Research article Special Issues

Enhancing synchronization criteria for fractional-order chaotic neural networks via intermittent control: an extended dissipativity approach

  • Published: 12 March 2025
  • In this paper, a recurrent intermittent control (RIC) for the synchronization of fractional-order chaotic neural networks (FOCNNs) is proposed in view of the extended dissipativity-based approach. Successively, standard linear matrix inequalites (LMIs)-based extended dissipative criteria are derived through differential inclusions and inequality mechanisms. Several sufficient conditions are obtained to ensure the synchronization of FOCNNs. Furthermore, RIC is generated to solve the synchronization problem for the considered FOCNNs. Based on the piecewise Lyapunov functional, this paper derives a exponentially stable criterion in connection with linear matrix inequalities using the Matlab toolbox. Extended dissipativity can be employed to precisely define $ L_2 $–$ L_{\infty} $, $ H_{\infty} $, passivity, and $ (Q, S, R) $-$ \vartheta $ dissipative performance. This is achieved by modifying the weighting matrices to achieve the desired performance level. The successful application of the stability criterion that was planned is demonstrated by the outcomes of the simulation.

    Citation: Saravanan Shanmugam, R. Vadivel, S. Sabarathinam, P. Hammachukiattikul, Nallappan Gunasekaran. Enhancing synchronization criteria for fractional-order chaotic neural networks via intermittent control: an extended dissipativity approach[J]. Mathematical Modelling and Control, 2025, 5(1): 31-47. doi: 10.3934/mmc.2025003

    Related Papers:

  • In this paper, a recurrent intermittent control (RIC) for the synchronization of fractional-order chaotic neural networks (FOCNNs) is proposed in view of the extended dissipativity-based approach. Successively, standard linear matrix inequalites (LMIs)-based extended dissipative criteria are derived through differential inclusions and inequality mechanisms. Several sufficient conditions are obtained to ensure the synchronization of FOCNNs. Furthermore, RIC is generated to solve the synchronization problem for the considered FOCNNs. Based on the piecewise Lyapunov functional, this paper derives a exponentially stable criterion in connection with linear matrix inequalities using the Matlab toolbox. Extended dissipativity can be employed to precisely define $ L_2 $–$ L_{\infty} $, $ H_{\infty} $, passivity, and $ (Q, S, R) $-$ \vartheta $ dissipative performance. This is achieved by modifying the weighting matrices to achieve the desired performance level. The successful application of the stability criterion that was planned is demonstrated by the outcomes of the simulation.



    加载中


    [1] Z. Zhang, K. Yang, J. Qian, L. Zhang, Real-time surface emg pattern recognition for hand gestures based on an artificial neural network, Sensors, 19 (2019), 3170. https://doi.org/10.3390/s19143170 doi: 10.3390/s19143170
    [2] S. Shanmugam, R. Vadivel, N. Gunasekaran, Finite-time synchronization of quantized markovian-jump time-varying delayed neural networks via an event-triggered control scheme under actuator saturation, Mathematics, 11 (2023), 2257. https://doi.org/10.3390/math11102257 doi: 10.3390/math11102257
    [3] Y. Liu, Y. Zheng, J. Lu, J. Cao, L. Rutkowski, Constrained quaternion-variable convex optimization: a quaternion-valued recurrent neural network approach, IEEE Trans. Neural Networks Learn. Syst., 31 (2019), 1022–1035. https://doi.org/10.1109/TNNLS.2019.2916597 doi: 10.1109/TNNLS.2019.2916597
    [4] M. S. Ali, S. Saravanan, Finite-time stability for memristor based switched neural networks with time-varying delays via average dwell time approach, Neurocomputing, 275 (2018), 1637–1649. https://doi.org/10.1016/j.neucom.2017.10.003 doi: 10.1016/j.neucom.2017.10.003
    [5] C. Aouiti, J. Cao, H. Jallouli, C. Huang, Finite-time stabilization for fractional-order inertial neural networks with time-varying delays, Nonlinear Anal. Model., 27 (2022), 1–18. https://doi.org/10.15388/namc.2022.27.25184 doi: 10.15388/namc.2022.27.25184
    [6] D. Yang, Y. Yu, W. Hu, X. Yuan, G. Ren, Mean square asymptotic stability of discrete-time fractional order stochastic neural networks with multiple time-varying delays, Neural Process. Lett., 55 (2023), 9247–9268. https://doi.org/10.1007/s11063-023-11200-9 doi: 10.1007/s11063-023-11200-9
    [7] C. A. Popa, Mittag-leffler stability and synchronization of neutral-type fractional-order neural networks with leakage delay and mixed delays, J. Franklin Inst., 360 (2023), 327–355. https://doi.org/10.1016/j.jfranklin.2022.11.011 doi: 10.1016/j.jfranklin.2022.11.011
    [8] J. Cao, G. Stamov, I. Stamova, S. Simeonov, Almost periodicity in impulsive fractional-order reaction–diffusion neural networks with time-varying delays, IEEE Trans. Cybern., 51 (2020), 151–161. https://doi.org/10.1109/TCYB.2020.2967625 doi: 10.1109/TCYB.2020.2967625
    [9] N. H. Sau, M. V. Thuan, N. T. T. Huyen, Passivity analysis of fractional-order neural networks with time-varying delay based on lmi approach, Circuits Syst. Signal Process., 39 (2020), 5906–5925. https://doi.org/10.1007/s00034-020-01450-6 doi: 10.1007/s00034-020-01450-6
    [10] H. Wu, X. Zhang, S. Xue, L. Wang, Y. Wang, Lmi conditions to global mittag-leffler stability of fractional-order neural networks with impulses, Neurocomputing, 193 (2016), 148–154. https://doi.org/10.1016/j.neucom.2016.02.002 doi: 10.1016/j.neucom.2016.02.002
    [11] L. Chen, Y. Chai, R. Wu, T. Ma, H. Zhai, Dynamic analysis of a class of fractional-order neural networks with delay, Neurocomputing, 111 (2013), 190–194. https://doi.org/10.1016/j.neucom.2012.11.034 doi: 10.1016/j.neucom.2012.11.034
    [12] K. Udhayakumar, F. A. Rihan, R. Rakkiyappan, J. Cao, Fractional-order discontinuous systems with indefinite LKFs: an application to fractional-order neural networks with time delays, Neural Networks, 145 (2022), 319–330. https://doi.org/10.1016/j.neunet.2021.10.027 doi: 10.1016/j.neunet.2021.10.027
    [13] L. M. Pecora, T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), 821. https://doi.org/10.1103/PhysRevLett.64.821 doi: 10.1103/PhysRevLett.64.821
    [14] C. Ge, X. Liu, Y. Liu, C. Hua, Event-triggered exponential synchronization of the switched neural networks with frequent asynchronism, IEEE Trans. Neural Networks Learn. Syst., 2022. https://doi.org/10.1109/TNNLS.2022.3185098
    [15] E. Vassilieva, G. Pinto, J. de Barros, P. Suppes, Learning pattern recognition through quasi-synchronization of phase oscillators, IEEE Trans. Neural Networks, 22 (2010), 84–95. https://doi.org/10.1109/TNN.2010.2086476 doi: 10.1109/TNN.2010.2086476
    [16] A. A. Koronovskii, O. I. Moskalenko, A. E. Hramov, On the use of chaotic synchronization for secure communication, Phys. Usp., 52 (2009), 1213–1238. https://doi.org/10.3367/UFNe.0179.200912c.1281 doi: 10.3367/UFNe.0179.200912c.1281
    [17] X. Yang, X. Wan, C. Zunshui, J. Cao, Y. Liu, L. Rutkowski, Synchronization of switched discrete-time neural networks via quantized output control with actuator fault, IEEE Trans. Neural Networks Learn. Syst., 32 (2020), 4191–4201. https://doi.org/10.1109/TNNLS.2020.3017171 doi: 10.1109/TNNLS.2020.3017171
    [18] J. Xiao, J. Cao, J. Cheng, S. Zhong, S. Wen, Novel methods to finite-time mittag-leffler synchronization problem of fractional-order quaternion-valued neural networks, Inf. Sci., 526 (2020), 221–244. https://doi.org/10.1016/j.ins.2020.03.101 doi: 10.1016/j.ins.2020.03.101
    [19] S. Kumar, A. E. Matouk, H. Chaudhary, S. Kant, Control and synchronization of fractional-order chaotic satellite systems using feedback and adaptive control techniques, Int. J. Adapt Control Signal Process., 35 (2021), 484–497. https://doi.org/10.1002/acs.3207 doi: 10.1002/acs.3207
    [20] R. Tang, H. Su, Y. Zou, X. Yang, Finite-time synchronization of markovian coupled neural networks with delays via intermittent quantized control: linear programming approach, IEEE Trans. Neural Networks Learn. Syst., 33 (2021), 5268–5278. https://doi.org/10.1109/TNNLS.2021.3069926 doi: 10.1109/TNNLS.2021.3069926
    [21] L. Zhang, J. Zhong, J. Lu, Intermittent control for finite-time synchronization of fractional-order complex networks, Neural Networks, 144 (2021), 11–20. https://doi.org/10.1016/j.neunet.2021.08.004 doi: 10.1016/j.neunet.2021.08.004
    [22] S. Wang, Z. Zhang, C. Lin, J. Chen, Fixed-time synchronization for complex-valued bam neural networks with time-varying delays via pinning control and adaptive pinning control, Chaos Solitons Fract., 153 (2021), 111583. https://doi.org/10.1016/j.chaos.2021.111583 doi: 10.1016/j.chaos.2021.111583
    [23] X. Han, F. Cheng, S. Tang, Y. Zhang, Y. Fu, W. Cheng, et al., Synchronization analysis of fractional-order neural networks with adaptive intermittent-active control, IEEE Access, 10 (2022), 75097–75104. https://doi.org/10.1109/ACCESS.2022.3191801 doi: 10.1109/ACCESS.2022.3191801
    [24] M. Hui, C. Wei, J. Zhang, H. H. C. Iu, R. Yao, L. Bai, Finite-time synchronization of fractional-order memristive neural networks via feedback and periodically intermittent control, Commun. Nonlinear Sci. Numer. Simul., 116 (2023), 106822. https://doi.org/10.1016/j.cnsns.2022.106822 doi: 10.1016/j.cnsns.2022.106822
    [25] L. Zhang, Y. Yang, F. Wang, Lag synchronization for fractional-order memristive neural networks via period intermittent control, Nonlinear Dyn., 89 (2017), 367–381. https://doi.org/10.1007/s11071-017-3459-4 doi: 10.1007/s11071-017-3459-4
    [26] S. Zhang, Y. Yang, X. Sui, Y. Zhang, Synchronization of fractional-order memristive recurrent neural networks via aperiodically intermittent control, Math. Biosci. Eng, 19 (2022), 11717–11734. https://doi.org/10.3934/mbe.2022545 doi: 10.3934/mbe.2022545
    [27] Y. Xu, F. Sun, W. Li, Exponential synchronization of fractional-order multilayer coupled neural networks with reaction-diffusion terms via intermittent control, Neural Comput. Appl., 33 (2021), 16019–16032. https://doi.org/10.1007/s00521-021-06214-0 doi: 10.1007/s00521-021-06214-0
    [28] H. Shen, Y. Zhu, L. Zhang, J. H. Park, Extended dissipative state estimation for markov jump neural networks with unreliable links, IEEE Trans. Neural Networks Learn. Syst., 28 (2016), 346–358. https://doi.org/10.1109/TNNLS.2015.2511196 doi: 10.1109/TNNLS.2015.2511196
    [29] S. Shanmugam, R. Vadivel, M. Rhaima, H. Ghoudi, Improved results on an extended dissipative analysis of neural networks with additive time-varying delays using auxiliary function-based integral inequalities, AIMS Math., 8 (2023), 21221–21245. https://doi.org/10.3934/math.20231082 doi: 10.3934/math.20231082
    [30] R. Anbuvithya, S. D. Sri, R. Vadivel, N. Gunasekaran, P. Hammachukiattikul, Extended dissipativity and non-fragile synchronization for recurrent neural networks with multiple time-varying delays via sampled-data control, IEEE Access, 9 (2021), 31454–31466. https://doi.org/10.1109/ACCESS.2021.3060044 doi: 10.1109/ACCESS.2021.3060044
    [31] B. Zhang, W. X. Zheng, S. Xu, Filtering of markovian jump delay systems based on a new performance index, IEEE Trans. Circuits Syst. I, 60 (2013), 1250–1263. https://doi.org/10.1109/TCSI.2013.2246213 doi: 10.1109/TCSI.2013.2246213
    [32] R. Vadivel, P. Hammachukiattikul, S. Vinoth, K. Chaisena, N. Gunasekaran, An extended dissipative analysis of fractional-order fuzzy networked control systems, Fractal Fract., 6 (2022), 591. https://doi.org/10.3390/fractalfract6100591 doi: 10.3390/fractalfract6100591
    [33] T. N. Tuan, N. T. Thanh, M. V. Thuan, New results on robust finite-time extended dissipativity for uncertain fractional-order neural networks, Neural Process. Lett., 55 (2023), 9635–9650. https://doi.org/10.1007/s11063-023-11218-z doi: 10.1007/s11063-023-11218-z
    [34] X. Sun, X. Song, Dissipative analysis for fractional-order complex-valued reaction–diffusion neural networks, 2022 13th Asian Control Conference (ASCC), 2022,269–273. https://doi.org/10.23919/ASCC56756.2022.9828311 doi: 10.23919/ASCC56756.2022.9828311
    [35] D. T. Hong, N. H. Sau, M. V. Thuan, New criteria for dissipativity analysis of fractional-order static neural networks, Circuits Syst. Signal Process., 41 (2022), 2221–2243. https://doi.org/10.1007/s00034-021-01888-2 doi: 10.1007/s00034-021-01888-2
    [36] N. T. Phuong, N. T. T. Huyen, N. T. H. Thu, N. H. Sau, M. V. Thuan, New criteria for dissipativity analysis of caputo fractional-order neural networks with non-differentiable time-varying delays, Int. J. Nonlinear Sci. Numer. Simul., 2022. https://doi.org/10.1515/ijnsns-2021-0203 doi: 10.1515/ijnsns-2021-0203
    [37] M. Shafiya, G. Nagamani, Extended dissipativity criterion for fractional-order neural networks with time-varying parameter and interval uncertainties, Comput. Appl. Math., 41 (2022), 95. https://doi.org/10.1007/s40314-022-01799-1 doi: 10.1007/s40314-022-01799-1
    [38] Y. Yang, Y. He, M. Wu, Intermittent control strategy for synchronization of fractional-order neural networks via piecewise lyapunov function method, J. Franklin Inst., 356 (2019), 4648–4676. https://doi.org/10.1016/j.jfranklin.2018.12.020 doi: 10.1016/j.jfranklin.2018.12.020
    [39] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1999. https://doi.org/10.1016/s0076-5392(99)x8001-5
    [40] N. Gunasekaran, G. Zhai, Q. Yu, Exponential sampled-data fuzzy stabilization of nonlinear systems and its application to basic buck converters, IET Control Theory Appl., 15 (2021), 1157–1168. https://doi.org/10.1049/cth2.12113 doi: 10.1049/cth2.12113
    [41] N. Aguila-Camacho, M. A. Duarte-Mermoud, J. A. Gallegos, Lyapunov functions for fractional order systems, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2951–2957. https://doi.org/10.1016/j.cnsns.2014.01.022 doi: 10.1016/j.cnsns.2014.01.022
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(910) PDF downloads(52) Cited by(1)

Article outline

Figures and Tables

Figures(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog