamir Ali, Candan Can Bilişik, Mehmet Zeki Sarikaya, Kamsing Nonlaopon . On generalizations of trapezoid and Bullen type inequalities based on generalized fractional integrals. AIMS Mathematics, 2023, 8(1): 1833-1847. doi: 10.3934/math.2023094
    [2] Sabir Hussain, Javairiya Khalid, Yu Ming Chu . Some generalized fractional integral Simpson’s type inequalities with applications. AIMS Mathematics, 2020, 5(6): 5859-5883. doi: 10.3934/math.2020375
    [3] Rabah Debbar, Abdelkader Moumen, Hamid Boulares, Badreddine Meftah, Mohamed Bouye . Some fractional integral type inequalities for differentiable convex functions. AIMS Mathematics, 2025, 10(5): 11899-11917. doi: 10.3934/math.2025537
    [4] Muhammad Tariq, Hijaz Ahmad, Soubhagya Kumar Sahoo, Artion Kashuri, Taher A. Nofal, Ching-Hsien Hsu . Inequalities of Simpson-Mercer-type including Atangana-Baleanu fractional operators and their applications. AIMS Mathematics, 2022, 7(8): 15159-15181. doi: 10.3934/math.2022831
    [5] Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814
    [6] Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441
    [7] Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201
    [8] Saima Rashid, Ahmet Ocak Akdemir, Fahd Jarad, Muhammad Aslam Noor, Khalida Inayat Noor . Simpson’s type integral inequalities for ĸ-fractional integrals and their applications. AIMS Mathematics, 2019, 4(4): 1087-1100. doi: 10.3934/math.2019.4.1087
    [9] Sabir Hussain, Rida Khaliq, Sobia Rafeeq, Azhar Ali, Jongsuk Ro . Some fractional integral inequalities involving extended Mittag-Leffler function with applications. AIMS Mathematics, 2024, 9(12): 35599-35625. doi: 10.3934/math.20241689
    [10] Hari M. Srivastava, Artion Kashuri, Pshtiwan Othman Mohammed, Abdullah M. Alsharif, Juan L. G. Guirao . New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel. AIMS Mathematics, 2021, 6(10): 11167-11186. doi: 10.3934/math.2021648
  • In this paper, a recurrent intermittent control (RIC) for the synchronization of fractional-order chaotic neural networks (FOCNNs) is proposed in view of the extended dissipativity-based approach. Successively, standard linear matrix inequalites (LMIs)-based extended dissipative criteria are derived through differential inclusions and inequality mechanisms. Several sufficient conditions are obtained to ensure the synchronization of FOCNNs. Furthermore, RIC is generated to solve the synchronization problem for the considered FOCNNs. Based on the piecewise Lyapunov functional, this paper derives a exponentially stable criterion in connection with linear matrix inequalities using the Matlab toolbox. Extended dissipativity can be employed to precisely define L2L, H, passivity, and (Q,S,R)-ϑ dissipative performance. This is achieved by modifying the weighting matrices to achieve the desired performance level. The successful application of the stability criterion that was planned is demonstrated by the outcomes of the simulation.



    Fractional calculus began with a legend in the 1800s there were two famous mathematicians, L' Hopital and Leibniz, who were discussing how to evaluate dnfdxn when n=12. In the 17th century, Leibniz published his book "Introductory Calculus", in which he talked about how to take derivatives of any function. After this brief discussion, the subject did not pick up much attention until 1819. Therefore, there was another time point when another famous mathematician by the name of Lacroix wrote another book; the book was on fractional calculus, where he started to develop the formulation for evaluating these derivatives. More specifically, Lacroix developed the fractional formula dαxmdxα for α and m being fractions. As a result, he found an answer to the famous question raised by L' Hopital and Leibniz, namely, what is the fractional derivative of a function of the order 12. The discussion did not end there, although Lacroix has shown an initial way to evaluate fractional derivatives, which has some problems. To mitigate the problems, there was another mathematician by the name of Liouville who extended the Lacroix definition. Liouville developed the formula for dαdxα(n=0cnexp(anx)) for Re(an)>0,cnR, and α being a fraction. Liouville also developed the formula for dαxmdxα for m<0 and α being a fraction.

    Fractional calculus has proven to be a potent and effective mathematical tool in recent years, helping to define the intricate dynamics of real-world issues from a variety of scientific and engineering disciplines [1,2,3,4,5,6,7]. Every traditional fractional differential operator has a distinct kernel and can be applied to certain problems. For example, the Caputo-Fabrizio fractional operator is used in the linear viscoelasticity framework. The most popular operator for computing a fractional-order integral among a number of operators is the Riemann-Liouville fractional integral. It is basically just a straightforward adaptation of the Cauchy formula from classical calculus for repeated integration. However, over the past half decade, a number of operators for fractional-order integrals and derivatives have been put out. These new operators are believed to arise because of the singularity in the kernel of the Riemann-Liouville integral at one endpoint of the integration interval [0,T]. It originates from the new fractional operator, in which the integral involves the non-singular kernel.

    The main motivation of the Caputo-Fabrizio integral and derivative operator is that it is a generalization of classical integral and derivative. One of the characteristics that sets the operator apart from others is its kernel, which is essentially a real power transformed into an integral using the Laplace transform. As a result, finding an accurate answer to many issues is simple. An increasing number of mathematicians working in the applied sciences are using the Caputo-Fabrizio fractional integral operator to model their problems. For additional details, see [8,9,10,11]. The main benefit of the Caputo-Fabrizio integral operator is its ability to admit the same form for the boundary condition of fractional differential equations with Caputo-Fabrizio derivatives as it does for differential equations of integer order. For studying fractional differential equation solutions, fractional integral inequalities are crucial, particularly for determining the uniqueness of initial value problems. Using a function's convexity is one of the most effective techniques to establish integral inequalities. In fact, advances in the theory of convex functions are closely related to the development of mathematical inequalities. Convexity theory provides a powerful and efficient way to address a wide range of problems in different fields of pure and applied mathematics. The most well-known and fascinating outcome of the convex function is the Hermite-Hadamard integral inequality. The classical Hermite-Hadamard inequality, which provides us with an estimation of the mean value of a convex function f:IRR for a1,a2I with a1<a2,

    f(a1+a22)1a2a1a2a1f(x)dxf(a1)+f(a2)2.

    The geometrical relevance of this inequality led to its expansion, generalization, or improvement through the application of basic analytical procedures. Over the last few years, many mathematicians who have researched in this field have contributed to its development and made attempts to strengthen its modification in many ways [12,13,14,15].

    Bullen [16] proved the inequality by giving the bound for the mean value of a convex function f:IRR for a1,a2I with a1<a2,

    1a2a1a2a1f(x)dx12[f(a1+a22)+f(a1)+f(a2)2].

    We can observe that the right side of the Hermite-Hadamard inequality should be viewed as an extension of Bullen's inequality. Bullen's inequality holds a significant position in theory, as do other classical inequalities like Jensen, Ostrowski, and Hermite-Hadamard. Numerous fields, including numerical integration, midpoints, and trapezoidal quadrature rules, can benefit from its application. For more current findings about the extension and improvement of Bullen-type inequality, see [17,18,19,20,21].

    The paper is organized in the following way: After this introduction in Section 2 we have discussed some basic related concepts, in Section 3 main results, in Section 4 numerically solved examples and their graph, in Section 5 applications to some extent, and in the last Section 6 conclusion of the whole paper.

    Some foundational ideas that are useful in understanding our main results are covered in this section.

    Definition 1. [22] Let fH1(m1,m2), α[0,1], then the fractional integrals in the sense of Caputo and Fabrizio are defined by:

    (CFm1+Iαf)(t):=1αB(α)f(t)+αB(α)tm1f(x)dx,
    (CFm2Iαf)(t):=1αB(α)f(t)+αB(α)m2tf(x)dx,

    provided that, B(α)>0 is a normalization function satisfying B(0)=B(1)=1.

    Theorem 1. [23] Let f:[m1,m2]RR be a convex function on [m1,m2] such that xi[m1,m2], αi[0,1] with ki=1αi=1, 1ik, then

    f(m1+m2ki=1αixi)f(m1)+f(m2)ki=1αif(xi). (2.1)

    Proposition 1. [24] Let f:[m1,m2]RR+ be a logconvex function on [m1,m2] such that xi[m1,m2], αi[0,1] with ki=1αi=1, 1ik, then Jensen-Mercer inequality is defined by:

    f(m1+m2ni=1αixi)f(m1)f(m2)ki=1fαi(xi). (2.2)

    Before going on, we make the following assumption:

    Iv,i(h;m1,m2;u1,u2):=10(td)h((vi1){m1tm1+m22(1t)u1}+i{m2tu2(1t)(m1+m2)2}+w)dt. (2.3)

    Lemma 1. Let h:IR+R be a differentiable function on I (the interior of I), where m1,m2I with m1<m2, vN; let w[u1,u2]; u1,u2[m1,m2] such that u1m1+m22u2, ς(0,1], d[0,1]. If hL1[m1,m2], then

    Jv(h;m1,m2;u1,u2):=v1i=0[(1v)(2u1m1m2)+i(2u1+2u22m12m2)4Iv,i(h;m1,m2;u1,u2)+(1ς)h(2(v1)(m1u1)+i(m23m1+2u1)+2w2)ς[(1v)(2u1m1m2)+i(2u1+2u22m12m2)]]=12v1i=0[(d1)h((v1)(m1m2)+i(3m2m12u2)+2w2)dh(2(v1)(m1u1)+i(m23m1+2u1)+2w2)]+B(ς)ςv1i=0CF(v1)(m1m2)+i(3m2m12u2)+2w2+Iςh(2(v1)(m1u1)+i(m23m1+2u1)+2w2)(1v)(2u1m1m2)+i(2u1+2u22m12m2). (3.1)

    Proof. Integrating by parts the identity (2.3)

    Iv,i(h;m1,m2;u1,u2)=(td)h((vi1){m1tm1+m22(1t)u1}+i{m2tu2(1t)(m1+m2)2}+w)(v1)[u1m1+m22]i(u1+u2m1m2)|1010h((vi1){m1tm1+m22(1t)u1}+i{m2tu2(1t)(m1+m2)2}+w)(v1)[u1m1+m22]i(u1+u2m1m2)dt,

    setting z=(vi1){m1tm1+m22(1t)u1}+i{m2tu2(1t)(m1+m2)2}+w, so that dt=dz(vi1)(u1m1+m22)+i(m1+m22u2), and when t=0, z=(vi1)(m1u1)+i(m2m1+m22)+w, and when t=1, z=(vi1)(m1m1+m22)+i(m2u2)+w.

    Iv,i(h;m1,m2;u1,u2)=2(1d)h((v1)(m1m2)+i(3m2m12u2)+2w2)+2dh(2(v1)(m1u1)+i(m23m1+2u1)+2w2)(v1)(2u1m1m2)i(2u1+2u22m12m2)4[(v1)(2u1m1m2)i(2u1+2u22m12m2)]2(v1)(m1m2)+i(3m2m12u2)+2w22(v1)(m1u1)+i(m23m1+2u1)+2w2h(z)dz
    (1v)(2u1m1m2)+i(2u1+2u22m12m2)4 Iv,i(h;m1,m2;u1,u2)=(d1)h((v1)(m1m2)+i(3m2m12u2)+2w2)dh(2(v1)(m1u1)+i(m23m1+2u1)+2w2)21(1v)(2u1m1m2)+i(2u1+2u22m12m2)(v1)(m1m2)+i(3m2m12u2)+2w22(v1)(m1u1)+i(m23m1+2u1)+2w2h(z)dz.

    Multiplying both sides by ς((1v)(2u1m1m2)+i(2u1+2u22m12m2))B(ς) and adding 1ςB(ς)h(2(v1)(m1u1)+i(m23m1+2u1)+2w2)

    ς[(1v)(2u1m1m2)+i(2u1+2u22m12m2)]24B(ς) Iv,i(h;m1,m2;u1,u2)+1ςB(ς)h(2(v1)(m1u1)+i(m23m1+2u1)+2w2)=ς[(1v)(2u1m1m2)+i(2u1+2u22m12m2)]B(ς)×(d1)h((v1)(m1m2)+i(3m2m12u2)+2w2)dh(2(v1)(m1u1)+i(m23m1+2u1)+2w2)2+ςB(ς)2(v1)(m1u1)+i(m23m1+2u1)+2w2(v1)(m1m2)+i(3m2m12u2)+2w2h(z)dz+1ςB(ς)h(2(v1)(m1u1)+i(m23m1+2u1)+2w2).

    Now by the definition of Caputo-Fabrizio fractional operator

    (1v)(2u1m1m2)+i(2u1+2u22m12m2)4Iv,i(h;m1,m2;u1,u2)+(1ς)h(2(v1)(m1u1)+i(m23m1+2u1)+2w2)ς[(1v)(2u1m1m2)+i(2u1+2u22m12m2)]=(d1)h((v1)(m1m2)+i(3m2m12u2)+2w2)dh(2(v1)(m1u1)+i(m23m1+2u1)+2w2)2+B(ς)CF(v1)(m1m2)+i(3m2m12u2)+2w2+Iςh(2(v1)(m1u1)+i(m23m1+2u1)+2w2)ς[(1v)(2u1m1m2)+i(2u1+2u22m12m2)],

    which completes the proof of (3.1).

    Remark 1. In particular for v=2, identity (3.1) in Lemma 1 reduces to the following identity:

    m1+m22u14I2,0(h;m1,m2;u1)+2u2m1m24I2,1(h;m1,m2;u2)=(1d)h(m2+wu2)+h(m1m2+2w2)2+dh(m1+wu1)+h(m2m1+2w2)2B(ς)ς{CFm1m2+2w2+Iςh(m1u1+w)m1+m22u1+CF(wu2+m2)+Iςh(m2m1+2w2)2u2m1m2}+1ςς[h(m2m1+2w2)2u2m1m2+h(m1+wu1)m1+m22u1], (3.2)

    provided that

    I2,0(h;m1,m2;u1):=10(dt)h(m1+wtm1+m22(1t)u1)dt,
    I2,1(h;m1,m2;u2):=10(dt)h(m2+wtu2(1t)(m1+m2)2)dt.

    Moreover, for u1=m1, u2=m2, w=m1+m22 and d=12, it reduces to the following identity:

    m2m18I(h;m1,m2)=12[h(m1)+h(m2)2+h(m1+m22)]B(ς)ς(m2m1)×{CFm1+Iςh(m1+m22)+CFm1+m22+Iςh(m2)}+1ςςh(m2)+h(m1+m22)m2m1,I(h;m1,m2):=10(12t){h(tm1+(1t)m1+m22)+h(tm1+m22+(1t)m2)}dt, (3.3)

    and further for ς=1, it reduces to Lemma 2.1 of Xi and Qi[25].

    Theorem 2. Let h:IR+R be a differentiable function on I (the interior of I), where m1,m2I with m1<m2; let w[u1,u2], u1,u2[m1,m2] such that u1m1+m22u2, ς(0,1], d[0,1]. If |h|a is convex and hL1[m1,m2], a1, then

    |(1d)h(m2+wu2)+h(m1m2+2w2)2+dh(m1+wu1)+h(m2m1+2w2)2B(ς)ς{CFm1m2+2w2+Iςh(m1u1+w)m1+m22u1+CF(wu2+m2)+Iςh(m2m1+2w2)2u2m1m2}+1ςς[h(m2m1+2w2)2u2m1m2+h(m1+wu1)m1+m22u1]|d2[2u2m1m24{(a+2)(|h(m2)|a+|h(w)|a)(2d+a)|h(m1+m22)|ad|h(u2)|a(a+1)(a+2)}1a+m1+m22u14{(a+2)(|h(m1)|a+|h(w)|a)(2d+a)|h(u1)|ad|h(m1+m22)|a(a+1)(a+2)}1a]+(1d)2[2u2m1m24{(a+2)(|h(m2)|a+|h(w)|a)(1+d+a)|h(u2)|a(1d)|h(m1+m22)|a(a+1)(a+2)}1a+m1+m22u14{(a+2)(|h(m1)|a+|h(w)|a)(1+d+a)|h(m1+m22)|a(1d)|h(u1)|a(a+1)(a+2)}1a]. (3.4)

    Proof. For a>1, by using the basic properties of modulus, Hölder integral inequality, convexity of |h|a, and relation (2.1) in Theorem 1 to identity defined by (3.2), we have

    |I2,0(h;m1,m2;u1)|=|10(dt)h(m1+wtm1+m22(1t)u1)dt|da1a{d0(dt)a|h(m1+wtm1+m22(1t)u1)|adt}1a+(1d)a1a{1d(td)a|h(m1+wtm1+m22(1t)u1)|adt}1ada1a{d0(dt)a(|h(m1)|a+|h(w)|at|h(m1+m22)|a(1t)|h(u1)|a)dt}1a+(1d)a1a{1d(td)a(|h(m1)|a+|h(w)|at|h(m1+m22)|a(1t)|h(u1)|a)dt}1a=d2{(a+2)(|h(m1)|a+|h(w)|a)(2d+a)|h(u1)|ad|h(m1+m22)|a(a+1)(a+2)}1a+(1d)2{(a+2)(|h(m1)|a+|h(w)|a)(1+d+a)|h(m1+m22)|a(1d)|h(u1)|a(a+1)(a+2)}1a (3.5)

    Similarly

    |I2,1(h;m1,m2;u2)|=|10(dt)h(m2+w(1t)m1+m22tu2)dt|da1a{d0(dt)a|h(m2+w(1t)m1+m22tu2)|adt}1a+(1d)a1a{1d(td)a|h(m2+w(1t)m1+m22tu2)|adt}1ada1a{d0(dt)a(|h(m2)|a+|h(w)|a(1t)|h(m1+m22)|at|h(u2)|a)dt}1a+(1d)a1a{1d(td)a(|h(m2)|a+|h(w)|a(1t)|h(m1+m22)|at|h(u2)|a)dt}1a=d2{(a+2)(|h(m2)|a+|h(w)|a)(2d+a)|h(m1+m22)|ad|h(u2)|a(a+1)(a+2)}1a+(1d)2{(a+2)(|h(m2)|a+|h(w)|a)(1+d+a)|h(u2)|a(1d)|h(m1+m22)|a(a+1)(a+2)}1a (3.6)

    Multiplying (3.5) and (3.6) by, respectively, m1+m22u14 and 2u2m1m24, then addition yields

    |(1d)h(m2+wu2)+h(m1m2+2w2)2+dh(m1+wu1)+h(m2m1+2w2)2B(ς)ς{CFm1m2+2w2+Iςh(m1u1+w)m1+m22u1+CF(wu2+m2)+Iςh(m2m1+2w2)2u2m1m2}+1ςς[h(m2m1+2w2)2u2m1m2+h(m1+wu1)m1+m22u1]|d2[2u2m1m24{(a+2)(|h(m2)|a+|h(w)|a)(2d+a)|h(m1+m22)|ad|h(u2)|a(a+1)(a+2)}1a+m1+m22u14{(a+2)(|h(m1)|a+|h(w)|a)(2d+a)|h(u1)|ad|h(m1+m22)|a(a+1)(a+2)}1a]+(1d)2[2u2m1m24{(a+2)(|h(m2)|a+|h(w)|a)(1+d+a)|h(u2)|a(1d)|h(m1+m22)|a(a+1)(a+2)}1a+m1+m22u14{(a+2)(|h(m1)|a+|h(w)|a)(1+d+a)|h(m1+m22)|a(1d)|h(u1)|a(a+1)(a+2)}1a]. (3.7)

    For a=1, by using basic properties of modulus, convexity of |h|, and relation (2.1) in Theorem 1 to identity defined by (3.2), we have

    |I2,0(h;m1,m2;u1)|=|10(dt)h(m1+wtm1+m22(1t)u1)dt|d0(dt)a|h(m1+wtm1+m22(1t)u1)|dt+1d(td)|h(m1+wtm1+m22(1t)u1)|dtd0(dt)(|h(m1)|+|h(w)|t|h(m1+m22)|(1t)|h(u1)|)dt+1d(td)(|h(m1)|+|h(w)|t|h(m1+m22)|(1t)|h(u1)|)dt=d2(3(|h(m1)|+|h(w)|)(3d)|h(u1)|d|h(m1+m22)|6+(1d)23(|h(m1)|+|h(w)|)(2+d)|h(m1+m22)|(1d)|h(u1)|6. (3.8)

    Similarly

    |I2,1(h;m1,m2;u2)|=|10(dt)h(m2+w(1t)m1+m22tu2)dt|d0(dt)|h(m2+w(1t)m1+m22tu2)|dt+1d(td)|h(m2+w(1t)m1+m22tu2)|dtd0(dt)(|h(m2)|+|h(w)|(1t)|h(m1+m22)|t|h(u2)|)dt+1d(td)(|h(m2)|+|h(w)|(1t)|h(m1+m22)|t|h(u2)|)dt=d23(|h(m2)|+|h(w)|)(3d)|h(m1+m22)|d|h(u2)|6+(1d)23(|h(m2)|+|h(w)|)(2+d)|h(u2)|(1d)|h(m1+m22)|6. (3.9)

    Multiplying (3.8) and (3.9) by, respectively, m1+m22u14 and 2u2m1m24, then addition yields

    |(1d)h(m2+wu2)+h(m1m2+2w2)2+dh(m1+wu1)+h(m2m1+2w2)2B(ς)ς{CFm1m2+2w2+Iςh(m1u1+w)m1+m22u1+CF(wu2+m2)+Iςh(m2m1+2w2)2u2m1m2}+1ςς[h(m2m1+2w2)2u2m1m2+h(m1+wu1)m1+m22u1]|d2{(2u2m1m2)3(|h(m2)|+|h(w)|)(3d)|h(m1+m22)|d|h(u2)|24+(m1+m22u1)3(|h(m1)|+|h(w)|)(3d)|h(u1)|d|h(m1+m22)|24}+(1d)2{(2u2m1m2)3(|h(m2)|+|h(w)|)(2+d)|h(u2)|(1d)|h(m1+m22)|24+(m1+m22u1)3(|h(m1)|+|h(w)|)(2+d)|h(m1+m22)|(1d)|h(u1)|24}. (3.10)

    A combination of (3.7) and (3.10), yields the desired result (3.4). This completes the desired result.

    Theorem 3. Let h:IR+R be a differentiable function on I (the interior of I), where m1,m2I with m1<m2; let w[m1,m2], ς(0,1], d[0,1]. If |h|a is log-convex and hL1[m1,m2], a1, then

    |(1d)h(m1m2+2w2)+dh(m2m1+2w2)+2(1ς)ς(m2m1){h(m2m1+2w2)+h(w)}+h(w)2B(ς)ς(m2m1){CFm1m2+2w2+Iςh(w)+CFw+Iςh(m2m1+2w2)}|(1+aα)(m2m1)|h(w)|{(d22)a1a(h1(d,α))1a+((1d)22)a1a(h2(d,α))1a}2aα, (3.11)

    provided that α=|h(m1)h(m2)|a2,

    h1(d,α):={dlnα+αd1(lnα)2,α1;d22,α=1.,   h2(d,α):={α(1d)lnα+αdα(lnα)2,α1;(1d)22,α=1.

    Proof. By power mean inequality and logconvexity of |h|a to identity defined by (3.2), we have

    |I2,0(h;m1,m2;m1)|=|10(dt)h(m1+wtm1+m22(1t)m1)dt|d0(dt)|h(m1+w2t2m1t2m2)|dt+1d(td)|h(m1+w2t2m1t2m2)|dt{d0(dt)dt}a1a{d0(dt)|h(m1+w2t2m1t2m2)|adt}1a+{1d(td)dt}a1a{1d(td)|h(m1+w2t2m1t2m2)|adt}1a(d22)a1a{d0(dt)|h(m1)|a|h(w)|a|h(m1)|a(2t)2|h(m2)|at2dt}1a+((1d)22)a1a{1d(td)|h(m1)|a|h(w)|a|h(m1)|a(2t)2|h(m2)|at2dt}1a=(d22)a1a|h(w)|{d0(dt)|h(m1)h(m2)|at2dt}1a+((1d)22)a1a|h(w)|{1d(td)|h(m1)h(m2)|at2dt}1a=|h(w)|[(d22)a1a{d0(dt)αtdt}1a+((1d)22)a1a{1d(td)αtdt}1a]=|h(w)|{(d22)a1a(h1(d,α))1a+((1d)22)a1a(h2(d,α))1a}. (3.12)

    Similarly

    |I2,1(h;m1,m2;m2)|=|10(dt)h(m2+wtm2(m1+m2)(1t)2)dt|d0(dt)|h(m2+w1+t2m21t2m1)|dt+1d(td)|h(m2+w1+t2m21t2m1)|dt{d0(dt)dt}a1a{d0(dt)|h(m2+w1+t2m21t2m1)|adt}1a+{1d(td)dt}a1a{1d(td)|h(m2+w1+t2m21t2m1)|adt}1a(d22)a1a{d0(dt)|h(m2)|a|h(w)|a|h(m1)|a(1t)2|h(m2)|a(1+t)2dt}1a+((1d)22)a1a{1d(td)|h(m2)|a|h(w)|a|h(m1)|a(1t)2|h(m2)|a(1+t)2dt}1a=(d22)a1a|h(w)||h(m2)h(m1)|12{d0(dt)|h(m1)h(m2)|at2dt}1a+((1d)22)a1a|h(w)||h(m2)h(m1)|12{1d(td)|h(m1)h(m2)|at2dt}1a=|h(w)|aα[(d22)a1a{d0(dt)αtdt}1a+((1d)22)a1a{1d(td)αtdt}1a]=|h(w)|aα{(d22)a1a(h1(d,α))1a+((1d)22)a1a(h2(d,α))1a}. (3.13)

    Multiplying both (3.12) and (3.13) by m2m14, yields the desired result.

    An observation about the equality of the functional value of the the mean position and mean position of the functional values comes to mind, that is, for a real valued function h:[m1,m2]RR

    h(m1+m22)=h(m1)+h(m2)2. (3.14)

    The affirmative answer about the validity of (3.14) was given by Xi and Qi [25] by the function h(t)=±t39t2+27t3, t[1,5].

    Corollary 1. Let h:IR+R be a differentiable function on I (the interior of I), where m1,m2I with m1<m2. If |h|a is convex and hL1[m1,m2], a1, then

    |12{h(m1)+h(m2)2+h(m1+m22)}+(1ς){h(m2)+h(m1+m22)}ς(m2m1)B(ς){CFm1+Iςh(m1+m22)+CFm1+m22+Iςh(m2)}ς(m2m1)|m2m1a42a+1(a+1)(a+2)(a(2a+5)|h(m1)|a+(2a+3)|h(m2)|a+a|h(m1)|a+(4a+7)|h(m2)|a+a(4a+7)|h(m1)|a+|h(m2)|a+a(2a+3)|h(m1)|a+(2a+5)|h(m2)|a). (3.15)

    Proof. The proof directly follows by setting u1=m1, u2=m2, d=12, w=m1+m22 in Theorem 2.

    Corollary 2. Let h:IR+R be a differentiable function on I (the interior of I), where m1,m2I with m1<m2. If |h|a is logconvex and hL1[m1,m2], a1, then

    |12{h(m1)+h(m2)2+h(m1+m22)}+(1ς){h(m2)+h(m1+m22)}ς(m2m1)B(ς){CFm1+Iςh(m1+m22)+CFm1+m22+Iςh(m2)}ς(m2m1)|(1+aα)(m2m1)|h(m1)||h(m2)|{ah1(12,α)+ah2(12,α)}25a3aaα. (3.16)

    Proof. The proof directly follows by setting u1=m1, u2=m2, d=12, w=m1+m22 in Theorem 3.

    Remark 2. For ς=1, Corollaries 1 and 2 coincides with Theorems 3.2 and 3.7 of Xi and Qi [25] respectively.

    In particular, under the relation (3.14), the left sides in (3.15) and (3.16) can be replaced by the relations either (3.17) or (3.18) to get trapezoidal type inequality or midpoint type inequality

    |h(m1)+h(m2)2+(1ς){h(m2)+h(m1+m22)}B(ς){CFm1+Iςh(m1+m22)+CFm1+m22+Iςh(m2)}ς(m2m1)|, (3.17)
    |h(m1+m22)+(1ς){h(m2)+h(m1+m22)}B(ς){CFm1+Iςh(m1+m22)+CFm1+m22+Iςh(m2)}ς(m2m1)|. (3.18)

    In order to better grasp the theoretical results, we go over the numerical and graphical analysis of our main results in this part. Tables and figures in each example are unrelated to one another. Both sets of statistics were selected at random. The table and graphic in each case demonstrate that the inequality's left-hand side is less than or equal to its right-hand side, according to the corresponding theorem.

    Example 1. Let h(t)=25t5 be such that t[0,) and ς=a=1. In Table 1, we compute the values from result (3.4) of Theorem 2. Furthermore, the validity of result (3.4) of Theorem 2 is graphically shown in Figure 1 by considering h(t) with the following values: m1=3, u1=5, w=18, u2=20, 20m230, 0d1, a=7.

    Table 1.  Comparison of values in result of Theorem 2.
    m1 u1 w u2 m2 d LHS of (3.4) RHS of (3.4)
    5 6 15 15 16 0 123.6568 127.9318
    23 33 33 44 50 0.2 339.7169 401.0339
    11 11 47 75 100 0.4 208.3972 2.5144e+03
    63 80 90 100 129 0.6 826.1879 1.8423e+03
    2 3 30 40 60 0.8 1.0376e+03 1.1879e+03
    101 102 106 107 111 0.99 1.3199e+03 1.3204e+03
    20 30 40 75 75 1 3.6029e+03 3.7572e+03

     | Show Table
    DownLoad: CSV
    Figure 1.  Validity of inequality (3.4) in Theorem 3.

    Example 2. Let h(t)=expt be such that t(0,) and ς=1. In Table 2, we compute the values from result (3.11) of Theorem 3. Furthermore, the validity of result (3.11) of Theorem 3 is graphically shown in Figure 2 by considering h(t) with the following values: m1=9, 9w12, m2=12, a=3, 0d1.

    Table 2.  Comparison of values in result of Theorem 3.
    m1 w m2 a d LHS of (3.11) RHS of (3.11)
    1 4 7 2 0 307.3219 3.9033e+03
    12 12 30 11 0.2 1.1739e+08 1.8195e+12
    21 40 40 7 0.3 6.1262e+20 1.1768e+25
    7 10 11 3 0.5 2.5007e+04 2.1551e+05
    30 31 52 4 0.8 1.2333e+18 1.4996e+23
    22 29 43 5 0.99 1.2775e+17 1.2082e+22
    99 150 171 6 1 5.8417e+80 1.9028e+97

     | Show Table
    DownLoad: CSV
    Figure 2.  Validity of inequality (3.11) in Theorem 3.

    The modified Bessel functions of first and second kind are defined, respectively by Watson [26]

    Iρ(ξ)=n=0(ξ2)ρ+2nn!Γ(ρ+n+1);   Kρ(ξ)=π2Iρ(ξ)Iρ(ξ)sinπρ.

    Watson also defined the functions Jρ,Lρ:R[1,) by

    Jρ(ξ)=Γ(ρ+1)(ξ2)ρIρ(ξ);  Lρ(ξ)=Γ(ρ+1)(ξ2)ρKρ(ξ)  ξR, ρ>1,

    differentiating with respect to ξ twice yields: Jρ(ξ)=ξJρ+1(ξ)2(ρ+1); Jρ(ξ)=ξ2Jρ+2(ξ)+2(ρ+2)Jρ+1(ξ)4(ρ+1)(ρ+2) and Lρ(ξ)=ξLρ+1(ξ)2(ρ+1), Lρ(ξ)=ξ2Lρ+2(ξ)+2(ρ+2)Lρ+1(ξ)4(ρ+1)(ρ+2). Convexities of Jρ(ξ) and Lρ(ξ) directly follows from here. We incorporate this function as a result.

    Proposition 2. For h(t)=Jρ(t); a=1 in Theorem 2, we have

    |(1d)2(m2+wu2)Jρ+1(m2+wu2)+(m1m2+2w)Jρ+1(m1m2+2w2)8(ρ+1)+d2(m1+wu1)Jρ+1(m1+wu1)+(m2m1+2w)Jρ+1(m2m1+2w2)8(ρ+1)+Jρ(m1m2+2w2)Jρ(m1+wu1)m1+m22u1+Jρ(m2+wu2)Jρ(m2m1+2w2)2u2m1m2|(2d22d+1)(m1+m22u1)32(ρ+1)(ρ+2)(m21Jρ+2(m1)+2(ρ+2)Jρ+1(m1))+(2d22d+1)(2u2m1m2)32(ρ+1)(ρ+2)(m22Jρ+2(m2)+2(ρ+2)Jρ+1(m2))+(2d22d+1)(u2u1)16(ρ+1)(ρ+2)(w2Jρ+2(w)+2(ρ+2)Jρ+1(w))+(2d36d2+3d1)(m1+m22u1)96(ρ+1)(ρ+2)(u21Jρ+2(u1)+2(ρ+2)Jρ+1(u1))+(2d3+3d2)(2u2m1m2)96(ρ+1)(ρ+2)(u22Jρ+2(u2)+2(ρ+2)Jρ+1(u2))+(2d36d2+3d1)(2u2m1m2)(2d33d+2)(m1+m22u1)384(ρ+1)(ρ+2)×((m1+m2)2Jρ+2(m1+m22)+8(ρ+2)Jρ+1(m1+m22)).

    Proposition 3. For h(t)=Lρ(t); a=1 in Theorem 2, we have

    |(1d)2(m2+wu2)Lρ+1(m2+wu2)+(m1m2+2w)Lρ+1(m1m2+2w2)8(ρ+1)+d2(m1+wu1)Lρ+1(m1+wu1)+(m2m1+2w)Lρ+1(m2m1+2w2)8(ρ+1)+Lρ(m1m2+2w2)Lρ(m1+wu1)m1+m22u1+Lρ(m2+wu2)Lρ(m2m1+2w2)2u2m1m2|(2d22d+1)(m1+m22u1)32(ρ+1)(ρ+2)(m21Lρ+2(m1)+2(ρ+2)Lρ+1(m1))+(2d22d+1)(2u2m1m2)32(ρ+1)(ρ+2)(m22Lρ+2(m2)+2(ρ+2)Lρ+1(m2))+(2d22d+1)(u2u1)16(ρ+1)(ρ+2)(w2Lρ+2(w)+2(ρ+2)Lρ+1(w))+(2d36d2+3d1)(m1+m22u1)96(ρ+1)(ρ+2)(u21Lρ+2(u1)+2(ρ+2)Lρ+1(u1))+(2d3+3d2)(2u2m1m2)96(ρ+1)(ρ+2)(u22Lρ+2(u2)+2(ρ+2)Lρ+1(u2))+(2d36d2+3d1)(2u2m1m2)(2d33d+2)(m1+m22u1)384(ρ+1)(ρ+2)×((m1+m2)2Lρ+2(m1+m22)+8(ρ+2)Lρ+1(m1+m22)).

    Let the set ϕ and the σ finite measure μ be given, and let the set of all probability densities on μ be defined on Ω:={χ|χ:ϕR,χ(ϖ)>0,ϕχ(ϖ)dμ(ϖ)=1}. Let h:R+R be given mapping and consider Dh(χ,ψ) defined by:

    Dh(χ,ψ):=ϕχ(ϖ)h(ψ(ϖ)χ(ϖ))dμ(ϖ),  χ,ψΩ. (5.1)

    If h is convex, then (5.1) is called Csisźar h-divergence. Consider the following Hermite-Hadamard (HH) divergence:

    DhHH(χ,ψ):=ϕχ(ϖ)ψ(ϖ)χ(ϖ)1h(t)dtψ(ϖ)χ(ϖ)1dμ(ϖ),  χ,ψΩ, (5.2)

    where h is convex on R+ with h(1)=0. Consider Dv(χ,ψ) defined by:

    Dv(χ,ψ)=ϕ|χ(ϖ)ψ(ϖ)|dμ(ϖ), (5.3)

    so-called variation distance. Note that DhHH(χ,ψ)0 with equality holds if and only if χ=ψ.

    Proposition 4. Let h:IR+R be a differentiable function on I, interior of I, m1,m2I such that |h| is convex and h(1)=0, then

    |2Dh(χ,ψ+χ2)+Dh(χ,ψ)4DhHH(χ,ψ)||h(1)|Dv(χ,ψ)32+ϕ|ψ(ϖ)χ(ϖ)|{|h(ψ(ϖ)χ(ϖ))|+2|h(ψ(ϖ)+χ(ϖ)2χ(ϖ))|}32dμ(ϖ). (5.4)

    Proof. Let Φ1:={ϖϕ:ψ(ϖ)>χ(ϖ)}; Φ2:={ϖϕ:ψ(ϖ)<χ(ϖ)} and Φ3:={ϖϕ:ψ(ϖ)=χ(ϖ)}. Obviously, if ϖΦ3, then equality holds in (5.4). Now, if ϖΦ1, then for u1=m1, w=m1+m22; m1=a=1; u2=m2=ψ(ϖ)χ(ϖ); d=12 in Theorem 2, multiplying both sides by the obtained result by χ(ϖ) and integrating over Φ1, we have

    |12Φ1χ(ϖ)h(ψ(ϖ)+χ(ϖ)2χ(ϖ))dμ(ϖ)+14Φ1χ(ϖ)h(ψ(ϖ)χ(ϖ))dμ(ϖ)Φ1χ(ϖ)ψ(ϖ)χ(ϖ)1h(t)dtψ(ϖ)χ(ϖ)1dμ(ϖ)|Φ1ψ(ϖ)χ(ϖ)32{|h(1)|+|h(ψ(ϖ)χ(ϖ))|+2|h(ψ(ϖ)+χ(ϖ)2χ(ϖ))|}dμ(ϖ). (5.5)

    Similarly, if ϖΦ2, then for u1=m1=ψ(ϖ)χ(ϖ), w=m1+m22; a=1; u2=m2=1; d=12 in Theorem 2, multiplying both sides by the obtained result by χ(ϖ) and integrating over Φ2, we have

    |12Φ2χ(ϖ)h(ψ(ϖ)+χ(ϖ)2χ(ϖ))dμ(ϖ)+14Φ2χ(ϖ)h(ψ(ϖ)χ(ϖ))dμ(ϖ)Φ2χ(ϖ)ψ(ϖ)χ(ϖ)1h(t)dtψ(ϖ)χ(ϖ)1dμ(ϖ)|Φ2χ(ϖ)ψ(ϖ)32{|h(1)|+|h(ψ(ϖ)χ(ϖ))|+2|h(ψ(ϖ)+χ(ϖ)2χ(ϖ))|}dμ(ϖ). (5.6)

    Adding inequalities (5.5) and (5.6) and utilizing triangular inequality, we obtain the desired result (5.4).

    Let f:[m1,m2][0,1] be the probability density function of m continuous random variable X with the cumulative distribution function, F, given by:

    F(ϱ)=Pr(Xϱ)=ϱm1f(t)dt  and E(X)=m2m1tdF(t)=m2m2m1F(t)dt.

    Then, from Theorem 2 for a=1, we have the following result:

    |(1d)[Pr(Xm2+wu2)+Pr(Xm1m2+2w2)]2+d[Pr(Xm1+wu1)+Pr(Xm2m1+2w2)]2Pr(Xm1+wu1)Pr(Xm1m2+2w2)m1+m22u1+Pr(Xm2+wu2)Pr(Xm2m1+2w2)2u2m1m2|(2d22d+1){(m1+m22u1)|f(m1)|+(2u2m1m2)|f(m2)|+2(u2u1)|f(w)|}8+(2d36d2+3d1)(m1+m22u1)|f(u1)|+(2d3+3d2)(2u2m1m2)|f(u2)|24+(2d36d2+3d1)(2u2m1m2)(2d33d+2)(m1+m22u1)24|f(m1+m22)|. (5.7)

    In particular, for u1=m1, u2=m2, d=12 and w=m1+m22, (5.7) reduces to

    |Pr(Xm1)+Pr(Xm2)+2Pr(Xm1+m22)4m2E(X)m2m1|(m2m1)(|f(m1)|+|f(m2)|+2|f(m1+m22)|)32.

    By constructing a multi-parameter fractional integral identity in the form of the Caputo-Fabrizio fractional integral operator, we have generated some new generalized estimates for fractional Bullen-type inequalities by using convexity, log-convexity, Hölder inequality, and power mean inequality. We have also included numerical and graphical examples to demonstrate the correctness of the generated results. Additionally, modified Bessel functions, h-divergence measures, and probability density functions are given as implementations of the resulting conclusions. It is anticipated that the paper's findings will pique readers's interest.

    Sabir Hussain and Jongsuk Ro: Conceptualization, formal analysis; Sobia Rafeeq and Sabir Hussain: Methodology, writing-original draft preparation, validation; Sobia Rafeeq: Software, investigation; Jongsuk Ro: Resources; Sobia Rafeeq, Sabir Hussain and Jongsuk Ro: Writing-review and editing; Sobia Rafeeq and Jongsuk Ro: Visualization. All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-2022R1A2C2004874). This work was also supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-2022R1A2C2004874).

    The authors declare no conflict of interest.



    [1] Z. Zhang, K. Yang, J. Qian, L. Zhang, Real-time surface emg pattern recognition for hand gestures based on an artificial neural network, Sensors, 19 (2019), 3170. https://doi.org/10.3390/s19143170 doi: 10.3390/s19143170
    [2] S. Shanmugam, R. Vadivel, N. Gunasekaran, Finite-time synchronization of quantized markovian-jump time-varying delayed neural networks via an event-triggered control scheme under actuator saturation, Mathematics, 11 (2023), 2257. https://doi.org/10.3390/math11102257 doi: 10.3390/math11102257
    [3] Y. Liu, Y. Zheng, J. Lu, J. Cao, L. Rutkowski, Constrained quaternion-variable convex optimization: a quaternion-valued recurrent neural network approach, IEEE Trans. Neural Networks Learn. Syst., 31 (2019), 1022–1035. https://doi.org/10.1109/TNNLS.2019.2916597 doi: 10.1109/TNNLS.2019.2916597
    [4] M. S. Ali, S. Saravanan, Finite-time stability for memristor based switched neural networks with time-varying delays via average dwell time approach, Neurocomputing, 275 (2018), 1637–1649. https://doi.org/10.1016/j.neucom.2017.10.003 doi: 10.1016/j.neucom.2017.10.003
    [5] C. Aouiti, J. Cao, H. Jallouli, C. Huang, Finite-time stabilization for fractional-order inertial neural networks with time-varying delays, Nonlinear Anal. Model., 27 (2022), 1–18. https://doi.org/10.15388/namc.2022.27.25184 doi: 10.15388/namc.2022.27.25184
    [6] D. Yang, Y. Yu, W. Hu, X. Yuan, G. Ren, Mean square asymptotic stability of discrete-time fractional order stochastic neural networks with multiple time-varying delays, Neural Process. Lett., 55 (2023), 9247–9268. https://doi.org/10.1007/s11063-023-11200-9 doi: 10.1007/s11063-023-11200-9
    [7] C. A. Popa, Mittag-leffler stability and synchronization of neutral-type fractional-order neural networks with leakage delay and mixed delays, J. Franklin Inst., 360 (2023), 327–355. https://doi.org/10.1016/j.jfranklin.2022.11.011 doi: 10.1016/j.jfranklin.2022.11.011
    [8] J. Cao, G. Stamov, I. Stamova, S. Simeonov, Almost periodicity in impulsive fractional-order reaction–diffusion neural networks with time-varying delays, IEEE Trans. Cybern., 51 (2020), 151–161. https://doi.org/10.1109/TCYB.2020.2967625 doi: 10.1109/TCYB.2020.2967625
    [9] N. H. Sau, M. V. Thuan, N. T. T. Huyen, Passivity analysis of fractional-order neural networks with time-varying delay based on lmi approach, Circuits Syst. Signal Process., 39 (2020), 5906–5925. https://doi.org/10.1007/s00034-020-01450-6 doi: 10.1007/s00034-020-01450-6
    [10] H. Wu, X. Zhang, S. Xue, L. Wang, Y. Wang, Lmi conditions to global mittag-leffler stability of fractional-order neural networks with impulses, Neurocomputing, 193 (2016), 148–154. https://doi.org/10.1016/j.neucom.2016.02.002 doi: 10.1016/j.neucom.2016.02.002
    [11] L. Chen, Y. Chai, R. Wu, T. Ma, H. Zhai, Dynamic analysis of a class of fractional-order neural networks with delay, Neurocomputing, 111 (2013), 190–194. https://doi.org/10.1016/j.neucom.2012.11.034 doi: 10.1016/j.neucom.2012.11.034
    [12] K. Udhayakumar, F. A. Rihan, R. Rakkiyappan, J. Cao, Fractional-order discontinuous systems with indefinite LKFs: an application to fractional-order neural networks with time delays, Neural Networks, 145 (2022), 319–330. https://doi.org/10.1016/j.neunet.2021.10.027 doi: 10.1016/j.neunet.2021.10.027
    [13] L. M. Pecora, T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), 821. https://doi.org/10.1103/PhysRevLett.64.821 doi: 10.1103/PhysRevLett.64.821
    [14] C. Ge, X. Liu, Y. Liu, C. Hua, Event-triggered exponential synchronization of the switched neural networks with frequent asynchronism, IEEE Trans. Neural Networks Learn. Syst., 2022. https://doi.org/10.1109/TNNLS.2022.3185098
    [15] E. Vassilieva, G. Pinto, J. de Barros, P. Suppes, Learning pattern recognition through quasi-synchronization of phase oscillators, IEEE Trans. Neural Networks, 22 (2010), 84–95. https://doi.org/10.1109/TNN.2010.2086476 doi: 10.1109/TNN.2010.2086476
    [16] A. A. Koronovskii, O. I. Moskalenko, A. E. Hramov, On the use of chaotic synchronization for secure communication, Phys. Usp., 52 (2009), 1213–1238. https://doi.org/10.3367/UFNe.0179.200912c.1281 doi: 10.3367/UFNe.0179.200912c.1281
    [17] X. Yang, X. Wan, C. Zunshui, J. Cao, Y. Liu, L. Rutkowski, Synchronization of switched discrete-time neural networks via quantized output control with actuator fault, IEEE Trans. Neural Networks Learn. Syst., 32 (2020), 4191–4201. https://doi.org/10.1109/TNNLS.2020.3017171 doi: 10.1109/TNNLS.2020.3017171
    [18] J. Xiao, J. Cao, J. Cheng, S. Zhong, S. Wen, Novel methods to finite-time mittag-leffler synchronization problem of fractional-order quaternion-valued neural networks, Inf. Sci., 526 (2020), 221–244. https://doi.org/10.1016/j.ins.2020.03.101 doi: 10.1016/j.ins.2020.03.101
    [19] S. Kumar, A. E. Matouk, H. Chaudhary, S. Kant, Control and synchronization of fractional-order chaotic satellite systems using feedback and adaptive control techniques, Int. J. Adapt Control Signal Process., 35 (2021), 484–497. https://doi.org/10.1002/acs.3207 doi: 10.1002/acs.3207
    [20] R. Tang, H. Su, Y. Zou, X. Yang, Finite-time synchronization of markovian coupled neural networks with delays via intermittent quantized control: linear programming approach, IEEE Trans. Neural Networks Learn. Syst., 33 (2021), 5268–5278. https://doi.org/10.1109/TNNLS.2021.3069926 doi: 10.1109/TNNLS.2021.3069926
    [21] L. Zhang, J. Zhong, J. Lu, Intermittent control for finite-time synchronization of fractional-order complex networks, Neural Networks, 144 (2021), 11–20. https://doi.org/10.1016/j.neunet.2021.08.004 doi: 10.1016/j.neunet.2021.08.004
    [22] S. Wang, Z. Zhang, C. Lin, J. Chen, Fixed-time synchronization for complex-valued bam neural networks with time-varying delays via pinning control and adaptive pinning control, Chaos Solitons Fract., 153 (2021), 111583. https://doi.org/10.1016/j.chaos.2021.111583 doi: 10.1016/j.chaos.2021.111583
    [23] X. Han, F. Cheng, S. Tang, Y. Zhang, Y. Fu, W. Cheng, et al., Synchronization analysis of fractional-order neural networks with adaptive intermittent-active control, IEEE Access, 10 (2022), 75097–75104. https://doi.org/10.1109/ACCESS.2022.3191801 doi: 10.1109/ACCESS.2022.3191801
    [24] M. Hui, C. Wei, J. Zhang, H. H. C. Iu, R. Yao, L. Bai, Finite-time synchronization of fractional-order memristive neural networks via feedback and periodically intermittent control, Commun. Nonlinear Sci. Numer. Simul., 116 (2023), 106822. https://doi.org/10.1016/j.cnsns.2022.106822 doi: 10.1016/j.cnsns.2022.106822
    [25] L. Zhang, Y. Yang, F. Wang, Lag synchronization for fractional-order memristive neural networks via period intermittent control, Nonlinear Dyn., 89 (2017), 367–381. https://doi.org/10.1007/s11071-017-3459-4 doi: 10.1007/s11071-017-3459-4
    [26] S. Zhang, Y. Yang, X. Sui, Y. Zhang, Synchronization of fractional-order memristive recurrent neural networks via aperiodically intermittent control, Math. Biosci. Eng, 19 (2022), 11717–11734. https://doi.org/10.3934/mbe.2022545 doi: 10.3934/mbe.2022545
    [27] Y. Xu, F. Sun, W. Li, Exponential synchronization of fractional-order multilayer coupled neural networks with reaction-diffusion terms via intermittent control, Neural Comput. Appl., 33 (2021), 16019–16032. https://doi.org/10.1007/s00521-021-06214-0 doi: 10.1007/s00521-021-06214-0
    [28] H. Shen, Y. Zhu, L. Zhang, J. H. Park, Extended dissipative state estimation for markov jump neural networks with unreliable links, IEEE Trans. Neural Networks Learn. Syst., 28 (2016), 346–358. https://doi.org/10.1109/TNNLS.2015.2511196 doi: 10.1109/TNNLS.2015.2511196
    [29] S. Shanmugam, R. Vadivel, M. Rhaima, H. Ghoudi, Improved results on an extended dissipative analysis of neural networks with additive time-varying delays using auxiliary function-based integral inequalities, AIMS Math., 8 (2023), 21221–21245. https://doi.org/10.3934/math.20231082 doi: 10.3934/math.20231082
    [30] R. Anbuvithya, S. D. Sri, R. Vadivel, N. Gunasekaran, P. Hammachukiattikul, Extended dissipativity and non-fragile synchronization for recurrent neural networks with multiple time-varying delays via sampled-data control, IEEE Access, 9 (2021), 31454–31466. https://doi.org/10.1109/ACCESS.2021.3060044 doi: 10.1109/ACCESS.2021.3060044
    [31] B. Zhang, W. X. Zheng, S. Xu, Filtering of markovian jump delay systems based on a new performance index, IEEE Trans. Circuits Syst. I, 60 (2013), 1250–1263. https://doi.org/10.1109/TCSI.2013.2246213 doi: 10.1109/TCSI.2013.2246213
    [32] R. Vadivel, P. Hammachukiattikul, S. Vinoth, K. Chaisena, N. Gunasekaran, An extended dissipative analysis of fractional-order fuzzy networked control systems, Fractal Fract., 6 (2022), 591. https://doi.org/10.3390/fractalfract6100591 doi: 10.3390/fractalfract6100591
    [33] T. N. Tuan, N. T. Thanh, M. V. Thuan, New results on robust finite-time extended dissipativity for uncertain fractional-order neural networks, Neural Process. Lett., 55 (2023), 9635–9650. https://doi.org/10.1007/s11063-023-11218-z doi: 10.1007/s11063-023-11218-z
    [34] X. Sun, X. Song, Dissipative analysis for fractional-order complex-valued reaction–diffusion neural networks, 2022 13th Asian Control Conference (ASCC), 2022,269–273. https://doi.org/10.23919/ASCC56756.2022.9828311 doi: 10.23919/ASCC56756.2022.9828311
    [35] D. T. Hong, N. H. Sau, M. V. Thuan, New criteria for dissipativity analysis of fractional-order static neural networks, Circuits Syst. Signal Process., 41 (2022), 2221–2243. https://doi.org/10.1007/s00034-021-01888-2 doi: 10.1007/s00034-021-01888-2
    [36] N. T. Phuong, N. T. T. Huyen, N. T. H. Thu, N. H. Sau, M. V. Thuan, New criteria for dissipativity analysis of caputo fractional-order neural networks with non-differentiable time-varying delays, Int. J. Nonlinear Sci. Numer. Simul., 2022. https://doi.org/10.1515/ijnsns-2021-0203 doi: 10.1515/ijnsns-2021-0203
    [37] M. Shafiya, G. Nagamani, Extended dissipativity criterion for fractional-order neural networks with time-varying parameter and interval uncertainties, Comput. Appl. Math., 41 (2022), 95. https://doi.org/10.1007/s40314-022-01799-1 doi: 10.1007/s40314-022-01799-1
    [38] Y. Yang, Y. He, M. Wu, Intermittent control strategy for synchronization of fractional-order neural networks via piecewise lyapunov function method, J. Franklin Inst., 356 (2019), 4648–4676. https://doi.org/10.1016/j.jfranklin.2018.12.020 doi: 10.1016/j.jfranklin.2018.12.020
    [39] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1999. https://doi.org/10.1016/s0076-5392(99)x8001-5
    [40] N. Gunasekaran, G. Zhai, Q. Yu, Exponential sampled-data fuzzy stabilization of nonlinear systems and its application to basic buck converters, IET Control Theory Appl., 15 (2021), 1157–1168. https://doi.org/10.1049/cth2.12113 doi: 10.1049/cth2.12113
    [41] N. Aguila-Camacho, M. A. Duarte-Mermoud, J. A. Gallegos, Lyapunov functions for fractional order systems, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2951–2957. https://doi.org/10.1016/j.cnsns.2014.01.022 doi: 10.1016/j.cnsns.2014.01.022
  • This article has been cited by:

    1. P.O. Amadi, A.N. Ikot, U.S. Okorie, L.F. Obagboye, G.J. Rampho, R. Horchani, M.C. Onyeaju, H.I. Alrebdi, A.-H. Abdel-Aty, Shannon entropy and complexity measures for Bohr Hamiltonian with triaxial nuclei, 2022, 39, 22113797, 105744, 10.1016/j.rinp.2022.105744
    2. Hari M. Srivastava, Waseem Z. Lone, Firdous A. Shah, Ahmed I. Zayed, Discrete Quadratic-Phase Fourier Transform: Theory and Convolution Structures, 2022, 24, 1099-4300, 1340, 10.3390/e24101340
    3. William Guo, A guide for using integration by parts: Pet-LoPo-InPo, 2022, 30, 2688-1594, 3572, 10.3934/era.2022182
    4. Mawardi Bahri, Samsul Ariffin Abdul Karim, Some Essential Relations for the Quaternion Quadratic-Phase Fourier Transform, 2023, 11, 2227-7390, 1235, 10.3390/math11051235
    5. Waseem Z. Lone, Firdous A. Shah, Weighted convolutions in the quadratic-phase Fourier domains: Product theorems and applications, 2022, 270, 00304026, 169978, 10.1016/j.ijleo.2022.169978
    6. Sri Sulasteri, Mawardi Bahri, Nasrullah Bachtiar, Jeffry Kusuma, Agustinus Ribal, Solving Generalized Heat and Generalized Laplace Equations Using Fractional Fourier Transform, 2023, 7, 2504-3110, 557, 10.3390/fractalfract7070557
    7. JAY SINGH MAURYA, SANTOSH KUMAR UPADHYAY, CHARACTERIZATIONS OF THE INVERSION FORMULA OF THE CONTINUOUS BESSEL WAVELET TRANSFORM OF DISTRIBUTIONS IN Hμ′(ℝ+), 2023, 31, 0218-348X, 10.1142/S0218348X23400303
    8. Mohra Zayed, Aamir H. Dar, M. Younus Bhat, Discrete Quaternion Quadratic Phase Fourier Transform, 2025, 19, 1661-8254, 10.1007/s11785-025-01677-8
    9. Waseem Z. Lone, Ahmed Saoudi, Amit K. Verma, An Analysis of Short‐Time Quadratic‐Phase Fourier Transform in Octonion Domain, 2025, 0170-4214, 10.1002/mma.11142
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(408) PDF downloads(39) Cited by(0)

Figures and Tables

Figures(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog